Dyson-Schwinger equations III

Karen Yeats Simon Fraser University

> June 21, 2010 les Houches

Analysing the differential equation

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Uminsky.

Restrict to the single equation case with s > 0.

$$\gamma_1(x) = P(x) - \gamma_1(x)(1 - sx\partial_x)\gamma_1(x)$$

 \mathbf{SO}

$$\bigcup_{x \in A} \frac{d\gamma_1(x)}{dx} = \frac{\gamma_1(x) + \gamma_1(x)^2 - P(x)}{sx\gamma_1(x)}$$
to find nullcling

Exact solutions

Beyond P(x) = x there's little hope for exact solutions. Even with P(x) = x, Maple can only do 4 of them.

$$\gamma_1(x) = x - \gamma_1(x)(1 - sx\partial_x)\gamma_1(x).$$

$$s = 1: \ \gamma_1(x) = x + xW \left(C \exp\left(-\frac{1+x}{x}\right) \right),$$

$$s = 2: \ \exp\left(\frac{(1+\gamma_1(x))^2}{2x}\right) \sqrt{-x} + \operatorname{erf}\left(\frac{1+\gamma_1(x)}{\sqrt{-2x}}\right) \frac{\sqrt{\pi}}{\sqrt{2}} = C$$

$$s = 3/2: \ A(X) - x^{1/3} 2^{1/3} A'(X) = C \left(B(X) - x^{1/3} 2^{1/3} B'(X)\right) \text{ where } X = \frac{1+\gamma_1(x)}{2^{2/3} x^{2/3}}$$

s = 3:
$$(\gamma_1(x)+1)A(X)-2^{2/3}A'(X) = C((\gamma_1(x)+1)B(X)-2^{2/3}B'(X))$$

where $X = \frac{(1+\gamma_1(x))^2+2x}{2^{4/3}x^{2/3}}$

where A is the Airy Ai function, B the Airy Bi function and W the Lambert W function.

Qualitative situation

Qualitatively, however, the basic shape doesn't change much with s.

watch s animation here

The running coupling

The β -function introduces a new differential equation

$$L = \log \frac{2}{\mu^2}$$

$$\frac{dx}{dL} = \beta(x(L)).$$

In the single equation case

$$\begin{cases} \frac{d\gamma_1}{dL} = \gamma_1 + \gamma_1^2 - P \\ \frac{dx}{dL} = sx\gamma_1 \end{cases}$$

The introduction of the running coupling removes the singularity at the origin.

Picture

The picture near 0 is still very much the same for any P(x) > 0 with P(0) = 0.

QED lives in this world: by Johnson, Baker, Willey, the QED system can be reduced to a single equation for the photon.

 $X = 1 - \sum_{x^k} B_{+}^k (X Q^k)$ for k=1 $B_{+}^{1}(XO)$ need this to be X° $Q = X^{-1}$ 52 5-1

QED to 2 loops

$$2\gamma_1(x) = \frac{x}{3} + \frac{x^2}{4} - \gamma_1(x)(1 - x\partial_x)\gamma_1(x)$$

Results – Global solutions

Let s > 0 and let P be C^2 and positive for x > 0, then there exist global (in x) solutions if and only if

$$\int_{x_0}^{\infty} \frac{P(z)}{z^{1+2/s}} dz < \infty \tag{1}$$

for some $x_0 > 0$.

Results – Asymptotics

Let

$$\gamma_c(x) = \frac{\sqrt{1 + 4P(x)} - 1}{2} \qquad \text{null cline}$$

Let $x_0, s > 0$. Assume that P is C^2 , positive for x > 0, increasing, and satisfies (1). Then every global solution with $\gamma_1(x_0) > \gamma_1^*(x_0)$ satisfies

$$C_1 \ x^{\frac{1}{s}} \leq \gamma_1(x) \leq C_2 \ x^{\frac{1}{s}}$$
 separating solv.

as $x \to \infty$ for some $0 < C_1 < C_2$, while the separatrix itself satisfies

$$\operatorname{Aplight} < \gamma_1^{\star}(x) \le \min \lim_{x \to \infty} \left\{ \gamma_c(x) \ , \ C \ x^{\frac{1}{s}} \right\}$$

for some C > 0.

In particular, if $\lim_{x\to\infty} P(x) < \infty$, the separatrix is the only global bounded solution.

Back to the L picture

8-14

Landau poles

Assume that P is a C^2 , positive, everywhere increasing function that satisfies (1). The separatrix γ_1^* is a Landau pole if and only if

$$\mathcal{L}(P) = \int_{x_0}^{\infty} \frac{\mathrm{d}z}{z \ \gamma_c(z)} = \int_{x_0}^{\infty} \frac{2\mathrm{d}z}{z(\sqrt{1+4P(z)}-1)} < \infty$$

All other global solutions of are Landau poles, irrespective of the value of $\mathcal{L}(P)$.

Summary of P(x) > 0 for x near 0

If P(x) is \mathcal{C}^2 and P(x) > 0 for $x \in (0, x_0)$ then either

- γ_1 crosses the x axis with a vertical tangent and returns to -1, or
- P and γ_1 have a common zero, or
- γ_1 is a global positive solution

In the last case if also P(x) > 0 for all x > 0 and P(x) is increasing then either

- γ_1 is the separatrix and may or may not diverge in finite L depending on P, or
- γ_1 is larger than that separatrix and necessarily diverges in finite L.

P(x) < 0 for x near 0

9-1

\mathbf{QCD}

P(x) < 0 is the situation for massless QCD in background field gauge.

9-3

P > -1/4

9-4

Delicacy

Conditions

Recall the QED condition (1)

$$\int_{x_0}^{\infty} \frac{P(z)}{z^{1+2/s}} dz < \infty$$

for some $x_0 > 0$.

The finiteness of the same quantity determines things here. Specifically with s = 1 and P negative

$$\int_{x_0}^{\infty} \frac{P(z)}{z^3} dz < \infty$$
(2)

for some $x_0 > 0$.

Results

Assume P is C^2 , with P(0) = 0, $P'(0) \stackrel{\leq}{\circledast} 0$, and P(x) < 0 for $x \stackrel{\geq}{\circledast} 0$. Assume there is an x^* with $P(x^*) < -1/4$ and P concave on $[0, x^*]$.

- There is a unique solution which is 0 as $x \to 0$. Solutions below this approach -1 as $x \to 0$ and solutions above it cross the x-axis at some positive value.
- Assume $\gamma_1(x) > 0$ or $\gamma_1(x) < -1$.

- If (2) holds then γ_1 is aymptotically linear as $x \to \infty$

- Otherwise
$$\gamma_1 \sim \pm x \left(\frac{\gamma_1(x_0)^2}{x_0^2} + 2 \int_{x_0}^x \frac{-P(z)}{z^3} dz \right)^{\frac{1}{2}}$$

• If further $\lim_{x\to\infty} P(x) = c > -1/4$ and $\lim_{x\to\infty} xP'(x) = 0$ then there is a unique solution with

$$\lim_{x \to \infty} \gamma_1(x) = -\frac{1 + \sqrt{1 + 4\alpha}}{2}$$

Systems of equations in xThe grestien is what is the right grestion to ask

Need to visualize these.

$\int_{a}^{b} \operatorname{verlex}_{a} \frac{d\gamma_{1}^{+}}{dL} = \gamma_{1}^{+} - (\gamma_{1}^{+})^{2} - P^{+}(x)$ $\underset{c}{\operatorname{propagator}} \frac{d\gamma_{1}^{-}}{dL} = \gamma_{1}^{-} + (\gamma_{1}^{-})^{2} - P^{-}(x)$ $\frac{dx}{dL} = x(\gamma_{1}^{+} + 2\gamma_{1}^{-})$ Massless ϕ^4

let's see some animations