Dyson-Schwinger equations III

Karen Yeats
Simon Fraser University

June 21, 2010 les Houches

Analysing the differential equation

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Uminsky.

Restrict to the single equation case with $s>0$.

$$
\gamma_{1}(x)=P(x)-\gamma_{1}(x)\left(1-s x \partial_{x}\right) \gamma_{1}(x)
$$

So

$$
\begin{aligned}
& 0=\frac{d \gamma_{1}(x)}{d x}=\frac{\gamma_{1}(x)+\gamma_{1}(x)^{2}-P(x)}{s x \gamma_{1}(x)} \\
& \text { to hind nullcline }
\end{aligned}
$$

Exact solutions

Beyond $P(x)=x$ there's little hope for exact solutions. Even with $P(x)=x$, Maple can only do 4 of them.

$$
\begin{gathered}
\gamma_{1}(x)=x-\gamma_{1}(x)\left(1-s x \partial_{x}\right) \gamma_{1}(x) . \\
s=1: \gamma_{1}(x)=x+x W\left(C \exp \left(-\frac{1+x}{x}\right)\right) \\
s=2: \exp \left(\frac{\left(1+\gamma_{1}(x)\right)^{2}}{2 x}\right) \sqrt{-x}+\operatorname{erf}\left(\frac{1+\gamma_{1}(x)}{\sqrt{-2 x}}\right) \frac{\sqrt{\pi}}{\sqrt{2}}=C \\
s=3 / 2: A(X)-x^{1 / 3} 2^{1 / 3} A^{\prime}(X)=C\left(B(X)-x^{1 / 3} 2^{1 / 3} B^{\prime}(X)\right) \text { where } X= \\
\frac{1+\gamma_{1}(x)}{2^{2 / 3} x^{2 / 3}} \\
s=3: \quad\left(\gamma_{1}(x)+1\right) A(X)-2^{2 / 3} A^{\prime}(X)=C\left(\left(\gamma_{1}(x)+1\right) B(X)-2^{2 / 3} B^{\prime}(X)\right) \\
\quad \text { where } X=\frac{\left(1+\gamma_{1}(x)\right)^{2}+2 x}{2^{4 / 3} x^{2 / 3}}
\end{gathered}
$$

where A is the Airy Ai function, B the Airy Bi function and W the Lambert W function.

Qualitative situation

Qualitatively, however, the basic shape doesn't change much with s.
watch s animation here

$$
P(x)=x, s=1
$$

What are the behaviours?

$$
\begin{array}{r}
X=1 \pm \sum_{k} x^{k} B_{+}^{k}\left(X Q^{k}\right) \\
Q=X^{-s}
\end{array}
$$

The running coupling

The β-function introduces a new differential equation

$$
\frac{d x}{d L}=\beta(x(L)) .
$$

In the single equation case

$$
\left\{\begin{array}{l}
\frac{d \gamma_{1}}{d L}=\gamma_{1}+\gamma_{1}^{2}-P \\
\frac{d x}{d L}=s x \gamma_{1}
\end{array}\right.
$$

The introduction of the running coupling removes the singularity at the origin.

Picture

$P(x)>0$
The picture near 0 is still very much the same for any $P(x)>0$ with $P(0)=0$.

QED lives in this world: by Johnson, Baker, Willey, the QED system can be reduced to a single equation for the photon.

$$
s=1 \text { because }
$$

$$
X=1-\sum x^{k} B_{+}^{k}\left(X \mathbb{Q}^{k}\right)
$$

for $k=1 \quad B_{+}^{1}(X Q)$ red this ale X^{0}

$$
\begin{aligned}
& Q=X^{-1} \\
& \text { so } s=1
\end{aligned}
$$

QED to 2 loops

$$
2 \gamma_{1}(x)=\frac{x}{3}+\frac{x^{2}}{4}-\gamma_{1}(x)\left(1-x \partial_{x}\right) \gamma_{1}(x)
$$

QED to 4 loops

At 4 loops $P(0.992 \ldots)=0$. This should be an artifact of

Results - Global solutions
Let $s>0$ and let P be \mathcal{C}^{2} and positive for $x>0$, then there exist global (in x) solutions if and only if

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \frac{P(z)}{z^{1+2 / s}} d z<\infty \tag{1}
\end{equation*}
$$

for some $x_{0}>0$.

- Note her $P(x)=x \quad \int_{0}^{\infty} \frac{1}{z^{\frac{2}{3}}} d z<\infty$. Global in x solutions ifs $s<2$
- For QED $s=1 \quad P(x)$ can grow ab most $o\left(x^{2}\right)$ for (1) to hold
- If $\lim _{x \rightarrow \infty} P(x)=c<\infty$ then for any s, (נ) holds.
- If P satisfies (1) There is a unique separatrix - all solutions above exist for all x all soluhons below hit the x axis for sone finite x

Results - Asymptotics

Let

$$
\gamma_{c}(x)=\frac{\sqrt{1+4 P(x)}-1}{2} \quad \text { nullcline }
$$

Let $x_{0}, s>0$. Assume that P is \mathcal{C}^{2}, positive for $x>0$, increasing, and satisfies (1). Then every global solution with $\gamma_{1}\left(x_{0}\right)>\gamma_{1}^{\star}\left(x_{0}\right)$ satisfies

$$
C_{1} x^{\frac{1}{s}} \leq \gamma_{1}(x) \leq C_{2} x^{\frac{1}{s}}
$$

as $x \rightarrow \infty$ for some $0<C_{1}<C_{2}$, while the separatrix itself satisfies

$$
A_{d}(x d x)<\gamma_{1}^{\star}(x) \leq \min \lim _{x \rightarrow \infty}\left\{\gamma_{c}(x), C x^{\frac{1}{s}}\right\}
$$

for some $C>0$.

In particular, if $\lim _{x \rightarrow \infty} P(x)<\infty$, the separatrix is the only global bounded solution.

Back to the L picture

8-14

Translation to L

- all solutes go bo O as $L \rightarrow-\infty$
- The solution which doit exit to all x all go to -1 as $L \rightarrow \infty$ double valued as funclices of x

The solutions which exist lo all x could go to ∞ in finite L or only as $L \rightarrow \infty$
This is the question of Landor poles

Landau poles

Assume that P is a \mathcal{C}^{2}, positive, everywhere increasing function that satisfies (1). The separatrix γ_{1}^{\star} is a Landau pole if and only if

$$
\mathcal{L}(P)=\int_{x_{0}}^{\infty} \frac{\mathrm{d} z}{z \gamma_{c}(z)}=\int_{x_{0}}^{\infty} \frac{2 \mathrm{~d} z}{z(\sqrt{1+4 P(z)}-1)}<\infty .
$$

All other global solutions of are Landau poles, irrespective of the value of $\mathcal{L}(P)$.

Summary of $P(x)>0$ for x near 0

If $P(x)$ is \mathcal{C}^{2} and $P(x)>0$ for $x \in\left(0, x_{0}\right)$ then either

- γ_{1} crosses the x axis with a vertical tangent and returns to -1 , or
- P and γ_{1} have a common zero, or
- γ_{1} is a global positive solution

In the last case if also $P(x)>0$ for all $x>0$ and $P(x)$ is increasing then either

- γ_{1} is the separatrix and may or may not diverge in finite L depending on P, or
- γ_{1} is larger than that separatrix and necessarily diverges in finite L.

$P(x)<0$ for x near 0

QCD

$P(x)<0$ is the situation for massless QCD in background field gauge.

Spirals

$$
P>-1 / 4
$$

Delicacy

Conditions

Recall the QED condition (1)

$$
\int_{x_{0}}^{\infty} \frac{P(z)}{z^{1+2 / s}} d z<\infty
$$

for some $x_{0}>0$.
The finiteness of the same quantity determines things here. Specifically with $s=1$ and P negative

$$
\begin{equation*}
-\int_{x_{0}}^{\infty} \frac{P(z)}{z_{3}} d z<\infty \tag{2}
\end{equation*}
$$

for some $x_{0}>0$.

Results

Assume P is \mathcal{C}^{2}, with $P(0)=0, P^{\prime}(0)<0$, and $P(x)<0$ for $x>0$. Assume there is an x^{*} with $P\left(x^{*}\right)<-1 / 4$ and P concave on $\left[0, x^{*}\right]$.

- There is a unique solution which is 0 as $x \rightarrow 0$. Solutions below this approach -1 as $x \rightarrow 0$ and solutions above it cross the x-axis at some positive value.
- Assume $\gamma_{1}(x)>0$ or $\gamma_{1}(x)<-1$.
- If (2) holds then γ_{1} is aymptotically linear as $x \rightarrow \infty$
- Otherwise $\gamma_{1} \sim \pm x\left(\frac{\gamma_{1}\left(x_{0}\right)^{2}}{x_{0}^{2}}+2 \int_{x_{0}}^{x} \frac{-P(z)}{z^{3}} d z\right)^{\frac{1}{2}}$
- If further $\lim _{x \rightarrow \infty} P(x)=c>-1 / 4$ and $\lim _{x \rightarrow \infty} x P^{\prime}(x)=0$ then there is a unique solution with

$$
\lim _{x \rightarrow \infty} \gamma_{1}(x)=-\frac{1+\sqrt{1+4 c}}{2}
$$

Systems of equations in x
The question is what is the right question to ask Need to visualize these.

Massless ϕ^{4}

$$
\begin{aligned}
& \not \downarrow^{\text {vertex }} \\
& \frac{d \gamma_{1}^{+}}{d L}=\gamma_{1}^{+}-\left(\gamma_{1}^{+}\right)^{2}-P^{+}(x) \\
& \text { propagator }_{\longrightarrow}^{d \gamma_{1}^{-}}=\gamma_{1}^{-}+\left(\gamma_{1}^{-}\right)^{2}-P^{-}(x) \\
& \frac{d x}{d L}=x\left(\gamma_{1}^{+}+2 \gamma_{1}^{-}\right)
\end{aligned}
$$

let's see some animations

