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Analysing the differential equation

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Umin-
sky.

Restrict to the single equation case with s > 0.

γ1(x) = P (x)− γ1(x)(1− sx∂x)γ1(x)

so
dγ1(x)

dx
=

γ1(x) + γ1(x)
2 − P (x)

sxγ1(x)

8-1



Exact solutions

Beyond P (x) = x there’s little hope for exact solutions. Even with
P (x) = x, Maple can only do 4 of them.

γ1(x) = x− γ1(x)(1− sx∂x)γ1(x).

s = 1: γ1(x) = x+ xW
(

C exp
(

− 1+x
x

))

,

s = 2: exp
(

(1+γ1(x))
2

2x

)√
−x+ erf

(

1+γ1(x)√
−2x

) √
π√
2
= C

s = 3/2: A (X)−x1/321/3A′ (X) = C
(

B (X)− x1/321/3B′ (X)
)

where X =
1+γ1(x)
22/3x2/3

s = 3: (γ1(x)+1)A (X)−22/3A′ (X) = C
(

(γ1(x) + 1)B (X)− 22/3B′ (X)
)

where X = (1+γ1(x))
2+2x

24/3x2/3

where A is the Airy Ai function, B the Airy Bi function and W the
Lambert W function.
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Qualitative situation

Qualitatively, however, the basic shape doesn’t change much with s.

watch s animation here
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P (x) = x, s = 1

What are the behaviours?
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The running coupling

The β-function introduces a new differential equation

dx

dL
= β(x(L)).

In the single equation case

dγ1
dL

= γ1 + γ2
1 − P

dx

dL
= sxγ1

The introduction of the running coupling removes the singularity at
the origin.
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Picture
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P (x) > 0

The picture near 0 is still very much the same for any P (x) > 0 with
P (0) = 0.

QED lives in this world: by Johnson, Baker, Willey, the QED system
can be reduced to a single equation for the photon.

s = 1 because
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QED to 2 loops

2γ1(x) =
x

3
+

x2

4
− γ1(x)(1− x∂x)γ1(x)
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QED to 4 loops

At 4 loops P (0.992 . . .) = 0.
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Results – Global solutions

Let s > 0 and let P be C2 and positive for x > 0, then there exist global
(in x) solutions if and only if

∫ ∞

x0

P (z)

z1+2/s
dz < ∞ (1)

for some x0 > 0.

•

•

•
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•
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Results – Asymptotics

Let

γc(x) =

√

1 + 4P (x)− 1

2

Let x0, s > 0. Assume that P is C2, positive for x > 0, increasing, and
satisfies (1). Then every global solution with γ1(x0) > γ⋆

1 (x0) satisfies

C1 x
1

s ≤ γ1(x) ≤ C2 x
1

s

as x → ∞ for some 0 < C1 < C2, while the separatrix itself satisfies

γc(x) < γ⋆
1 (x) ≤ min lim

x→∞

{

γc(x) , C x
1

s

}

for some C > 0.

In particular, if lim
x→∞

P (x) < ∞, the separatrix is the only global

bounded solution.
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Back to the L picture
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Translation to L
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Landau poles

Assume that P is a C2, positive, everywhere increasing function that
satisfies (1). The separatrix γ⋆

1 is a Landau pole if and only if

L(P ) =

∫ ∞

x0

dz

z γc(z)
=

∫ ∞

x0

2dz

z(
√

1 + 4P (z)− 1)
< ∞ .

All other global solutions of are Landau poles, irrespective of the value
of L(P ).
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Summary of P (x) > 0 for x near 0

If P (x) is C2 and P (x) > 0 for x ∈ (0, x0) then either

• γ1 crosses the x axis with a vertical tangent and returns to −1, or

• P and γ1 have a common zero, or

• γ1 is a global positive solution

In the last case if also P (x) > 0 for all x > 0 and P (x) is increasing
then either

• γ1 is the separatrix and may or may not diverge in finite L depend-
ing on P , or

• γ1 is larger than that separatrix and necessarily diverges in finite
L.
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P (x) < 0 for x near 0
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QCD

P (x) < 0 is the situation for massless QCD in background field gauge.
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Spirals
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P > −1/4
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Delicacy
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Conditions

Recall the QED condition (1)

∫ ∞

x0

P (z)

z1+2/s
dz < ∞

for some x0 > 0.
The finiteness of the same quantity determines things here. Specifi-

cally with s = 1 and P negative

−
∫ ∞

x0

P (z)

z3
dz < ∞ (2)

for some x0 > 0.
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Results

Assume P is C2, with P (0) = 0, P ′(0) = 0, and P (x) < 0 for x < 0.
Assume there is an x∗ with P (x∗) < −1/4 and P concave on [0, x∗].

• There is a unique solution which is 0 as x → 0. Solutions below
this approach −1 as x → 0 and solutions above it cross the x-axis
at some positive value.

• Assume γ1(x) > 0 or γ1(x) < −1.

– If (2) holds then γ1 is aymptotically linear as x → ∞

– Otherwise γ1 ∼ ±x
(

γ1(x0)
2

x2

0

+ 2
∫ x

x0

−P (z)
z3 dz

)
1

2

• If further limx→∞ P (x) = c > −1/4 and limx→∞ xP ′(x) = 0 then
there is a unique solution with

lim
x→∞

γ1(x) = −1 +
√
1 + 4c

2
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Systems of equations in x
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Massless φ4

dγ+
1

dL
= γ+

1 − (γ+
1 )2 − P+(x)

dγ−
1

dL
= γ−

1 + (γ−
1 )2 − P−(x)

dx

dL
= x(γ+

1 + 2γ−
1 )

let’s see some animations
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