Dyson-Schwinger equations II

Karen Yeats
Simon Fraser University

June 18, 2010
les Houches

A recursion for γ_{k}
Write $G(x, L)=1-\sum \gamma_{k} L^{k}$
Looking for a revisicen for γ_{k} in terms of lover γ_{f}

Essentially this is the RGE.
ar \rightarrow derive it directly for KC \rightarrow use $S_{*} Y$

The renormalization group equation

For a vertex v

$$
\left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x}-\sum_{e \text { adjacent to } v} \gamma^{e}(x)\right) x^{(\operatorname{val}(v)-2) / 2} G^{v}(x, L)=0
$$

For an edge e

$$
\left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x}-2 \gamma^{e}(x)\right) G^{e}(x, L)=0
$$

where

$$
\begin{aligned}
\beta(x) & =\left.\partial_{L} x \phi_{R}(Q)\right|_{L=0}=\sum_{j \in \mathcal{R}}\left|s_{j}\right| \gamma_{1}^{j}(x) x \\
\gamma^{e}(x) & =-\left.\frac{1}{2} \partial_{L} G^{e}(x, L)\right|_{L=0}=\frac{1}{2} \gamma_{1}^{e}
\end{aligned}
$$

Expanding the vertex

$$
\begin{aligned}
& \left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x}-\sum_{e \sim v} \gamma^{e}(x)\right) \times{ }^{\frac{\mathrm{Val}(v)-2}{2}} G^{v}(x, L)=0 \\
& =x^{\text {val(v)-2 }} \frac{\partial}{\partial L} G^{v}(x, L)+\beta(x) \frac{\mathrm{val}(v)-2}{2} \times x^{\frac{\mathrm{val}(v)-L}{2}} G^{v}(x, L) \\
& +x^{\frac{v a l(v)-2}{2}} \beta(x) \frac{\partial}{\partial x} G^{v}(x, L)=x^{\frac{v a l(v)-2}{2}} \frac{1}{2} \sum_{e \sim v} V_{V}^{e}(x) G^{v}(x, L) \\
& =x^{\frac{v a l(v)-2}{2}}\left(\frac{\partial}{\partial L} G^{v}(x, L)+\beta(x) \frac{\partial}{\partial x} G^{v}(x, L)+\left[\frac{\mathrm{val}(v) / 2}{2} \frac{1}{\operatorname{van}(v)-2}\left(\gamma_{1}^{v}+\sum_{\text {env }} \gamma_{1}^{k}\right)\right.\right. \\
& \left.\left.-\frac{1}{2} \sum_{g, v} x^{e}\right] G^{v}(x, L)\right) \\
& =x^{\text {val(v) }-2} 2\left(\frac{\partial}{\partial L} G^{v}(x, L)+\beta(x) \frac{\partial}{\partial x} G^{v}(x, L)+\gamma_{1}^{v} G^{v}(x, L)\right)
\end{aligned}
$$

$$
\begin{aligned}
& O=\left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x}+\gamma_{1}^{V}(x)\right) G^{v}(x, L) \\
& O=\left(\frac{\partial}{\partial L}+\beta(x) \frac{\partial}{\partial x}-\gamma_{1}^{e}(x)\right) G^{e}(x, L)
\end{aligned}
$$

$$
\left(\frac{\partial}{\partial L}+\sum_{j \in \mathcal{R}}\left|s_{j}\right| \gamma_{1}^{j}(x) x \frac{\partial}{\partial x}+\operatorname{sign}\left(s_{r}\right) \gamma_{1}^{r}(x)\right) G^{r}(x, L)=0 .
$$

The γ_{k} recursion
Extracting the coefficient of L^{k-1} and rearranging gives

$$
\begin{gathered}
G^{r}(x, L)=1 \pm \sum \gamma_{k}^{r} L^{k} \\
k \gamma_{k}^{\prime}+\sum_{j}\left|s_{j}\right| f_{1}^{j}(x) \times \frac{\partial}{\partial x} \gamma_{k-1}^{\prime}+\operatorname{sgn}\left(s_{r}\right) \gamma_{1}^{r}(x) \gamma_{k-1}^{r}=0 \\
\text { so } \quad \gamma_{k}^{r}=\frac{1}{k}\left(\gamma_{1}^{r}(x) \operatorname{sga}\left(s_{r}\right)-\sum_{j} 1 s_{j} \mid \gamma_{1}^{j}(x) \times \partial_{x}\right) \gamma_{k-1}^{r}
\end{gathered}
$$

Specializing to the single equation case gives

$$
\gamma_{k}=\frac{1}{k} \gamma_{1}(x)\left(\operatorname{sign}(s)-|s| x \partial_{x}\right) \gamma_{k-1}(x) .
$$

$S \star Y$ - some definitions

Some definitions

- Let S be the antipode of the Hopf algebra.
- Let Y be the grading operator.

$$
Y(-Q-)=3-6
$$

- Let

$$
\sigma_{1}=\left.\partial_{L} \phi_{r}(S \star Y)\right|_{L=0}
$$

and

$$
\sigma_{n}=\frac{1}{n!} m^{n-1}(\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{n \text { times }}) \Delta^{n-1}
$$

$S \star Y$ - some lemmas

- $S \star Y$ is 0 on products

$$
\begin{aligned}
& \text { Walter's } \\
& \begin{aligned}
& \Delta\left(\left[x^{k}\right] X^{r}\right)=\sum_{j=0}^{k}\left[x^{j}\right] X^{r} Q^{k-j} \otimes\left[x^{k-j}\right] X^{r} \text { formula } \\
&\left(\left[x^{k}\right] X^{r} Q^{\ell}\right)=\sum_{j=0}^{k}\left[x^{j}\right] X^{r} Q^{k+\ell-j} \otimes\left[x^{k-j}\right] X^{r} Q^{\ell} \text { in a } \\
& \text { fiffereat }
\end{aligned} \\
& \begin{array}{l}
\text { pulling ooh } \text { conf } \rightarrow \text { like a derivahe. } \\
\downarrow \text {. }
\end{array} \\
& \left(P_{\text {lin }} \otimes \mathrm{id}\right) \Delta X^{r}=X^{r} \otimes X^{r}-\sum_{j \in \mathcal{R}} s_{j} X^{j} \otimes x \partial_{x} X^{r} \\
& \left(P_{\text {lin }} \otimes \mathrm{id}\right) \Delta X=X \otimes X-s X \otimes x \partial_{x} X \\
& \text { for the single equation case }
\end{aligned}
$$

The scattering type formula
The scattering type formula captures the renormalization group in a Connes-Kreimer framework. In our notation it says

$$
\sigma_{n}\left(X^{r}\right)=\operatorname{sign}(s) \gamma_{n}^{r}(x)
$$

$$
\left(\begin{array}{l}
\text { he DSE is } \\
X=1 \pm \sum_{k} x^{k} B_{+}^{k}\left(X Q^{k}\right) \\
\text { in single cq case }
\end{array}\right)
$$

The γ_{k} recursion

Using

$$
\begin{aligned}
\sigma_{n}(X) & =\operatorname{sign}(s) \gamma_{n} \\
\sigma_{1} & =\left.\partial_{L} \phi_{r}(S \star Y)\right|_{L=0} \\
\sigma_{n} & =\frac{1}{n!} m^{n-1}(\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{n \text { times }}) \Delta^{n-1} \\
\left(P_{\text {lin }} \otimes \mathrm{id}\right) \Delta X & =X \otimes X-s X \otimes x \partial_{x} X
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{l}
\text { Calculate } \\
\gamma_{n}=\operatorname{sgn}(s) \epsilon_{n}(X)
\end{array} & =\operatorname{sgn}(s) \frac{1}{n!} m^{n-1}\left(\sigma_{1} \otimes \ldots \otimes \sigma_{1}\right) \Delta^{n-1} X \\
& =\operatorname{sgn}(s) \frac{1}{n} m\left(\sigma_{1} \otimes \sigma_{n-1}\right) \Delta X \\
& =\operatorname{sgn}(s) \frac{1}{n} m\left(\sigma_{1} \otimes \sigma_{n-1}\right)\left(P_{1 i n} \otimes i d\right) \Delta X
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{sgn}(s) \frac{1}{n} m\left(\sigma_{1} \otimes \sigma_{n-1}\right)(X \otimes X-s X \otimes \times \partial X) \\
& =\frac{1}{n}\left(\gamma_{1} \gamma_{n-1}-s \gamma_{1} \times \partial_{x} \gamma_{n-1}\right) \\
\gamma_{n} & =\frac{1}{n} \gamma_{1}\left(1-s x \partial_{x}\right) \gamma_{n-1}
\end{aligned}
$$

And similarly for systems.

Notes

1. As series in x, γ_{k} has loweot term x^{k}
2. Because we're renormalizing by sulotraction there's no γ_{0} tem

Trading ρ for x
Let $D=\operatorname{sign}(s) \gamma \cdot \widetilde{\partial_{-\rho}}$ nd $F_{k}(\rho)=\sum_{i=0}^{t_{k}} F_{k, i}(\rho)$ so the Dyson-Schwinger equation reads

$$
\gamma \cdot L=\left.\sum_{k \geq 1} x^{k}(1-D)^{1-s k}\left(e^{-L \rho}-1\right) F_{k}(\rho)\right|_{\rho=0}
$$

What is the lowest possible degree of x in

$$
\left.x^{k}(1-D)^{1-s k} \rho^{\ell}\right|_{\rho=0}
$$

$k+$ (lowest degree of x in $\gamma_{k_{1} \ldots} \gamma_{k_{n}}$ where $k_{1}+. .+k_{n}=l$

$$
=k+0
$$

Reduction to geometric series

So, there exists unique $r_{k}, r_{k, i} \in \mathbb{R}, k \geq 1,1 \leq i<k$ such that

$$
\begin{aligned}
& \left.\sum_{k} x^{k}(1-D)^{1-s k}\left(e^{-L \rho}-1\right) \underbrace{F_{k}(\rho)}\right|_{\rho=0} ^{\rho(1-\rho)} \\
& \left.=\sum_{k} x^{k}(1-D)^{1-s k}\left(e^{-L \rho}-1\right) \text { part hack part } \frac{r_{k, i} L^{i}}{\rho}\right)\left.\right|_{\rho=0}
\end{aligned}
$$

Note

Mysterious series

The $r_{i, j}$ are mysterious. With $s=2$ and a single primitive at 1 loop we get. with

$$
\begin{aligned}
r_{1} & =f_{-1} \\
r_{2} & =f_{-1}^{2}-f_{-1} f_{0} \\
r_{2,1} & =0 \\
r_{3} & =2 f_{-1}^{3}+f_{-1}^{2}\left(-4 f_{0}+f_{1}\right)+f_{-1} f_{0}^{2} \\
r_{3,1} & =-f_{-1}^{3}+f_{-1}^{2} f_{0} \\
r_{3,2} & =0 \\
r_{4} & =2 f_{-1}^{4}+f_{-1}^{3}\left(-12 f_{0}+6 f_{1}-f_{2}\right)+f_{-1}^{2}\left(9 f_{0}^{2}-3 f_{0} f_{1}\right)-f_{-1} f_{0}^{3} \\
r_{4,1} & =-f_{-1}^{4}+f_{-1}^{3}\left(6 f_{0}-2 f_{1}\right)-3 f_{-1}^{2} f_{0}^{2} \\
r_{4,2} & =\frac{7}{6} f_{-1}^{4}-\frac{7}{6} f_{-1}^{3} f_{0} \\
r_{4,3} & =0
\end{aligned}
$$

Even particular coefficients and examples are mysterious.

$$
F(\rho)=\frac{-1}{\rho(1-\rho)(2-\rho)(3-\rho)}
$$

gives

$$
\begin{array}{lrl}
r_{1} & =-\frac{1}{6} & \\
r_{2} & =-\frac{5}{6^{3}} & r_{2,1}=0 \\
r_{3} & =-\frac{14}{6^{5}} & r_{3,1}=\frac{-5}{6^{4}} \\
r_{4} & =\frac{563}{6^{7}} & r_{4,1}=\frac{-173}{6^{6}} \\
r_{5} & =\frac{13030}{6^{9}} & r_{4,2}=\frac{-35}{6^{6}} \\
r_{6} & =-\frac{194178}{6^{11}} &
\end{array}
$$

L and L^{2}
The Dyson-Schwinger equation has become

$$
\gamma \cdot L=\left.\sum_{k} x^{k}(1-D)^{1-s k}\left(e^{-(L)}-1\right)\left(\frac{r_{k}}{\rho(1-\rho)}+\sum_{1 \leq i<k} \frac{r_{k, i} L^{i}}{\rho}\right)\right|_{\rho=0}
$$

Take the coefficients of L and L^{2}

$$
\begin{aligned}
{[L]: \quad \gamma_{1} } & =-\left.\sum_{k} x^{k}(1-D)^{1-s k} \frac{\rho r_{k}}{\beta(1-\rho)}\right|_{\rho=0} \\
{\left[L^{2}\right]: \quad 2 \gamma_{2} } & =\left.\sum_{k} x^{k}(1-D)^{1-s k}\left(\frac{\rho r_{k}}{(1-\rho)}-2 r_{k_{1} 1}\right)\right|_{\rho=0} \\
& =-\left.\sum_{k} x^{k}(1-D)^{1-s k}\left(r_{k} t r_{k, 1}\right)\right|_{\rho=0} \\
6-1 & +\left.\sum_{k} x^{k}(1-D)^{1-s k}\left(\frac{r_{k}}{1-\rho}\right)\right|_{\rho=0}
\end{aligned}
$$

$$
\begin{aligned}
2 \gamma_{2} & =-\left.\sum_{k} x^{k}(1-D)^{1-s k}\left(r_{k}+2 r_{k, 1}\right)\right|_{\rho=0}-\gamma_{1} \\
& =-\left.\sum_{k} x^{k}\left(r_{k}+2 r_{k, 1}\right)\right|_{\rho=0}-\gamma_{1}
\end{aligned}
$$

$$
2 \gamma_{2}=-\gamma_{1}-\sum_{k \geq 1}\left(r_{k}+2 r_{k, 1}\right) x^{k}
$$

The γ_{1} recursion

Recall

$$
\gamma_{k}=\frac{1}{k} \gamma_{1}(x)\left(\operatorname{sign}(s)-|s| x \partial_{x}\right) \gamma_{k-1}(x)
$$

Let

$$
\begin{gathered}
P(x)=-\sum_{k \geq 1}\left(r_{k}+2 r_{k, 1}\right) x^{k} \\
\gamma_{1}(x)\left|s g_{n}(s)-|s| x \partial_{x}\right) \gamma_{1}(x)=P(x)-\gamma_{1}(x)
\end{gathered}
$$

Get

Philosophy

- In defining the o $r_{k}, r_{k, i} I$ made it a geometric series in L^{0} but $\frac{1}{\rho}$ for higher L
- If I used $\frac{1}{\rho}$ in all cos then ore L deriv gives $\gamma_{1}(x)=\sum r_{k} x^{k}$ so no recursion
- If geometric series tor all $r_{k i}$ then the ∂_{p} don't straightforwardly disappear
- Geometric series keeps the conformal invariance

The goal is
Balance

- giving result
- putting too much into in P
- representing the underlying physics.

How to interpret $P(x)$
In the original Yukama example of Dirk and David $P(x)=x \quad$ - no extra garbage.
\rightarrow reducing to are insertion place \rightarrow alredy he
$\rightarrow F(\rho)$ already a geometric series.
The redicha to are insertion. place is jot a case of building new primitives
The reduchar to genetic serves jot rearranges coetficenb still think of P as the function for the primitives

Systems

The shape of the final equations in the system case is

$$
\gamma_{1}^{r}=\sum_{k \geq 1} p^{r}(k) x^{k}-\operatorname{sign}\left(s_{r}\right) \gamma_{1}^{r}(x)^{2}+\sum_{j \in \mathcal{R}}\left|s_{j}\right| \gamma_{1}^{j}(x) x \partial_{x} \gamma_{1}^{r}(x)
$$

Summary of the big picture

The Broadhurst Kreimer example

$$
G(x, L)=1-\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

where $L=\log \left(q^{2} / \mu^{2}\right)$.
The differential equation is

$$
\gamma_{1}(x)=x-\gamma_{1}(x)\left(1-2 x \partial_{x}\right) \gamma_{1}(x)
$$

Solving (presented in the beautiful form given by Broadhurst)

$$
\sqrt{\frac{x}{2 \pi}}=\exp \left(\left(\frac{\left(\gamma_{1}+2\right)^{2}}{\sqrt{2 x}}\right)^{2}\right) \operatorname{erfc}\left(\frac{\left(\gamma_{1}+2\right)^{2}}{\sqrt{2 x}}\right)
$$

A variant

Take $s=2$ and

$$
\begin{gathered}
F(\rho)=\frac{-1}{\rho(1-\rho)(2-\rho)(3-\rho)} \\
\rho F(\rho)=-\frac{1}{6}+\rho^{2} F(\rho)-\frac{11}{6} \rho^{3} F(\rho)+\frac{1}{6} \rho^{4} F(\rho)
\end{gathered}
$$

This gives that

$$
\begin{aligned}
\gamma_{1} & =-\left.x\left(1-\gamma \cdot \partial_{-\rho}\right)^{-1} \rho F(\rho)\right|_{\rho=0} \\
& =-x\left(1-\gamma_{-\rho}\right)^{-1}\left(-\frac{1}{6}+\rho^{2} F(\rho)-\frac{11}{6} \rho^{3} F(\rho)+\frac{1}{6} \rho^{4} F(\rho)\right) \\
& =\frac{x}{6}-2 \gamma_{2}-11 \gamma_{3}-4 \gamma_{y}
\end{aligned}
$$

Concluding the variant

So

$$
\gamma_{1}=\frac{x}{6}-2 \gamma_{2}-11 \gamma_{3}-4 \gamma_{4}
$$

But we still have

$$
\gamma_{k}=\frac{1}{k} \gamma_{1}(x)\left(1-2 x \partial_{x}\right) \gamma_{k-1}(x)
$$

So we get a fourth order differential equation for γ_{1} which contains no infinite series and for which we completely understand the signs of the coefficients.

Bonus slides - Growth estimates
View

$$
\gamma_{1}(x)=P(x)-\gamma_{1}(x)\left(\operatorname{sign}(s)-|s| x \partial_{x}\right) \gamma_{1}(x)
$$

as a recursive equation. At the level of coefficients

$$
\begin{aligned}
\gamma_{1}(x) & =\sum \gamma_{1, n} x^{n} \\
\gamma_{1, n} & =p(n)-\sum_{l=1}^{n-1} \gamma_{1, n-l}(\operatorname{sgn}(s)-|s| l) \gamma_{, l} \\
& =p(n)-\sum_{l=1}^{n-1}\left(\operatorname{sgn}(s)-\frac{|s| n}{2}\right) \gamma_{1, l} \gamma_{1, n-l}
\end{aligned}
$$

Rewrite for $a(n)$
Assume $\gamma_{1,1} \neq 0$ and $f(x)=\sum \frac{p(n)}{n!} x^{n}$ has radius of convergence $\rho>0$. Let $a(n)=\frac{\gamma_{1, n}}{n!}$. The recursion becomes

$$
a_{n}=\frac{p(n)}{n^{\prime}}+\left(\frac{l s / n}{2}-\operatorname{sgn}(s)\right) \sum_{l=1}^{n-1} a_{l} a_{n-l}\binom{n}{l}^{-1}
$$

$$
=
$$

How bad is the growth of γ_{1} ?

Idea:

$$
a(n) \text { is approximately } \frac{p(n)}{n!}+|s| a_{1} a_{n-1}
$$

giving a radius of $\min \left\{\rho, \frac{1}{s a_{1}}\right\}$ for $\sum a_{n} x^{n}$. For nonnegative series implement the idea by bounding on each side.

Easy direction:

$$
a_{n} \geq \frac{p(n)}{n!}+|s| \frac{n-2}{n} a_{1} a_{n-1}
$$

Messy direction: for any $\epsilon>0$ there is an $N>0$ such that for $n>N$

$$
a_{n} \leq \frac{p(n)}{n!}+|s| a_{1} a_{n-1}+\epsilon \sum_{j=1}^{n-1} a_{j} a_{n-j}
$$

