Quantum field theory, algebraic geometry, and graph theory

Karen Yeats
University of Waterloo

UWO Pure Math colloquium, March 29, 2018

Numbers in Feynman integrals.

Interesting numbers show up in perturbative quantum field theory calculations.

These interesting numbers include
multiple zeta values
evaluation 8 muluple polylogarithars elliptic-polylogarithers
and more

What are these calculations?

- In perturbative quantum field theory you calculate physical things using series indexed by Feynman diagrams - certain graphs describing particle interactions.
- Each Feynman diagram contributes an integral where the integrand is built out of pieces corresponding to edges and vertices in the graph.
- Or you can try to be more clever and index the sum in other. ways.

Where do the interesting numbers appear?

These numbers appear almost no matter what you do.

- These numbers appear in Feynman integrals. Which graphs produce which posteruens?
- They appear in essentially any interesting choice of quantum field theory

- They appear in the sum (not just in the individual graphs).
- They appear in other approaches to perturbative quantum field theory.
- There are patterns to how they appear, but it is still mysterious.

Why do the numbers appear?

Why indeed?

There must be some good mathematical reason.

That would be interesting mathematics and it would explain something about Feynman integrals and hence let us do more physics too.

Keep it simple
One example of a quantum field theory is ϕ^{4}
one edge type -
one vertex type t all ration dey 4 (but external edges
 os allowed)

These will be our graphs today.

The Kirchhoff polynomial

Let K be a connected 4-regular graph
Let $G=K-v$. These are connected ϕ^{4} graphs with 4 external edges.

Define associate a variable to each edge of De graph, ae dor edge $\psi_{G}=\sum_{T} \prod_{e \nless T} a_{e}$, runniry over spanning trees

$$
\psi=b d+b c+a d+a c+c d
$$

The Feynman period

Rather than consider the full Feynman integral and what numbers and functions of the parameters show up, we'll just think about:

$$
\begin{aligned}
& P_{G}=\int_{a_{e} \geqslant 0} \frac{\Omega}{\psi^{2}} \text { projeche form }
\end{aligned}
$$

Eg:
or take an affine piece $\int_{a_{e} \geq 0} \frac{d_{a_{1}} . . d_{a_{1 E}}(0) \mid-1}{\psi^{2} \mid}$
$a_{E(G) 1}=1$

$$
{\underset{b}{a}}_{a}^{\psi} \quad \psi=a+b \quad p=\int_{a=0}^{\infty} \frac{d a}{(a+1)^{2}}
$$

more excity $k_{4} P_{k_{4}}=6 \rho(3)$

Sketch of Brown's approach to integration

Francis Brown gave an algorithm for how to integrate some of these. There will be multiple polylogarithms in the numerator and polynomials in the denominator.

$$
\begin{aligned}
& \text { sketch } \quad \int \frac{1}{\psi_{G}^{2}} \rightarrow \int \frac{1}{\Psi_{G \backslash e,}} \psi_{G / e_{1}} \\
& \longrightarrow \int \frac{\operatorname{logs}}{\text { poly. } \longleftarrow \text { burns ot by Dodgson }} \text { to be a square } \\
& \begin{array}{l}
\text { dialog: } \\
L_{i_{2}}(z)=\sum_{n=1} \frac{z^{n}}{n^{2}}
\end{array} \\
& L i_{k}(z)=\sum_{n \geqslant 1} \frac{z^{n}}{n^{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \int \frac{\text { more logs }}{\text { poly }}
\end{aligned}
$$

You cait always contine becare the polynumial hoe \otimes doesit reassan
in gered $\quad \int \frac{\text { polyligg of weight } n}{\text { poly }}$
if puly fectors ind dishract lin feetos get $\int \frac{\text { polylog of weight n*t }}{\text { dise }}$
if square in derom lover veight if doesst sector die.

Period - geometry - arithmetic
§
$\int \frac{1}{4^{2}}$ should be controlled by the geometry of $\psi=0$
we have a differs perspective or this geonets by counts points ore finite Gelds or $\psi=0$

The c_{2} invariant
For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ define $[f]_{q}$ to be the number of \mathbb{F}_{q}-rational points on the variety $f=0$.

Define

$$
c_{2}^{(p)}(G)=\frac{\left[\Psi_{G}\right]_{p}}{p^{2}} \text { mod } p
$$

note if $\left[\psi_{G}\right]_{\rho}$ were polynomial in ρ
hen $c_{2}^{(\rho}(G)$ would be the quadratic coeff and so indeperdat of p

Arithmetic structure

- If $c_{2}^{(p)}(G)$ is independent of p then P_{G} should be MZV.
- If $c_{2}^{(p)}(G)=0$ then P_{G} should have less than maximal transcendental weight.
- If $c_{2}^{(p)}(G)$ is constant in some field extension then P_{G} should be a multiple polylogarithm evaluated at the roots.
- Some $c_{2}^{(p)}(G)$ are proven to be coefficient sequences of modular forms.
- In this case P_{G} should be more exotic.

Known graph-related properties

- If K has a 3-separation then $c_{2}^{(p)}(G)=0$.
- If K has an internal 4-edge-cut then $c_{2}^{(p)}(G)=0$.
- If G has vertex width 3 then $c_{2}^{(p)}$ is a constant.

more than are vertex on encl side

Known and conjectured symmetries

The period is proven to be invariant under

- Completion/decompletion
ie give K ciregule no matter which vedero be female do get C get
- Planar duality for G
- Schnetz twist

The c_{2} invariant should have these s. symmetries as well. all calculated eviduce supports this

Expanded Laplacian and more polynomials

We need some definitions to obtain our combinatorial rephrasings.
Let

$$
M_{G}=\left[\begin{array}{cc}
\Lambda & E^{T} \\
-E & 0
\end{array}\right]
$$

where $\Lambda=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and E is the signed incidence matrix with one row removed.

Then as another way to view the matrix tree theorem we have

$$
\Psi_{G}=\operatorname{det} M_{G}
$$

We also care about minors

$$
\Psi_{G, K}^{I, J}=\left.\operatorname{det} M_{G}(I, J)\right|_{a_{e}=0, e \in K}
$$

Brown's denominator reduction revisited

Brown's integration algorithm is controlled by the denominators. These are polynomials with combinatorial meaning.

Let's revisit the sketch of the algorithm.

Spanning forest polynomials
from the minus
These polynomials can all be rewitten as sums over spanning forests. (All micros made tree theorem?)
Eg if edges $1,2,3$ meet at a 3 -valent vertex:

$$
\Psi_{3}^{1,2}=\text { sparring foots }
$$

$\Psi^{13,23}=$

\leftarrow colour says veltia of the same color are ir the save tree of $h e$ sparing forest

A result

Brown and Schnetz conjecture that for all p, 4-regular K, $v_{1}, v_{2} \in V(K)$

$$
c_{2}^{(p)}\left(K-v_{1}\right)=c_{2}^{(p)}\left(K-v_{2}\right)
$$

I prove that if K has an odd number of vertices, $v_{1}, v_{2} \in V(K)$, then

$$
c_{2}^{(2)}\left(K-v_{1}\right)=c_{2}^{(2)}\left(K-v_{2}\right)
$$

Two known results we need

Proposition (Brown and Schnetz)

$$
c_{2}^{(p)}(G)=\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{p} \quad \bmod p
$$

Proposition (Corollary of Chevalley-Warning)
If f has total degree n in $x_{1}, x_{2}, \ldots, x_{n}$ then

$$
[f]_{p}=\text { coefficient of } x_{1}^{p-1} \cdots x_{n}^{p-1} \text { in } f^{p-1} \bmod p
$$

Reduction to counting certain edge bipartitions

Apply these to our situation.

$$
\begin{aligned}
c_{2}^{(2)}(G) & =\frac{\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{2}}{\bmod 2} \\
& =\text { coefficient of } x_{1} \cdots x_{n} \text { in } \Psi_{G, 3}^{1,2} \Psi_{G}^{13,23} \bmod 2
\end{aligned}
$$

= \# of bipestine of the edge

$$
\text { ore ginny a spark thee of G. } 123
$$

ode going a fores compatible with

Proof sketch

