Recent progress on an arithmetic graph invariant with applications in quantum field theory.

Karen Yeats
University of Waterloo

Workshop on algebraic varieties, Hodge theory, and motives,
March 19, 2018

Numbers in Feynman integrals.

As many of you know, interesting numbers show up in perturbative quantum field theory calculations.

These interesting numbers include
multiple zeta values
other values of multiple polylogarithms
clliphic genealratios and onwards

What are these calculations?

- In perturbative quantum field theory you calculate physical things using series indexed by Feynman diagrams - certain graphs describing particle interactions.
- Each Feynman diagram contributes an integral where the integrand is built out of pieces corresponding to edges and vertices in the graph.
- Or you can try to be more clever and index the sum in other ways.

Where do the interesting numbers appear?

These numbers appear almost no matter what you do.

- These numbers appear in Feynman integrals for different graphs.
- They appear in essentially any interesting choice of quantum field theory

- They appear in the sum (not just in the individual graphs).
- There are patterns to how they appear, but it is still mysterious.

Why do the numbers appear?

Why indeed?

There must be some good mathematical reason.
That would be interesting mathematics and it would explain something about Feynman integrals and hence let us do more physics too.

Keep it simple
One example of a quantum field theory is ϕ^{4}

These will be our graphs today.

The Kirchhoff polynomial
Let K be a connected 4-regular graph
Let $G=K-v$. These are connected ϕ^{4} graphs with 4 external edges.
Assign a variable bor each edge a_{e} lo r edge e
Define Deffne
Eg: $\Psi_{G}=\sum_{\substack{T \\ \text { spaningthee } \\ \text { of } G}} \prod_{\substack{\text { e } \& T \text { eternal }}} a_{e}$

The Feynman period

Rather than consider the full Feynman integral and what numbers and functions of the parameters show up, we'll just think about:

$$
P_{G}=\left.\int_{a_{e}>0} \frac{d_{a_{1}}, \cdots d_{n-1}}{\psi_{G}^{2}}\right|_{a_{n}=1}
$$

Eg:

$$
\psi=a+b
$$

$$
\int_{a \geqslant 0} \frac{1}{(a+b)^{2}}
$$

Period - geometry - arithmetic
to understand P_{G} withat doing the integral
I wat to undestad de geometry

$$
\text { of } \quad \psi_{G}=0
$$

Another directer int this geometry, count point ar ψ_{G} over barite Gelds

The c_{2} invariant

For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ define $\left([f]_{q}\right.$ to be the number of \mathbb{F}_{q}-rational points on the variety $f=0$.

Define

$$
c_{2}^{(p)}(G)=\frac{\left[\psi_{G}\right.}{p^{2}} \bmod p
$$

Arithmetic structure

- If $c_{2}^{(p)}(G)$ is independent of p then P_{G} should be MZV.
- If $c_{2}^{(p)}(G)=0$ then P_{G} should have less than maximal transcendental weight.
- If $c_{2}^{(p)}(G)$ is constant in some field extension then P_{G} should be a multiple polylogarithm evaluated at the roots.
- Some $c_{2}^{(p)}(G)$ are proven to be coefficient sequences of modular forms.
- In this case P_{G} should be more exotic.

Known graph-related properties

- If K has a 3 -separation then $c_{2}^{(p)}(G)=0$.
- If K has an internal 4-edge-cut then $c_{2}^{(p)}(G)=0$.

- If G has vertex width 3 then $c_{2}^{(p)}$ is a constant.
- c_{2} is double-triangle invariant

\longrightarrow

Known and conjectured symmetries
P_{G}
The period is proven to be invariant under

- Completion/decompletion
$G=K-V \leftarrow$ what v doeon't matter
- Planar duality for G
- Schnetz twist
on K

The c_{2} invariant should have these symmetries as well.

A result

Brown and Schnetz conjecture that for all p, 4-regular K, $v_{1}, v_{2} \in V(K)$

$$
c_{2}^{(p)}\left(K-v_{1}\right)=c_{2}^{(p)}\left(K-v_{2}\right)
$$

I prove that if K has an odd number of vertices, $v_{1}, v_{2} \in V(K)$, then

$$
c_{2}^{(2)}\left(K-v_{1}\right)=c_{2}^{2}\left(K-v_{2}\right)
$$

Expanded Laplacian and more polynomials

Let

where $\Lambda=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and E is the signed incidence matrix with one row removed.

Then as another way to view the matrix tree theorem we have

$$
\Psi_{G}=\operatorname{det} M_{G}
$$

We also care about minors

One known result we need

Proposition (Brown and Schnetz)

$$
c_{2}^{(p)}(G)=\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{p} \quad \bmod p
$$

In particular if edges $1,2,3$ meet at a 3-valent vertex:

$\psi_{3}^{1,2}=$ edges coma o

$$
\theta \text { and } O
$$

$$
\psi^{13,23}=\xi=\psi_{\varepsilon}
$$

Another known result we need

Proposition (Corollary of Chevalley-Warning)
If f has total degree n in $x_{1}, x_{2}, \ldots, x_{n}$ then

$$
[f]_{p}=\text { coefficient of } x_{1}^{p-1} \cdots x_{n}^{p-1} \text { in } f^{p-1} \bmod p
$$

Reduction to counting certain edge bipartitions

Apply these to our situation.

$$
\begin{aligned}
c_{2}^{(2)}(G) & =\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{2} \bmod 2 \\
& =\text { coefficient of } x_{1} \cdots x_{n} \text { in } \psi_{3}^{1,2} \psi^{13,23} \bmod 2
\end{aligned}
$$

let $G=3^{\frac{1}{3}}$
= number of ways of partitioniry

$$
H=\xi
$$

the edges of H so that one part is a spanning tree and are is a spanning forest corr. to

Proof sketch

similar bat eases if v, v_{2} here commas reighlas

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { PRO } \\
\text { Ser }
\end{array}+\right.\text { 明明 }
\end{aligned}
$$

$$
\begin{aligned}
& +m p \\
& +(\text { par } 800+80 \% \\
& \text {) on }+ \text { on } 000 \\
& \bmod 2
\end{aligned}
$$

instecd on swap arand cycles
build an auxiliang greth where the vertices are the thirg I wat to count and joind if yov sy swas bethen thosace

this quxliang gest hes all relies of odd dey chare pere $\#$ of hens when K his an ald number of vertices

