Equivalences of Wilson loop diagrams

Karen Yeats
Department of Combinatorics and Optimization, University of Waterloo

Joint work with Susama Agarwala and Zee Fryer.
arXiv:1908.10919 and arXiv:1910.12158 usual story

A Wilson loop diagram:

The diagram is admissible if there is no crossing and it is not too dense; no set of propagators P is supported on less than $|P|+3$,vertice and not even equality for the whole diagram.

Idea

The idea of the Wilson loop is essentially duality.

$$
p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6}=0
$$

The propagators encode helicity violation.

Wilson loop diagram to matrix. . .

You go from a Wilson loop diagram to a matrix as follows:

4
c
h
0

to positroid
The matrix it represents is a positroid, that is for appropriate choices of the variables, all the maximal minors are nonnegative.

$$
\left.\left[\begin{array}{lllll}
a & b & c & d & 0 \\
0 & e & f & g & h
\end{array}\right] \quad \begin{array}{l}
b f>c e \\
c g>d f
\end{array}\right\} \quad \frac{b}{e}>\frac{c}{f}>\frac{d}{g}
$$

and a, b, c, d, r_{g}, b

But they are not always different positroids

Eg

$\left[\begin{array}{llllll}a & b & 0 & c & d & 0 \\ e & f & g & h & 0 & 0\end{array}\right]$

Some bigger examples

Triangulations

The key is triangulations. Convert a Wilson loop diagram W to a polygon dissection $\tau(W)$:

Result

Theorem

Two admissible Wilson loop diagrams W and W^{\prime} define the same positroid if and only if $\tau(W)$ and $\tau\left(W^{\prime}\right)$ differ by retriangulations.

Idea of proof: an exact subdiagram is one which is critical for the density requirement. Replacing one exact subdiagram with another is retriangulating. Replacing one exact subdiagram with another does not change the positeroid.

Counting

Triangulations are counted by Catalan, so the number of admissible Wilson loop diagrams giving the same positroid where the sizes of the nontrivial maximal exact subdiagram are $n_{1}, n_{2}, \ldots, n_{j}$ is

$$
\prod_{i=1}^{j} \frac{1}{n_{i}-1}\binom{2\left(n_{i}-2\right)}{n_{i}-2}
$$

Associahedra

Associahedra can also be defined by polygon dissections. Eg:

Realized

Let x_{1}, \ldots, x_{n} be the corners of a convex n-gon in \mathbb{R}^{2} and let T be the set of triangulations of this n-gon.

For each $t \in T$, define $\widehat{s_{t}}$ to be the point in \mathbb{R}^{n} with ith coordinate the sum of the areas of all triangles of t incident to x_{i}.

Let A_{n} be the convex hull of the s_{t}.
A_{n} is a realization of the $n-1$ associahedron.

Parallelism

Parallel faces correspond to Wilson loop diagrams giving the same positroid.

Non-parallel faces correspond to Wilson loop diagrams giving different positroids.

This is the retriangulations again. The second direction takes some care with the bigger degree faces.

What is the dimension of the positroid cell?

Answer, 3 times the number of propagators. Can we understand this explicitly?
$\leadsto 2017$ Mainz
could I enure dim $=3|P|$
\rightarrow induction!
\leadsto geometric proof Agavwala + Mascot
\leadsto lats ae ultinath wrote the 2017 proof and other thing \rightarrow see coverage.

Move to the Le diagram

There are many nice combinatorial objects in bijection with positroids. The one we want is the Le diagram.

$$
\begin{aligned}
& \text { Grumamimeckad } \\
& 12,23,34,45,51,12 \\
& \hline 2
\end{aligned}
$$

The dimension is the number of plusses

The dimension is the number of plusses.
We can make use of this ...via a very annoying induction.

Step (1) dihedral tics preserve dim. remove extras that dot supports ay parades so WLOC

Wilson loop diagrams
Sketch
(2) induct \rightarrow remare *
get

