Equivalences

Inequivalences

Dimensions

Equivalences of Wilson loop diagrams

Karen Yeats

Department of Combinatorics and Optimization, University of Waterloo

Joint work with Susama Agarwala and Zee Fryer. arXiv:1908.10919 and arXiv:1910.12158

Equivalences

Inequivalences

Dimensions

A different bit of combinatorics in QFT than my usual story

The diagram is admissible if there is no crossing and it is not too dense; no set of propagators P is supported on less than |P| + 3, we have and not even equality for the whole diagram.

Equivalences

Inequivalences

・ロト ・ 同ト ・ ヨト ・ ヨト

3

500

Dimensions

Idea

The idea of the Wilson loop is essentially duality.

The propagators encode helicity violation.

Equivalences

Inequivalences

Dimensions

Wilson loop diagram to matrix...

You go from a Wilson loop diagram to a matrix as follows:

Equivalences

Inequivalences

Dimensions

... to positroid

The matrix it represents is a positroid, that is for appropriate choices of the variables, all the maximal minors are nonnegative.

Wilson loop diagrams	Equivalences	Inequivalences	Dimensions
0000	●0000	000	0000
But they are not	always differen	t nositroids	

Equivalences

Inequivalences

Dimensions

Triangulations

The key is triangulations. Convert a Wilson loop diagram W to a polygon dissection $\tau(W)$:

Equivalences 000●0 Inequivalences

Dimensions

Result

Theorem

Two admissible Wilson loop diagrams W and W' define the same positroid if and only if $\tau(W)$ and $\tau(W')$ differ by retriangulations.

Idea of proof: an exact subdiagram is one which is critical for the density requirement. Replacing one exact subdiagram with another is retriangulating. Replacing one exact subdiagram with another does not change the positioid.

D

d)

Equivalences 0000● Inequivalences

Dimensions

Counting

Triangulations are counted by Catalan, so the number of admissible Wilson loop diagrams giving the same positroid where the sizes of the nontrivial maximal exact subdiagram are n_1, n_2, \ldots, n_j is

$$\prod_{i=1}^j \frac{1}{n_i-1} \binom{2(n_i-2)}{n_i-2}$$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = ∽ へ ⊙

Equivalences

Inequivalences ●○○ Dimensions

Associahedra

Associahedra can also be defined by polygon dissections. Eg:

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆</p>

Equivalences

Inequivalences ○●○ Dimensions

Realized

Let x_1, \ldots, x_n be the corners of a convex *n*-gon in \mathbb{R}^2 and let T be the set of triangulations of this *n*-gon.

For each $t \in T$, define s_t to be the point in \mathbb{R}^n with *i*th coordinate the sum of the areas of all triangles of *t* incident to x_i .

Let A_n be the convex hull of the s_t .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

 A_n is a realization of the n-1 associahedron.

Parallelism

Equivalences

Inequivalences ○○● Dimensions

Parallel faces correspond to Wilson loop diagrams giving the same positroid.

Non-parallel faces correspond to Wilson loop diagrams giving different positroids.

This is the retriangulations again. The second direction takes some care with the bigger degree faces.

Equivalences

Inequivalences

Dimensions •000

What is the dimension of the positroid cell?

Answer, <u>3 times the number of propagators</u>. Can we understand this explicitly?

~ 2017 Mainz could I price dim = 3[P] ~> induction! ~ georetic proof Agarwal- + Marcott ~ lorts are ultimately wroke the 2017 proof and other things see corregate.

Equivalences

Inequivalences

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Sac

Dimensions

Move to the Le diagram

There are many nice combinatorial objects in bijection with positroids. The one we want is the Le diagram.

Equivalences

Inequivalences

Dimensions

The dimension is the number of plusses

The dimension is the number of plusses.

We can make use of this ... via a very annoying induction.

▲ロト ▲舂 ト ▲ 重 ト ▲ 重 → の へ ⊙

Equivalences

Inequivalences

*

Dimensions 0000

Sketch

induch \rightarrow remare

withol #

get

P

his #