Recent progress on the c_{2} invariant

Karen Yeats
University of Waterloo

Les Houches workshop on structures in local quantum field theory, June 7, 2018

The Kirchhoff/first Symanzik polynomial

Recall from Erik Panzer's talk:
Let K be a connected 4-regular graph
Let $G=K-v$. These are connected ϕ^{4} graphs with 4 external edges.

Define

Eg:

$$
\Psi_{G}=\sum_{\substack{T \\ \text { spaifés } \\ \text { trees }}} \prod_{\substack{e \neq T}} a_{e}
$$

Period - geometry - arithmetic

$$
P_{G}=\int_{a_{e}>0} \frac{1}{\psi_{G}^{2}} \leadsto\left(\begin{array}{l}
\text { geomenh } \\
\text { of } \\
\\
\psi_{G}=\varnothing
\end{array}\right.
$$

how else can we access this geometry
count points over finite fields

The c_{2} invariant

For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ define $[f]_{q}$ to be the number of \mathbb{F}_{q}-rational points on the variety $f=0$.

Define

$$
\begin{array}{cc}
c_{2}^{(q)}(G)=\frac{\left[\psi_{G}\right]_{q}}{q^{2}} \bmod q & \begin{array}{c}
\text { would be the } \\
c_{2}(G)=\left(c_{2}^{(2)}(v) ; c_{2}^{(3)}(G), \ldots\right)
\end{array} \\
\text { if }\left[\psi_{G}\right]_{q} \text { were }
\end{array}
$$

Arithmetic structure

- If $c_{2}^{(p)}(G)=0$ then P_{G} should have less than maximal transcendental weight.
- If P_{G} is MZV then $c_{2}^{(p)}(G)$ should be independent of p.
- The same point in field extensions.
- Some $c_{2}^{(p)}(G)$ are proven to be coefficient sequences of modular forms.
- In this case P_{G} should be more exotic.

Known graph-related properties

- If K has a 3-separation then $c_{2}^{(p)}(G)=0$.
- If K has an internal 4-edge-cut then $c_{2}^{(p)}(G)=0$.
- If G has vertex width 3 then $c_{2}^{(p)}$ is a constant.
- c_{2} is double-triangle invariant

Known and conjectured symmetries

Recall the symmetries Erik discussed:
The period is proven to be invariant under

- Completion/decompletion
- Planar duality for G
- Schnetz twist

The c_{2} invariant should have these symmetries as well.

Expanded Laplacian and more polynomials

Let

$$
M_{G}=\left[\begin{array}{cc}
\Lambda & E^{T} \\
-E & 0
\end{array}\right] \quad \begin{array}{cccc}
a & b & c & d \\
1
\end{array}\left[\begin{array}{cccc}
-1 & 0 & -1 & 1 \\
0 & -1 & 1 & -1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

where $\Lambda=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and E is the signed incidence. matrix with one row removed.

Then as another way to view the matrix tree theorem we have

$$
\Psi_{G}=\operatorname{det} M_{G}
$$

We also care about minors

$$
\begin{aligned}
& \text { remove cows } I \\
& \Psi_{G, \mathbb{B}}^{I, J}=\left.\operatorname{det} M_{G}(I, J)\right|_{a_{e}=0, e \in K} \\
& \text { same as contracting }
\end{aligned}
$$

One known result we need

Proposition (Brown and Schnetz)

$$
c_{2}^{(p)}(G)=\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{p} \quad \bmod p
$$

In particular if edges $1,2,3$ meet at a 3-valent vertex:

$$
\psi_{(5)}^{13,23}=\psi_{\varepsilon}
$$

$$
\psi_{3}^{\prime 2}=
$$

spamirg forest polynomials trees of he forest corr. to different colours of the marked vertices
(5) ${ }^{2}$) omer sparing trees in S and (2)

Another known result we need

Proposition (Corollary of Chevalley-Warning)
If f has total degree n in $x_{1}, x_{2}, \ldots, x_{n}$ then

$$
[f]_{p}=\text { coefficient of } x_{1}^{p-1} \cdots x_{n}^{p-1} \text { in } f^{p-1} \bmod p
$$

The polynomial ai te previas page satishes this
as does Ψ_{G}^{2}

Reduction to counting certain edge bipartitions

Apply these to our situation.

$$
\begin{aligned}
c_{2}^{(2)}(G) & =\left[\Psi_{G, 3}^{1,2} \Psi_{G}^{13,23}\right]_{2} \quad \bmod 2 \quad \psi_{G, 3}^{\prime, 2} \psi_{G}^{13,23} \\
& =\text { coefficient of } x_{1} \cdots x_{n} \text { in } \bmod 2
\end{aligned}
$$

\# of ways to partite the edges between
$\psi_{\sigma, 3}^{1,2}$ and $\Psi_{\sigma}^{13,23} \quad \bmod 2$
\# of ways to partite the edges into
a spanning tree ad a sparring
a spanning tree ad a sparring forest compatible with $\bmod 2$
$=$ parity of \# of certain age biparciliors

A special case of completion

Brown and Schnetz conjecture that for all p, 4-regular K, $v_{1}, v_{2} \in V(K)$

$$
c_{2}^{(p)}\left(K-v_{1}\right)=c_{2}^{(p)}\left(K-v_{2}\right)
$$

I prove that if K has an odd number of vertices, $v_{1}, v_{2} \in V(K)$, then

$$
c_{2}^{(2)}\left(K-v_{1}\right)=c_{2}^{(2)}\left(K-v_{2}\right)
$$

Proof sketch

Recursive families

We can fix p but rigorously calculate $c_{2}^{(p)}\left(G_{n}\right)$ for recursively constructible families of graphs. Roughly, graphs with

- an initial piece
- a chain of repeated structures, and
- a cap which may link back to the initial piece.

Explicit results decompletion.

- $c_{2}^{(2)}\left(C_{n}(1,3)\right)=n \bmod 2$ for $n \geq 7$
- $\left.c_{2}^{(2)} \widetilde{C_{2 k+2}}(1, k)\right)=0, \bmod 2$ for $k \geq 3$

- Let G be a (sufficiently large) nonskew toroidal grid. Then $c_{2}^{(2)}(\widetilde{G})=0$ (Chorney, Y.)
- Two other families with Chorney

General recursive family result

- Fix p
- Get started with three edges in the cap and then assigin the rest of the cap
- Get sum of products of $2 p-2$ spanning forest polynomials; the partitions only use the initial and final pieces.
- There are only finitely many.
- Assigning one piece of chain gives a recurrence. Do so for each product of spanning forest polynomials.
- Calculate initial conditions and solve the system.

This gives a rigorous finite algorithm for any recursively constructible family of graphs with $2\left|V\left(G_{n}\right)\right|=\left|E\left(G_{n}\right)\right|+2$ for n sufficiently large (Chorney, Y).

Implementation

The algorithm is very bad in p and complexity of the family.

$C(1,3)$	
p	N
2	29
3	546
5	82703
7	5698505
$C(2,3)$	
p	N
2	248
3	30729

N is the number of products of spanning forest polynomials needed.

How many iterations

$C(1,3)$		
p	c_{2} iterations	vector iterations
2	2	4
3	36	
5	134064	
7		
$C(2,3)$		
p	c_{2} iterations	vector iterations
2	7	56
3	4356	

The ones with vector iterations are proven.

Calculated c_{2} invariants

$$
\begin{aligned}
& c_{2}^{(2)}\left(\widetilde{C_{n}}(1,3)\right)=(10)^{*} \\
& c_{2}^{(3)}\left(\widetilde{C_{n}}(1,3)\right)=(000000122122221112010201112221201010)^{*} \\
& c_{2}^{(2)}\left(\widetilde{\widetilde{C}_{n}}(2,3)\right)=(1110100)^{*}
\end{aligned}
$$

(for the rest see arXiv:1805.11735)

Prefix density

Expanded symmetry (with Crump)

It's inconvenient not to be able to take duals of non-planar graphs.
But we can with matroids.
Let's try with $P_{8,36}$

$$
P_{8,36}=
$$

Decomplete

Dual of decompleted $P_{8,36}$

Choose a basis for the cycle space and write out the matrix for the dual

$$
\left[\begin{array}{rrrrr|rrrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Note the double triangle ($0,1,4,5,12$).

Double triangle reduction of it

$$
\left[\begin{array}{rrrrrrrrrrrrrr}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & \pm 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 1
\end{array}\right]
$$

There's a choice, but aly choice which is invertible $\bmod p$ is fine.
No double triangles.

Dual again

$$
\left[\begin{array}{rrrrrrrrrrrrrr}
0 & \mp 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Take the dual again; now we used the general rule.
Double triangle (1, 4, 7, 8, 13).

Double triangle again

$$
\left[\begin{array}{rrrrrrrrrrr}
1 & -1 & 0 & 0 & 0 & -1 & 0 & \pm 1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0
\end{array} 0\right]
$$

This is isomorphic as a matroid to a double triangle reduction of $\left(P_{7,11}-v_{9}\right)^{*}$. So $P_{8,36}$ and $P_{7,11}$ have the same c_{2}.

New c_{2} identities by dualized double triangles

With lain Crump
For any prime p

$$
c_{2}^{(p)}\left(\widetilde{P}_{9,156}\right)=c_{2}^{(p)}\left(\widetilde{P}_{9,159}\right)=c_{2}^{(p)}\left(\widetilde{P}_{7,8}\right)
$$

$$
c_{2}^{(p)}\left(\widetilde{P}_{7,11}\right)=\left(c_{2}^{(p)}\left(\widetilde{P}_{8,36}\right)\right)
$$

and we already knew $P_{8,30}$ has the same C_{2} as $P_{7,11}$ by usual double triangle.

$$
c_{2}^{(p)}\left(\widetilde{P}_{9,164}\right)=c_{2}^{(p)}\left(\widetilde{P}_{8,37}\right)
$$

