Chains of hourglasses and the graph theory of their Feynman integrals

Karen Yeats

October 1, 2020, Algebraic Combinatorics Seminar UWaterloo

Yes, it's basically the same talk as at SFU yesterday...

Feynman periods

Let G be a graph, perhaps a scalar Feynman diagram.
Most interesting K 4reguler

$$
\begin{aligned}
& G=K-v \\
& \Psi_{G}=\sum_{T} \prod_{e \notin T} a_{e}
\end{aligned}
$$

$$
\begin{aligned}
& \text { awociated } a_{e} \text { to edge e }
\end{aligned}
$$

P_{G} is a period in the sense of Kontsevich and Zagier

The denominators are important

The denominators are combinatorial or graph theoretic.
The first five integrations sketched look like

$$
\begin{aligned}
& \int \frac{1}{\psi_{G}^{2}} \longrightarrow \int \frac{1}{\psi_{G / e_{1}}} \psi_{G / e_{1}} \\
& \longrightarrow \int \frac{\operatorname{logs}}{\Psi_{G / e_{1} e_{2}} \Psi_{G-1 e_{1} e_{2}}-\Psi_{G / e_{1} \backslash e_{2}} \Psi_{G / e_{2}, e_{1}}}=\int \frac{\log s}{\left(\Psi^{1,2}\right)^{2}} \\
& \longrightarrow \int \text { logs andre items } \\
& \text { sum our } \\
& \text { certain } \\
& \text { spanning } \\
& \text { forests. } \\
& \longrightarrow \frac{\text { dilogs }}{m} \int \frac{\text { trilogy }}{m}\left\{\begin{array}{l}
\text { This is the } \\
\text { last str that } \\
\text { always works. }
\end{array}\right.
\end{aligned}
$$

Denominator reduction

Francis Brown says
let D_{n} be the deaminate after a integration
if $\quad D_{n}=\left(\frac{\left.A_{a n+1}+B\right)\left(C a_{n+1}+D\right)}{I}\right)$
ter $D_{n+1}=A D-B C$

if $D_{n}=\left(A a_{m+1}+B\right)^{2}$
then $D_{n+1}=0$ alg. stops.
if D_{Ω} doosit feck aid. steps.

The c_{2} invariant

$$
\begin{aligned}
& \text { Recall } \Psi_{G}=\sum_{T} \prod_{e \in T} a_{e} \\
& \qquad c_{2}^{(p)}(G)=\frac{\left.\downarrow \Psi_{G}\right]_{p}}{p^{2}} \bmod p
\end{aligned}
$$

Why?
in 90s all P_{o} which. had been calculate) were $M Z V_{s}$
maybe all MEV? \qquad
If so should be good math
reason
Koutsevich says - good math reave is $\psi_{G} D$ mixed
consequently $\left[\Psi_{G}\right]_{P}$ should be a polynomial in p.
extant to which c_{2} not constant becomes a voehl measure of how
Non -MEV the period is.

Then $c_{2}^{(p)}$ is the quad. creff and in perticules $c_{2}^{(\rho)}$ indelp of p

Same or compatible graph symmetries?

The c_{2} invariant either has or is conjectured to have

- completion invariance (conjectured) $c_{2}^{\left(P_{p}\right.}(K-v)=c_{2}^{(x)}(K-\omega) P_{K-v}=P_{K-w}$
- duality invariance (proven in planar case and more, conjectured in general) $\quad c_{2}^{(p)}(G)=c_{2}^{(p)}\left(G^{*}\right) \quad P_{G}=P_{G^{*}}$
- twist invariance (conjectured)
- Fourier split invariance (conjectured)
- 3-join gives 0 (proven)
- Double triangle invariance (proven)

Conjectured: if two graphs have the same period then they have the same c_{2} (converse is false)
c_{2} is also combinatorial
$c_{2}^{(p)}$ can be reformulated in terms of counting partitions of ($p-1$ copies of) the edges into spanning trees and appropriate spanning forests.

So c_{2} can be calculated by a country probla

But that's a different talk.

Also D_{n} from denominate r reducher rakula's C_{2}

$$
(-1)^{n}\left[D_{n}\right]_{p}=c_{2}^{(p)}
$$

Quadratic denominator reduction

Oliver Schnetz says
For $p>2$, work with the denominators squared, rather than the denominators.

If at the nth step you have then at the $n+1$ step you have
$\cdot\left(A a_{n+1}^{2}+B a_{n+1} \frac{\left(A a_{n+1}^{2}+C\right)\left(D a_{n+1}+C\right)^{2}}{} \quad \frac{B^{2}-4 A C}{\left.A E_{n+1}^{2}+E\right)^{2}-B D E+C D^{2}}\right.$

Common case is regular denominator reduction.

Hourglass chain graphs

(work with Oliver Schnetz)

Where to decomplete

Reduce the 8 blue edges. These are not the most obvious ones to start with but they worked well. Then reduce the green edges.

By conventional denominator reduction obtain

Plan: reduce the edges of the two triangles and of the top two hourglasses.

Label as follows

Feynman periods
Reduce x

$$
\binom{\text { factors not }}{\text { involving } x, y, z}\left(\begin{array}{ccc}
& Q_{0}, z & y Z_{z} \\
y()_{z} & \vdots & \vdots \\
& \measuredangle & \delta
\end{array}\right)
$$

Outcome

Make the ys and zs explicit and collect terms to get

With conventional reduction we are stuck, but not with quadratic reduction. Consider y first.

Reduce y

000
Reduce z

$$
\begin{aligned}
& \text { why } p=2 \text { doesit work } \\
& \downarrow\binom{\text { factors not }}{\text { involving } x, y, z}^{2}\left(\left(\left\lvert\, \begin{array}{c}
\Phi \\
\vdots \\
\vdots
\end{array}\right.\right)^{2}-\left(\begin{array}{c}
8 \\
\vdots \\
\nabla
\end{array}\right)\left(\begin{array}{c}
\Phi \\
\vdots \\
\nabla
\end{array}\right)\right)
\end{aligned}
$$

See the -4 .

Reduce the bottom triangle

Reduce the bottom triangle to get

Hourglass labelling convention

When we're working on things in general for hourglasses, we'll do it without the i subscript. Eg

$$
\begin{aligned}
Z & =a d e+f b c+b c d+b c e+b d e+c d e \\
Z_{i} & =a_{i} d_{i} e_{i}+f_{i} b_{i} c_{i}+b_{i} c_{i} d_{i}+b_{i} c_{i} e_{i}+b_{i} d_{i} e_{i}+c_{i} d_{i} e_{i}
\end{aligned}
$$

is the hourglass factor.

Reduce a_{1}

Now reduce a_{1}.

Catalogue of hourglass minors

Calculate the various hourglass minors which appear
oce $_{\text {adp }}=A$

$b_{0}^{b} \frac{d}{D_{f}}=E$
b) de f $f=F$
$\underbrace{b}_{c} d f=G$

b($\int_{e}^{d}=I$
6 (42) $=J$

On the remaining chains, write $\left[\left.\begin{array}{l}T \\ A\end{array} \right\rvert\,\right.$ if the top is together and the bottom apart, etc.

Rewrite

Rewrite to obtain

$$
\begin{aligned}
& -4 K^{2} \prod_{i>1} Z_{i}^{2}\left(B_{1}^{2}\left(C_{1} D_{1}{ }_{A T}^{T T}+E_{1} D_{1}{ }_{A T}^{A T}+C_{1} F_{1}{ }_{A T}^{T A}+E_{1} F_{1}^{A A} A T\right)\right. \\
& -A_{1} B_{1}\left(G_{1} D_{1}{ }^{T T} A T+I_{1} D_{1} A T+G_{1} F_{1}{ }^{T A} A T+I_{1} F_{1}^{A A} A T\right) \\
& -A_{1} B_{1}\left({ }_{\left.C_{1} H_{1}{ }_{A T}^{T T}+E_{1} H_{1}^{A T} A T+C_{1} J_{1}^{T A} A T+E_{1} J_{1}^{A A} A T\right)}\right. \\
& \left.+A_{1}^{2}\left(G_{1} H_{1}^{T T} A T+I_{1} H_{1}^{A T} A T+G_{1} J_{1}^{T A} A+I_{1} J_{1}^{A A} A\right)\right)
\end{aligned}
$$

where K^{2} is the factor coming from the kernel. This factors.

Factor

$$
\begin{gathered}
-4 K^{2} \prod_{i>1} Z_{i}^{2}\left(\begin{array}{l}
T \\
A
\end{array}\left(B_{1} C_{1}-A_{1} G_{1}\right)+{ }_{A}^{A}\left(B_{1} E_{1}-A_{1} I_{1}\right)\right) \\
\cdot\left(\begin{array}{l}
T \\
T \\
\left.\left.T B_{1} D_{1}-A_{1} H_{1}\right)+{ }_{T}^{A}\left(B_{1} F_{1}-A_{1} J_{1}\right)\right)
\end{array}\right.
\end{gathered}
$$

Now work out the polynomials.

Outcome

$$
\begin{gathered}
-4 K^{2} \prod_{i>1} Z_{i}^{2}\left(d_{1}+e_{1}+f_{1}\right) c_{1} X_{1}\left(\begin{array}{l}
T \\
A
\end{array} b_{1}\left(d_{1}+e_{1}+f_{1}\right)+{ }_{A}^{A} Y_{1}\right) \\
\cdot\left(\begin{array}{l}
T \\
T^{b_{1}}\left(d_{1}+e_{1}+f_{1}\right)+
\end{array}{ }_{T}^{A} Y_{1}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& X=b c d+b c e+b d e+c d e+b c f+c d f \\
& Y=b c d+b c e+b d e+c d e+b c f+b e f
\end{aligned}
$$

Reduce a_{2}

Now do the same thing with a_{2}. It's the same but bigger.

$$
\begin{aligned}
& -4 K^{2} \prod_{i>2} Z_{i}^{2}\left(d_{1}+e_{1}+f_{1}\right) c_{1} X_{1} \\
& \cdot\left(\begin{array}{l}
T \\
A
\end{array}\left(\left(d_{1}+e_{1}+f_{1}\right) b_{1}\left(B_{2} D_{2}-A_{2} H_{2}\right)+Y_{1}\left(B_{2} C_{2}-A_{2} G_{2}\right)\right)\right. \\
& \left.\quad+\frac{A}{A}\left(\left(d_{1}+e_{1}+f_{1}\right) b_{1}\left(B_{2} F_{2}-A_{2} J_{2}\right)+Y_{1}\left(B_{2} E_{2}-A_{2} I_{2}\right)\right)\right) \\
& \cdot\left(\begin{array}{l}
T \\
T \\
T
\end{array}\left(d_{1}+e_{1}+f_{1}\right) b_{1}\left(B_{2} D_{2}-A_{2} H_{2}\right)+Y_{1}\left(B_{2} C_{2}-A_{2} G_{2}\right)\right) \\
& \left.\quad+\frac{A}{T}\left(\left(d_{1}+e_{1}+f_{1}\right) b_{1}\left(B_{2} F_{2}-A_{2} J_{2}\right)+Y_{1}\left(B_{2} E_{2}-A_{2} I_{2}\right)\right)\right)
\end{aligned}
$$

Subbing in again

But this time when we sub in for the polynomials

$$
\begin{gathered}
-4 K^{2} \prod_{i>2} Z_{i}^{2}\left(d_{1}+e_{1}+f_{1}\right) c_{1} X_{1} \\
\cdot\left({ }^{T}\left(d_{1}+e_{1}+f_{1}\right) b_{1} X_{2}+Y_{1} c_{2}\left(d_{2}+e_{2}+f_{2}\right)\right)^{2}
\end{gathered}
$$

a square factor comes out - why is the world so wonderful!
Note that the last line is just what it should be...

the bihourglass factor

The square factor

$$
\left(\left(d_{1}+e_{1}+f_{1}\right) b_{1} X_{2}+Y_{1} c_{2}\left(d_{2}+e_{2}+f_{2}\right)\right)^{2}
$$

comes from

Why?

Reduce the top of the bihourglass

We can reduce the top half of the bihourglass, b_{1}, c_{1}, d_{1} (the last messy one), e_{1}, f_{1}.
Finally we get

$$
\begin{gathered}
-4 K^{2} \prod_{i>2} Z_{i}^{2}\left({ }_{A}^{T}\left(d_{2}+e_{2}+f_{2}\right) b_{2}+{ }_{A}^{A} Y_{2}\right) \\
\cdot\left(\begin{array}{l}
T \\
T
\end{array}\left(d_{2}+e_{2}+f_{2}\right) b_{2}+{ }_{T}^{A} Y_{2}\right) c_{2}\left(d_{2}+e_{2}+f_{2}\right) X_{2}
\end{gathered}
$$

which is the same as before but with one more hourglass gone.

Induction

Inductively, then, we can consume all the hourglasses above the kernel in this way.

We could have chosen to decomplete so that no hourglasses were left below the kernel.

So all that's left is

- the squared kernel factors that have been carried along,
- the kernel factors from the ${ }_{A}^{T}$ applied with no hourglasses left, and
- the remains of the hourglass just above the kernel.

Result

So every graph in the family reduces to

where j is the index of the hourglass just above the kernel.

Conclusion

Now give it to Oliver and he finds a clever scaling to reduce one more variable (needs some more notation to show you).

So what?

- All graphs in each family have the same c_{2} at every prime.
- By choosing appropriate kernels, we can get infinite families with various interesting c_{2} s. Previous families were 0 , or -1 .
- Quadratic denominator reduction did something cool.
- Blobs were a good way to work with c_{2} again.
- Graph theory tells us about Feynman integrals again.

