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notraymo: eli5, what are differential geometry and 
geometric analysis?

Since this is such a great question, I will give you a great 
answer.

The word “geometry” literally is Greek (I should know) for 
“measuring the earth”. It is the oldest science and the oldest 
branch of mathematics. Broadly speaking, it is the study of 
the structure of a “space” equipped with a notion of “distance” 
between points. In classical (Euclidean) geometry, the space 
is just a 2-dimensional (or 3-dimensional) real vector space, 
equipped with a positive definite inner product (although this 
is certainly not how the ancient Greeks thought of it). This of 
course generalizes to any dimension, and while there are some 
interesting things that one can say about this situation, it is 
not that exciting, because the geometry basically “looks the 
same” at every point and in every direction. This is encoded 
in the fact that the inner product is “constant” in some 
sense. So if we want to study more interesting situations, we 
need to allow things to change — if the world didn’t change, 
it would be very boring indeed. And of course, if things are 
changing in a sufficiently “smooth” way, we are doing calculus. 
Differential geometry is the study of “spaces” equipped with 
“smoothly varying” notions of distance and inner product. 
Strictly speaking, what I have just non-rigorously defined is 
Riemannian geometry, which is just a subset of differential 
geometry.

To get more precise, let’s start with some basics. Before we 
can talk about “differentiability”, we need to understand 
“continuity”. The right setting to make sense of continuity 
is topology. A topological space is a space on which it makes 
sense to define continuous functions, or more generally 
continuous maps between topological spaces. Our good friend 
Rn  with the standard metric space structure induced from the 
Euclidean inner product is just one example. All we need to 
understand “continuity” is some notion of “closeness”, so no 
linear (vector space) structure is really needed. But if we want 
to be able to differentiate objects, we need to take a limit of a 
difference quotient. To make sense of this, it seems that we need 
a vector space structure. This is almost true, but we can get 
away with something that is almost a vector space, as I will now 
valiantly endeavour to explain. In kindergarten, we learn about 
the simplest spaces (vector spaces) and the simplest maps 
between them (linear maps). In elementary school, we decide 
to get a bit crazy, and consider nonlinear maps between linear 
spaces, as long as these are reasonably well-behaved. Here, 
“reasonable” means differentiable so that, near a given point, 
such maps are well-approximated by linear maps. Then in high 
school we go completely nuts, and consider nonlinear maps 
between nonlinear spaces. What could this even mean? Since 
we are doing calculus, the key is linear approximation. We want 
our “nonlinear spaces” to be be well-approximated by linear 
spaces, near a given point. This is the notion of a manifold. 
An n-manifold is a topological space that “looks like” Rn  near 
each point. A smooth map between an n-manifold and and 

m-manifold “looks like” a linear map from Rn  to Rm  near 
each point. Smooth manifolds are the most general spaces 
on which is makes sense to do calculus. This is the subject of 
PMATH 465, which you should all take. It’s awesome.

But wait, there’s more. Let M  be an n-manifold. At each 
point p ∈ M , we have a “tangent space” TpM , which is an 
n-dimensional real vector space approximating M  in some 
sense. Abstractly, this is of course isomorphic to Rn , but not 
canonically. (That is, there is no preferred basis.) Also, there 
is no preferred inner product on TpM . A choice of “smoothly 
varying” inner product on all the tangent spaces of M  is a 
Riemannian metric on M . It turns out such a metric always 
exists, but there are uncountably many such metrics, and no 
preferred choice on a random manifold. (If M = Rn  then 
there is a preferred choice, the one from Ancient Greece, but 
there are uncountably many here too.) A natural question is, 
“what is the “best” Riemannian metric on a given manifold 
M ?” The answer, of course, depends on what we mean by 
“best”. This is where we start to get into geometric analysis. 
I’ll explain that very soon, but bear with me a bit longer. 
(Hopefully you’re all still reading this!) More generally 
than a Riemannian metric, we can consider “geometric 
structures” on any manifold M  as follows. Whenever there’s 
an algebraic structure that can exist on a vector space, we 
can try to “attach” such a structure to each tangent space 
TpM  of M  in a “smoothly varying way”. Depending on the 
structure, this may or may not always be possible. There may 
be “global topological obstructions.” From inner products 
on vector spaces, we get Riemannian metrics, and this can 
always be done, which is not obvious. From orientations 
on vector spaces, we get manifold orientations. This cannot 
always be done (Google the Möbius strip or the Klein bottle, 
for example). And things get much more exotic than that, 
such as almost complex structures or G2  structures, but I am 
rambling.

Now suppose you have a manifold M  that admits a certain 
type of “geometric structure”. If it does, it usually admits 
infinitely many. What is the best one? In most situations, 
the natural notion of “best” is characterized by that structure 
satisfying a natural (usually nonlinear) partial differen-
tial equation on the manifold. So even if M  admits a certain 
type of geometric structure, it may not have a “best” one, 
because that geometric PDE may not have a solution. To be 
able to answer such questions, one uses the tools of functional 
analysis and partial differential equations in the setting of 
Riemannian geometry. So to do geometric analysis, you really 
need to know a bit about everything, and a lot about certain 
things, but that’s why it’s so interesting! I can go on and say 
much more, but you’re probably already regretting asking me 
this question!
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molasses: as a topologist, what is your opinion on 
the topography of the waterloo region?

Since I am not actually a topologist, perhaps I should not 
answer this question. But I will. If I were a topologist, the 
topography of Waterloo would be uninteresting, because 
topology is only concerned with structure up to continuous 
deformation, and the topography of Waterloo region (or any 
other region) is homeomorphic to a flat space. As a geometer, 
I care about lengths, distances, and curvatures. So the question 
is more meaningful. Sadly, Waterloo is (even geometrically) 
quite flat. It’s not that interesting topographically. Except 
maybe for Elora Gorge. If you haven’t been there, it’s worth the 
trip.

boldblazer: what do you think of the topics in pmath 
340? what about pmath 333?

I’ve never taught PMATH 340, and I certainly never will, since 
I don’t even know what quadratic reciprocity is. I can’t really 
work well with numbers. Thankfully we now have machines 
that calculate the restaurant tip for me, because I can’t do the 
arithmetic myself. I haven’t yet taught PMATH 333, but I will 
actually teach it for the first time in Fall 2023. It’s a course 
designed to get people ready for PMATH 351 if they did not 
take MATH 247 (which I’ve taught at least five or six times, 
and which I will also teach again in Fall 2023.) That material 
in 333, or 247, or 351, is certainly very cool, and you can’t do 
geometry without it, but of course it’s not as cool as geometry. 
Nothing is, except maybe German shepherds.

labyrinth: what got you interested in differential 
geometry and geometric analysis, and what’s your 
favourite thing about your research?

This might be true of most mathematicians, but I am 
especially attracted to patterns. More specifically, the (math-
ematical) thing that really turns me on is when we find a 
structure that is very closely related to a previously well-
understood structure, but also has some differences in subtle 
but important ways. For example (and this example is really 
fundamental), there are many similarities between real 
numbers and complex numbers. They are both fields, and are 
also real vector spaces equipped with natural norms which are 
compatible with the field multiplication. That is, |ab| = |a| |b| 
for any a, b. But the real numbers are naturally ordered, while 
the complex numbers are not. There exists another such 
structure which is very similar, namely the quaternions, 
H, which are a 4-dimensional real vector space equipped with 
a multiplication that makes them almost a field, they are just 
non-commutative. And their multiplication is compatible 
with the norm as for R or C. In fact, there is exactly only 
one other such “real normed division algebra”, called the 
octonions O, which are not only non-commutative, but also 
non-associative. This makes them more complicated (but at 
the same time much more interesting) than R, C, or H. The 
special structure of the octonions in 8-dimensions induces 
a special “cross product” operation on R7 , thought of as the 
orthogonal complement of the identity element in O. This is 
almost exactly the same as the cross product on R3  that we 

all learned about in first grade, except that the non-associ-
ativity introduces some complications. My research studies 
7-dimensional and 8-dimensional manifolds that essentially 
have these special algebraic structures on each of their 
tangent spaces, in a smoothly varying way. These spaces are 
of potential application in theoretical physics, which is cool, 
but I would find them extremely interesting regardless. The 
amazing thing about geometric analysis, as I hinted at above in 
the first question, is that it mixes together algebra, topology, 
analysis, and geometry in a really beautiful way. In fact, the 
crowning achievement of 20th century mathematics is widely 
considered to be the Atiyah-Singer Index Theorem, which 
describes an incredible marriage between all four of these 
players (mathematical polygamy is fine and to be encouraged). 
In hindsight, the fact that I was interested in things which 
were “very similar, but only slightly different” was evident 
from my childhood. I remember being very young and being 
enthralled by a McDonald’s marketing campaign that featured 
two of that creepy-looking blob guy Grimace, the traditional 
purple Grimace and a super-cool green Grimace. That blew my 
5-year old mind. True story.

jeff: what is your favourite bathroom on campus?

If only there were a decent bathroom on campus. I don’t 
understand why the University administration is so cheap as 
to stock all the bathrooms with what is essentially negative ply 
toilet paper. Best to bring your own or go at home.

boldblazer: do you have a preferred restaurant at 
the university plaza?

If I have to choose something in the Plaza, then I choose 
Harvey’s just because I’ve been a Harvey’s customer since I 
was a kid in Montréal. But the best restaurant in the Waterloo 
region is Urwa’s, a Pakistani restaurant near the other Harvey’s, 
at King and Weber. You should try their Lahori Chana. It is 
awesome. Just like PMATH 465, only spicier. (I am not getting 
kickbacks from Urwa’s, but I would gladly accept them.)

autumn: what’s your favourite season?

Ironically, Autumn, my favourite season is Fall. My favourite 
time is when it starts to cool off and the leaves fall down. It 
puts me (perhaps weirdly) in the mindset of starting a new 
chapter of life. This made sense when I would start a new 
school year every September, but makes less sense since I 
stopped being a student. It also makes less sense because 
September is the new August. That is, the feeling I would get 
from the September weather when I was a kid in the 80's 
doesn’t happen until October now. We’ve really messed up the 
climate on this planet. We may have to find a new one if we 
can’t get our act together.

boldblazer: what colour crewmate would you choose 
in among us?

I’ve never played this game, although I have watched my 
daughter play it. I can’t say that it looks exciting. Certainly 
not anywhere near as cool as that monumental classic of 1983 
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Apple II games, “Canyon Climber” (Google it). Although I 
should add that I used to be really good at the triple jump on 
the Nintendo Entertainment System. There was a trick to that. 
But, since you asked me about my favourite colour (although 
you actually didn’t), my favourite colour is purple. Probably 
because I’m a big fan of the artist formerly known as his royal 
purpleness. May he rest in peace.

psychgirl: what suggestions do you have for math 
students who are soon to graduate? what general 
advice do you have for students about life outside of 
university and academia?

The great thing now is that there are so many options to 
actually do math outside of academia. That didn’t used to be the 
case. Until about 2000, if you had a degree in math and didn’t 
stay in academia, you either ended up teaching math at the 
pre-university level (a very fine and noble profession, and we 
need more good people doing that!) or you went to Wall Street 
to work in financial consulting, with zero knowledge of what 
that means, and probably as a result helped cause the financial 
crisis of 2008 (I know several people who took this path). But 
now, there are so many jobs in private industry where you 
actually need to do non-trivial math. I had a postdoc here who 
went to San Francisco to work in the computer game industry, 
and he’s actually doing Riemannian geometry. It’s not just 
coding. Having given you this fantastic news, I do admit that 
I am not closely connected to these opportunities, I just know 
that they exist. So if this kind of thing appeals to you then 
I encourage you to seek out faculty members who may have 
such connections, to learn more.

If you want to continue in math, that’s great. Math is awesome. 
But, to quote the infamous Qui-Gon Jinn, it’s a hard life. Each 
year I learn as much new math as I did in the previous several 
years. Most of the math I know I learned after my PhD and 
after 5.5 years of postdoc (that is, in the 14 years since I have 
been at Waterloo). You never really stop learning, nor should 
you. In fact, this is probably good advice for anyone in any 
kind of profession: never stop learning. Since you asked for 
general advice, here are some pearls of wisdom I have attained 
through many trials and just as many errors:

 0. Never stop learning.
1. You actually learn the most from the mistakes you 

make, not from things you do right the first time. 
Think about your past courses. You almost certainly 
understand something better if you initially didn’t 
understand it and had to work hard to get it. So 
don’t be afraid to make mistakes. That’s how we 
grow.

2. Related to (1) above, the best way to understand 
something is to try to teach it to someone else. See 
also the next question below.

3. Sleep is very important. All-nighters don’t work. 
Trust me, I tried. I learned the hard way. The body 
needs sleep. That being said, you will probably 
all have to learn this lesson on your own, if you 
haven’t already.

4. The mind also needs a break often. Trying to do 
math (or anything else) for several hours without 
stopping is not good for you. Take a step away. Go 
for a walk. Watch something stupid on TV. Read 
something light and fluffy. Just as you wouldn’t 
exercise your heart or your biceps without taking a 
break, the same is true for the brain.

jeff: what’s a grad-level course you’d like to offer 
which hasn’t been offered yet?

I have really had the great pleasure to teach many graduate-
level special topics courses at Waterloo, probably averaging 
about one every 2.5 years or even slightly more. I almost 
always choose a topic which is something that I really don’t 
know that well but would like to know much better. That’s 
why I taught courses on the “Atiyah-Singer Index Theorem” 
and on “Clifford algebras and spinors”. Another reason to 
teach a topics course is to organize the material better in my 
head, for an eventual book. I taught the first three iterations 
of PMATH 868: Connections and Riemannian Geometry, and 
have produced about 2⁄3 of an eventual book. Hopefully it will 
be done in the next two years. Probably the next topics course 
I teach (maybe in 2024–2025, because I am on sabbatical in 
early 2024) will be on harmonic maps, as I have lately become 
very interested in these objects in my own research but don’t 
know enough about them. Other topics I am interested in 
teaching one day are: Einstein metrics, geometric flows, and 
symmetric spaces. Again, all things I wish I knew better, and 
if I did, I would produce better and more interesting research. 
So I will teach these at some point in the coming decade (see 
items 0 and 2 in the question above).

geometer: favourite geometry result?

I’ve already mentioned the Atiyah-Singer Index Theorem, 
which is truly incredible. But, to choose something more 
specific to geometric analysis, I would have to say the 
Calabi-Yau Theorem. This was really the spark that ignited 
the fire which was to become geometric analysis. My former 
PhD supervisor (and Fields Medalist) Shing-Tung Yau proved 
this theorem in the mid-1970's, when it was known as the 
“Calabi conjecture”. The simplest version of this theorem 
says that if M  is a compact Kähler manifold, then it admits a 
unique Ricci-flat Kähler metric in each Kähler cohomology 
class if and only if its first Chern class vanishes. That’s quite a 
mouthful, I know. I encourage you to read his popular science 
book “The Shape of Inner Space” which attempts to explain 
this to a general audience. It’s really quite well-written. He’s 
not paying me to say that, honest.

Green Grimace blew my 
5-year old mind.

P RO F.  S P I RO  K A R I G I A N N I S
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