Α	proof	of a	partiti	on co	onjec	ture	of l	3atem	nan	and	Erdős

Observation: If

$$\lambda_1 \ge \cdots \ge \lambda_k \ge 1$$

satisfies

$$\lambda_1 + \dots + \lambda_k = n,$$

then we can obtain a partition of n+1 by simply adding 1; that is,

$$\lambda_1 + \cdots + \lambda_k + 1 = n+1$$

is a partition of n+1. We therefore have

$$p(n+1)-p(n) \ge 0$$
 for all $n \ge 0$.

TWO NATURAL QUESTIONS:

- 1. Are the $k^{\mbox{th}}$ differences of the partitions eventually positive?
- 2. If so, then what happens if we impose restrictions upon the patitions?

Bateman and Erdős (1956) answered these questions completely.

Their motivation was to improve existing Tauberian theorems.

Given a subset A of $\{1, 2, 3, \dots\}$, let $p_A(n)$ denote the number of partitions of n with parts from A; i.e.,

$$p_A(n) = [x^n] \prod_{a \in A} (1 - x^a)^{-1}.$$

Let $p_A^{(k)}(n)$ denote the k^{th} difference of $p_A(n)$; i.e.,

$$p_A^{(k)}(n) = [x^n](1-x)^k \prod_{a \in A} (1-x^a)^{-1}.$$

For example,

$$p_A^{(1)}(n) = p_A(n) - p_A(n-1),$$

$$p_A^{(2)}(n) = p_A^{(1)}(n) - p_A^{(1)}(n-1)$$

= $p_A(n) - 2p_A(n-1) + p_A(n-2)$.

DEFINITION: We say a set $A\subseteq\{1,2,3,\ldots\}$ has property P_k if:

- 1. |A| > k; and
- 2. $gcd(A \setminus \{a_1, \dots, a_k\}) = 1$ for any $a_1, \dots, a_k \in A$.

Bateman and Erdős showed the following remarkable fact: $p_A^{(k)}(n)$ is eventually positive **if and only if** A has property P_k .

Moreover, they showed that if A has property P_k ,

$$p_A^{(k+1)}(n)/p_A^{(k)}(n) \rightarrow 0$$
 as $n \rightarrow \infty$.

When $A = \{1, 2, 3, \ldots\}$, Rademacher's formula for the number of partitions of n gives

$$p_A^{(k+1)}(n)/p_A^{(k)}(n) \sim \pi/\sqrt{6n}.$$

It seems therefore reasonable to expect the following conjecture.

Conjecture. (Bateman-Erdős) If A has property P_k ,

$$p_A^{(k+1)}(n)/p_A^{(k)}(n) = O(n^{-1/2}).$$

The proof of this conjecture appears in the Journal of Number Theory $\bf 87\ (2001)\ 144-153$.

The first step in proving this conjecture is the following lemma.

Lemma. Let

$$F(x) = \sum_{n=0}^{\infty} f(n)x^{n}$$

$$G(x) = \sum_{n=0}^{\infty} g(n)x^{n} = (1-x)^{-1}F(x), \text{ and}$$

$$H(x) = \sum_{n=0}^{\infty} h(n)x^{n} = (1-x)^{-2}F(x)$$

be three power series; moreover, suppose these power series have nonnegative coefficients. Then

$$nf(n) = O(h(n)) \implies n^{1/2}g(n) = O(h(n)).$$

This lemma allows us to work in the ring of formal power series.

WHY?

$$xF'(x) = \sum_{n=0}^{\infty} nf(n)x^n.$$

Thus to prove $g(n) = O(h(n)n^{-1/2})$ it suffices to show that $xF'(x) \leq CH(x) + p(x)$, for some constant C and some polynomial p(x), where the inequality is taken coefficient-wise.

Let A be a subset of the positive integers. Let

$$H(x) = \sum_{n=0}^{\infty} p_A(n)x^n = \prod_{a \in A} (1 - x^a)^{-1}$$

$$G(x) = \sum_{n=0}^{\infty} p_A^{(1)}(n)x^n, \text{ and}$$

$$F(x) = \sum_{n=0}^{\infty} p_A^{(2)}(n)x^n.$$

GOAL: To show $p_A^{(1)}(n)/p_A(n) = O(n^{-1/2})$ when A has property P_0 ; i.e., we must show $g(n)n^{1/2} = O(h(n))$ when $\gcd(A) = 1$.

To do this, we use the lemma and compare the coefficients of xF'(x) to the coefficients of H(x).

Recall

$$F(x) = (1-x)^2 \prod_{a \in A} (1-x^a)^{-1}.$$

We have

$$xF'(x) = F(x)(-2x/(1-x) + \sum_{a \in A} ax^a/(1-x^a)).$$

ASIDE

$$\sum_{a>1} ax^{a}/(1-x^{a}) = \sum_{n=1}^{\infty} \sigma(n)x^{n}.$$

Unfortunately, $\sigma(n)$ is not very well-behaved. Its sequence of partial sums, however, is very well-behaved.

$$\sigma(1) + \sigma(2) + \cdots + \sigma(n) \sim Cn^2$$
.

We have

$$(1-x)^{-1} \left(\sum_{n=1}^{\infty} \sigma(n) x^n \right)$$
= $\sigma(1)x + (\sigma(1) + \sigma(2))x^2 + (\sigma(1) + \sigma(2) + \sigma(3))x^3 + \cdots$

We have

$$(1-x)^{-1} \sum_{a \in A} ax^a / (1-x^a) \le \sum_{n=1}^{\infty} Cn^2 x^n,$$

for some C. Therefore

$$xF'(x)$$
= $F(x)(-2x/(1-x) + \sum_{a \in A} ax^a/(1-x^a))$
 $\leq F(x)(1-x)(-2x/(1-x)^2 + \sum_{n=1}^{\infty} Cn^2x^n)$
= $F(x)(1-x)(\sum_{n=1}^{\infty} (Cn^2 - 2n)x^n)$

Now

$$[x^n]2C/(1-x)^3 = C(n+2)(n+1) \ge (Cn^2-2n)$$

$$xF'(x) \le F(x)(1-x)(\sum_{n=1}^{\infty} (Cn^2 - 2n)x^n$$

 $\le F(x)(1-x)(2C/(1-x)^3)$
 $= 2CF(x)(1-x)^{-2}$
 $= 2CH(x).$

Taking the coefficient of x^n we see

$$nf(n) = O(h(n)),$$

or equivalently,

$$np_A^{(2)}(n) = O(p_A(n))$$

 $\Longrightarrow p_A^{(1)}(n) = O(p_A(n)n^{-1/2}).$