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Abstract

This paper considers the problem of designing fast, approximate, combinatorial algorithms for multi-
commodity flows and other fractional packing problems. We present new faster and much simpler algo-
rithms for these problems.

1 Introduction

Consider the problem of computing a maximums-t flow in a graph with unit edge capacities. While there are
many different algorithms known for this problem we discuss one which views the problem purely as one of
packings-t paths so that constraints imposed by edge-capacities are not violated. The algorithm associates a
length with each edge and at any step it routes a unit flow along the shortests-t path. It then multiplies the
length of every edge on this path by 1+ε for a fixedε. Thus the longer an edge is the more is the flow through
it. Since we always choose the shortests-t path to route flow along, we essentially try to balance the flow on
all edges in the graph. One can argue that, if, after sufficiently many steps, M is the maximum flow through an
edge, then the flow computed is almostM times the maximums-t flow. Therefore scaling the flow byM gives
a feasible flow which is almost maximum.

Note that the length of an edge at any step is exponential in the total flow goingthrough the edge. Such a length
function was first proposed by Shahrokhi and Matula [22] who used itto compute the throughput of a given
multicommodity flow instance. While this problem (and all other problems considered in this paper) can be
formulated as a linear program and solved to optimality using fast matrix multiplication[24], the authors of
[22] were mainly interested in providing fast, possibly approximate, combinatorial algorithms. Their procedure,
which applied only to the case of uniform edge capacities, computed a(1+ω)-approximation to the maximum
throughput in time polynomial inω−1. The key idea of their procedure, which was adopted in numerous
subsequent papers, was to compute an initial flow by disregarding edge capacities and then to reroute this,
iteratively, along short paths so as to reduce the maximum congestion on anyedge.

The running time of [22] was improved significantly by Kleinet.al. [17]. It was then extended and refined to
the case of arbitrary edge capacities by Leightonet.al. [18], Goldberg [11] and Radzik [21] to obtain better
running times; see Table 1 for the current best bound.
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Plotkin, Shmoys and Tardos [20] observed that a similar technique could beapplied to solve any fractional
packing problem. Their approach, for packing problems, starts with an infeasible solution. The amount by
which a packing constraint is violated is captured by a variable which is exponential in the extent of this
violation. At any step the packing is modified by afixed amountin a direction determined by these variables.
Hence, the running time of the procedure depends upon the maximum extent towhich any constraint could be
violated; this is referred to as thewidth of the problem [20]. The running time of their algorithm for packing
problems being only pseudo-polynomial, [20] suggest different ways of reducing the width of the problem.

Grigoriadis and Khachiyan [13] consider block angular packing problems which are problems of the form

min
{

λ |∑k
i=1 f i(xi) ≤ λe,xi ∈ Bi ,1≤ i ≤ k

}

whereBi is a convex set,f i : Bi → R
m is a non-negative convex function ande is the vector of all 1’s. They

assume the existence of an oracle which giveni,1 ≤ i ≤ k, non-negative vectory and scalarµ computes
min

{
yT f i(x)| f i(x) ≤ µe,x∈ Bi

}
and show how to find a(1+ ε)-approximation to the block angular pack-

ing problem with onlyk2 lnm(ε−2+ lnk) calls to this oracle. In [14], Grigoriadis and Khachiyan, show that this
problem can also be solved inkm(ε−2 lnε−1 + lnm) calls to an oracle which computes min

{
yT f i(x)|x∈ Bi

}
.

Note that both these running times are independent of the width of the problem.

All the problems that we consider in this paper can be formulated as block angular packing problems. This
is immediate for the maximum concurrent flow and the min-cost multicommodity flow problems. For these
problems, the blocks are single commodity flows. In [13], the oracle corresponds to finding a min-cost single-
commodity flow, while in [14], the oracle is a shortest path computation.

The maximum multicommodity flow problem can also be formulated as a block-angularpacking problem with
one block,B, which is the set of all multicommodity flows of total value 1. For a flowx∈ B, f (x) is a vector
denoting the fraction of the capacity utilized byx on the edges. If for a flowx, f (x) ≤ λe, then the flowx/λ
satisfies all capacities and routes 1/λ units. Thus computing maximum flow is the same as minimizingλ . A
similar idea can also be used to formulate fractional packing as a block-angular convex program.

In a significant departure from this line of research and motivated by ideas from randomized rounding, Young [25]
proposed anoblivious roundingapproach to packing problems. Young’s approach has the essential ingredient
of previous approaches — a length function which measures, and is exponential in, the extent to which each
constraint is violated by a given solution. However, [25] builds the solutionfrom scratch and at each step adds
to the packing a variable which violates only such packing constraints that are not already too violated. In
particular, for multicommodity flow, it implies a procedure which does not involvererouting flow (the flow is
only scaled at the end) and which for the case of maximums-t flow reduces to the algorithm discussed at the
beginning of this section.

Our Contributions. In this paper we provide a unified framework for multicommodity flow and packing
problems which yields significantly simpler and faster algorithms than previously known. Our approach is
similar to Young’s approach for packing problems. However, we developa new and simple combinatorial
analysis which has the added flexibility that it allows us to make the greatest possible advance at each step.
Thus for the setting of maximums-t flows with integral edge capacities, Young’s procedure routes a unit flow
at each step while our procedure would route enough flow so as to saturate the minimum capacity edge on the
shortests-t path. This simple modification is quite powerful and delivers a slightly better running time and
much simpler proof.

Our approach yields a new, very natural, algorithm for maximum concurrent flow (section 5) which extends in
a straightforward manner to min-cost multicommodity flows (section 6). These algorithms use a min-cost flow
computation as a subroutine and have running times that match the best known.We also provide algorithms
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for these two problems which use shortest path computations as a subroutineand are faster than previous
algorithms. One idea in these algorithms which is key to the faster running times is to organize all computation
sequentially, and to use the length updates done at one step in the computationsdone at all subsequent steps.
This is, in some ways, similar to the round-robin idea employed by Radzik [21].

This paper first appeared as a technical report in [9] and then as an extended abstract in [10]. Subsequently
the approach presented here has been extended and improved results obtained for almost all the problems con-
sidered here. For the maximum multicommodity flow problem, Fleischer [7] obtaineda running time that is
independent of the number of commodities. Karakostas [15], obtained a corresponding result for the maxi-
mum multicommodity flow and min-cost multicommodity flow problems. We discuss the ideas behind these
improvements in the appropriate sections.

Bienstock and Iyengar [4] recently adapted a method by Nesterov [19] inorder to obtain a(1+ω)-approximation
for generalized packing problems. Theω-dependence of the running time of their algorithm isO((1/ω) ·
log1/ω) as opposed to a dependence ofO(1/ω2) of our algorithms. However, their algorithm needs to solve
a convex quadratic program in each iteration and this is computationally substantially more expensive than
the oracle calls necessary in our algorithms. As a result, our algorithms remainfaster than the algorithm by
Bienstock and Iyengar for a fixed or moderately smallω .

Table 1 summarizes our results. All our algorithms are deterministic and compute a(1+ω)-approximation to
the optimum solution. In giving the running times we ignore polylog factors; theÕ denotes this fact.

Problem Previous Best Our running time Subsequent Improvement

Max. multicomm. Õ(ω−2km2) [14] Õ(ω−2km2) Õ(ω−2m2) [7]

flow

Fractional Packing Õ(ω−2mD) [14] Õ(ω−2mD) Õ(ω−2(mL+D)) [26]

Maximum Õ(ω−2kmn) [21] Õ(ω−2kmn)

concurrent flow Õ(ω−2km2) [14] Õ(ω−2(k+m)m) Õ(ω−2m2) [15]

Max. cost-bounded Õ(ω−2kmn) [12] Õ(ω−2kmn)

concurrent flow Õ(ω−2km2) [14] Õ(ω−2(k+m)m) Õ(ω−2m2) [15]

Table 1: A summary of our results. Here,D denotes the number of non-zero entries in the given constraint
matrix andL is the maximum number of non-zero entries in a column.

The framework introduced in this paper for multicommodity flow problems was extended by Fleischer and
Wayne [8] to generalized flow. The book by Bienstock [3] is a good survey of the theoretical issues and
computational studies done on this topic.

2 Maximum multicommodity flow

Given a graphG= (V,E) with edge capacitiesc : E → R
+ andk pairs of terminals(s1, t1), . . . ,(sk, tk), with one

commodity associated with each pair, we want to find a multicommodity flow such that the sum of the flows
of all commodities is maximized. LetP j be the set ofsj , t j -paths inG for all 1≤ j ≤ k, and defineP to be
the union ofP1, . . . ,Pk. Also let Pe be the set of paths inP that use edgee for all e∈ E. The path-flow
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linear programming formulation for the maximum-multicommodity flow problem has a variable x(p) for the
flow sent along each pathp∈ P:

max ∑
p∈P

x(p) (Pmmc)

s.t. ∑
p∈Pe

x(p) ≤ c(e) ∀e∈ E

x≥ 0.

The dual to this linear program associates a lengthl(e) with each of the edgese∈ E.

min D(l)
def
= ∑

e∈E

c(e) · l(e) (Dmmc)

s.t. ∑
e∈p

l(e) ≥ 1 ∀p∈ P

l ≥ 0.

Observe that the above two linear programs (Pmmc) and (Dmmc) have exponential size. Optimal solutions can,
however, be found in polynomial time as equivalent polynomial-size edge-flow formulations exist (e.g., see
[1]).

In the following letdist j(l) be the length of the shortestsj , t j -path with respect to lengthl for 1≤ j ≤ k. Also

let α(l)
def
= min j dist j(l) be the minimum length path between any pair of terminals. Then (Dmmc) is equivalent

to finding a length functionl : E → R
+ such thatD(l)

α(l) is minimized. Letβ def
= minl D(l)/α(l).

The algorithm proceeds in iterations. Letl i−1 be the length function at the beginning of theith iteration andfi−1

be the total flow routed in iterations 1. . . i−1. LetP be a path of lengthα(l i−1) between a pair of terminals and
let c be the capacity of the minimum capacity edge onP. In the ith iteration we routec units of flow alongP.
Thus fi = fi−1+c. The functionl i differs from l i−1 only in the lengths of the edges alongP; these are modified
asl i(e) = l i−1(e)(1+ εc/c(e)), whereε is a constant to be chosen later.

Initially every edgee has lengthδ , ie., l0(e) = δ for some constantδ to be chosen later. For brevity we denote
α(l i),D(l i) by α(i),D(i) respectively. The procedure stops aftert iterations wheret is the smallest number such
thatα(t) ≥ 1.

2.1 Analysis

For every iterationi ≥ 1

D(i) = ∑
e

l i(e)c(e)

= ∑
e

l i−1(e)c(e)+ ε ∑
e∈P

l i−1(e)c

= D(i−1)+ ε( fi − fi−1)α(i−1)

which implies that

D(i) = D(0)+ ε
i

∑
j=1

( f j − f j−1)α( j −1) (1)
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Consider the length functionl i − l0. Note thatD(l i − l0) = D(i)−D(0) andα(l i − l0) ≥ α(i)− δL whereL is
the maximum number of edges on any simple path inG. Hence

β ≤
D(l i − l0)
α(l i − l0)

≤
D(i)−D(0)

α(i)−δL
(2)

Substituting this bound onD(i)−D(0) in equation ( 1) we get

α(i) ≤ δL+
ε
β

i

∑
j=1

( f j − f j−1)α( j −1)

To solve the above recurrence we first note that the sequencex(0),x(1), . . .x(i), . . . wherex(i)= δL+ ε
β ∑i

j=1( f j −

f j−1)x( j −1) dominates the sequenceα(0),α(1), . . . ,α(i), . . . wherex(0) = α(0). Now

x(i) = δL+
ε
β

i−1

∑
j=1

( f j − f j−1)x( j −1)+
ε
β

( f j − f j−1)x(i−1)

= x(i−1)(1+ ε( fi − fi−1)/β )

≤ x(i−1)eε( fi− fi−1)/β

Sincex(0) = α(0) ≤ δL we havex(i) ≤ δLeε fi/β and this implies

α(i) ≤ δLeε fi/β

By our stopping condition
1≤ α(t) ≤ δLeε ft/β (3)

and hence
β
ft
≤

ε
ln(δL)−1 (4)

Claim 2.1. There is a feasible flow of value ft
log1+ε

1+ε
δ

Proof. Consider an edgee. For everyc(e) units of flow routed throughe the length ofe increases by a factor
of at least 1+ ε. The last time its length was increased,e was on a path of length strictly less than 1. Since
every increase in edge-length is by a factor of at most 1+ ε, lt(e) < 1+ ε. Sincel0(e) = δ it follows that the
total flow throughe is at mostc(e) log1+ε

1+ε
δ . Scaling the flow,ft , by log1+ε

1+ε
δ then gives a feasible flow of

claimed value.

Thus the ratio of the values of the optimum dual and the primal solutions,γ, is β
ft

log1+ε
1+ε

δ . By substituting
the bound onβ/ ft from (4) we obtain

γ ≤
ε log1+ε

1+ε
δ

ln(δL)−1 =
ε

ln(1+ ε)

ln 1+ε
δ

ln(δL)−1

The ratio ln(1+ε)δ−1

ln(δL)−1 equals(1− ε)−1 for δ = (1+ ε)((1+ ε)L)−1/ε . Hence with this choice ofδ we have

γ ≤
ε

(1− ε) ln(1+ ε)
≤

ε
(1− ε)(ε − ε2/2)

≤ (1− ε)−2

Since this quantity should be no more than our approximation ratio(1+w) we chooseε appropriately.
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2.2 Running time

In the ith iteration we increase the length of the minimum capacity edge alongP by a factor of 1+ ε. Since for
any edgee, l0(e) = δ andlt(e) < 1+ε the number of iterations in whiche is the minimum capacity edge on the
path chosen in that iteration is at most⌈1

ε log1+ε L⌉. Using the fact that there arem edges we get the following
theorem.

Theorem 2.1. There is an algorithm that computes a(1+ω)-approximation to the maximum multicommodity
flow in time O(ω−2kmlogL ·Tsp) where L is the maximum number of edges on a path between any source-sink
pair and Tsp is the time required to compute the shortest s-t path in a graph with non-negative edge-weights.

2.3 Subsequent Improvements

Fleischer [7] made the interesting observation that it suffices to route flow along an approximate shortest path
and that if the path chosen at each step is ana approximation to the shortest path then the approximation guar-
antee worsens only by a multiplicative factora. Her algorithm proceeds in phases each of which is composed
of k iterations. If at the start of theith phase the shortest path between each pair has length at leastα then
in the j th iteration of this phase we route thej th commodity along any path of length at mostα(1+ ε) and
move to the next iteration only when the shortest path betweensj , t j is at leastα(1+ ε). This ensures that at
the end of theith phase every(sj , t j) pair is at leastα(1+ ε) apart. Hence the number of phases is at most
log1+ε δ−1. The algorithm performs one shortest path computation in each iteration that does not result in flow
being routed. Hence the total number of shortest path computations is(m+ k)⌈1

ε log1+ε L⌉. Sincek can be as
large as O(n2), Fleischer eliminates the dependence of the running time onk by routing all commodities with
the same source in an iteration. It is possible to do this without additional effort since Dijkstra’s algorithm for
computing shortest paths gives the shortest path to every node in the graph.

3 Packing LP

A packingLP is a linear program of the kind max
{

cTx|Ax≤ b,x≥ 0
}

whereA,b andc are(m×n),(m×1)
and(n×1) matrices all of whose entries are positive. We also assume that for alli, j, the(i, j)th entry of A,
A(i, j), is at mostb(i). The dual of thisLP is min

{
bTy|ATy≥ c,y≥ 0

}
.

We view the rows ofA as edges and the columns as paths.b(i) is the capacity of edgei and every unit of flow
routed along thej th column consumesA(i, j) units of capacity of edgei while providing a benefit ofc( j) units.

The dual variabley(i) corresponds to the length of edgei. Define thelengthof a column j with respect to

the dual variablesy aslengthy( j)
def
= ∑i A(i, j)y(i)/c( j). Finding a shortest path now corresponds to finding

a column whose length is minimum; defineα(y)
def
= min j lengthy( j). Also defineD(y)

def
=bTy. Then the dual

program is equivalent to finding a variable assignmenty such thatD(y)/α(y) is minimized.

Once again our procedure will be iterative. Letyk−1 be the dual variables andfk−1 the value of the primal solu-
tion at the beginning of thekth iteration. Letq be the minimum length column ofA ie., α(yk−1) = lengthyk−1(q)
— this corresponds to the path along which we route flow in this iteration. The minimum capacity edge is the
row for which b(i)/A(i,q) is minimum; let this be rowp. Thus in this iteration we will increase the primal
variablex(q) by an amountb(p)/A(p,q) so thatfk = fk−1+c(q)b(p)/A(p,q). The dual variables are modified
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as

yk(i) = yk−1(i)

(
1+ ε

b(p)/A(p,q)

b(i)/A(i,q)

)

whereε is a constant to be chosen later.

The initial values of the dual variables are given byy0(i) = δ/b(i), for some constantδ to be chosen later. For
brevity we denoteα(yk),D(yk) by α(k),D(k) respectively. ThusD(0) = mδ . The procedure stops at the first
iterationt such thatD(t) ≥ 1.

3.1 Analysis

The analysis here proceeds almost exactly as in the case of maximum multicommodityflow. For every iteration
k≥ 1

D(k) = ∑
i

b(i)yk(i)

= ∑
i

b(i)yk−1(i)+ ε
b(p)

A(p,q) ∑
i

A(i,q)yk−1(i)

= D(k−1)+ ε( fk− fk−1)α(k−1) (5)

which, as before, implies that

D(k) = D(0)+ ε
k

∑
l=1

( fl − fl−1)α(l −1)

Let β def
= minyD(y)/α(y). Thenβ ≤ D(l −1)/α(l −1) and so

D(k) ≤ mδ +
ε
β

k

∑
l=1

( fl − fl−1)D(l −1).

In order to solve this recurrence, we first define

x(i) = mδ +
ε
β

k

∑
l=1

( fl − fl−1)x(l −1)

for all i ≥ 0. We note that the sequence(x(i))i≥0 dominates the sequence(D(i))i≥0. Now

x(k) = mδ +
ε
β

k−1

∑
l=1

( fl − fl−1)x(l −1)+
ε
β

( fk− fk−1)x(k−1)

=

(
1+

ε
β

( fk− fk−1)

)
x(k−1)

≤ eε( fk− fk−1)/β x(k−1)

≤ eε fk/β x(0) = mδ ·eε fk/β .

UsingD(k) ≤ x(k) we therefore obtain
D(k) ≤ mδeε fk/β

and by our stopping condition
1≤ D(t) ≤ mδeε ft/β (6)
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and hence
β
ft
≤

ε
ln(mδ )−1

Claim 3.1. There is a feasible solution to the packingLP of value ft
log1+ε

1+ε
δ

Proof. The primal solutionx we constructed has valueft . However, it may not be feasible since some packing
constraint(∑ j A(i, j)x( j))/b(i)≤ 1 may be violated. When we pick columnq and increasex(q) by b(p)/A(p,q)

we increase the left-hand-side (LHS) of theith constraint byA(i,q)b(p)
b(i)A(p,q) (= z say). Simultaneously we increase

the dual variabley(i) by a multiplicative factor of 1+ εz. By our definition ofp it follows thatz≤ 1 and hence
increasing the LHS of theith constraint by 1 causes an increase iny(i) by a multiplicative factor of at least 1+ε.
Note thatyt−1(i) < 1/b(i) and soyt(i) < (1+ε)/b(i). Sincey0(i) = δ/b(i) it follows that the final value of the
LHS of theith constraint is no more than log1+ε

1+ε
δ . Since this is true for everyi, scaling the primal solution

by log1+ε
1+ε

δ gives a feasible solution of value as in the claim.

The rest of the analysis is exactly the same as in section 2.1 withmreplacingL. Thusδ = (1+ε)((1+ε)m)−1/ε .

3.2 Running time

In thekth iteration we increase the dual variable of the “minimum capacity” row by a factor of (1+ε). Since for
any rowi, y0(i) = δ/b(i) andyt(i) < (1+ε)/b(i) and there arem rows in all, the total number of iterations is at
mostm⌈1

ε log1+ε m⌉. For explicitly given packing programs one requires O(D) time to compute the minimum
length column, whereD is the number of non-zero entries in the matrixA. This implies a running time of
mD⌈1

ε log1+ε m⌉ for computing a(1− ε)−2-approximation to the PackingLP.

Theorem 3.1. There is an algorithm that computes a(1+ ω)-approximation to the PackingLP in time
O(ω−2mDlogm) where m is the number of rows and D is the number of non-zero entries in the given con-
straint matrix.

3.3 Subsequent Improvements

Young [26] observed that with Fleischer’s technique this running time improves toÕ(ω−2(mL+D)) whereL is
the maximum number of non-zero entries in a column andD is the number of non-zero entries in the constraint
matrix.

4 Spreading metrics

Given a graphG = (V,E) with edge costsc : E → R
+, a spreading metric is an assignment of lengths to the

edges,l : E → R
+, so as to minimize∑e l(e)c(e) subject to the constraint that for any setS⊆ V and vertex

r ∈ S, ∑v∈Sdistr,v(l) ≥ f (S) wheredistr,v(l) is the distance fromr to v under the length functionl and f () is
a function only of the size ofS. For the linear arrangement problemf (S) = (|S|−1)(|S|−3)/4 [6] while for
the problem of computing aρ-separator1 f (S) is defined as|S|−ρ|V| [5].

1a minimum cost set of edges whose removal disconnects the graph into connected components each of which has at mostρ|V|
vertices.
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Since the length functionl is positive, the shortest paths fromr to the other vertices inS forms a tree — the
shortest path tree rooted atr. Thus the above constraints can be equivalently stated as: for any treeT, for any
subsetSof vertices inT and for any vertexr ∈ S

∑
v∈S

distr,v(l ,T) ≥ f (S)

wheredistr,v(l ,T) denotes the distance fromr to v in treeT under the length functionl .

Let ue(T,S, r) be the number of vertices ofS in the subtree below edgeewhenT is rooted atr. Then the above
constraint can be rewritten again to obtain theLP

min ∑
e

l(e)c(e)

s.t. ∑
e∈T

l(e)ue(T,S, r) ≥ f (S) ∀T,∀S⊆ T,∀r ∈ S

l ≥ 0

The dual of this program, which is a packingLP, has a non-negative variablex(T,S, r) for every treeT, subset
S⊆ T and vertexr ∈ Sand is as follows

max ∑
T,S,r

x(T,S, r) f (S)

s.t. ∑
T:e∈T

x(T,S, r)ue(T,S, r) ≤ c(e) ∀e∈ E

x≥ 0

Note that the packingLP has exponentially many variables. However, the(1+w)-approximation to the opti-
mum fractional solution, in the previous section, only needed an oracle thatreturned the “most violated con-
straint” of the dualLP. In this setting, this oracle is a subroutine, which, given a length functionl finds a triple
(T,S, r) for which (∑e∈T l(e)ue(T,S, r))/ f (S), or equivalently(∑v∈Sdistr,v(l ,T))/ f (S), is minimum.

Our subroutine will try out allnchoices for vertexr and for each of these it will determine the best choice ofT,S.
For a givenr and every subsetS, the expression∑v∈Sdistr,v(l ,T) is minimized whenT is the tree of shortest
paths fromr and under the length functionl . Therefore, for a givenr, our choice ofT will be the shortest
path tree rooted atr. Since f (S) depends only on|S|, given that|S| = k, the ratio(∑v∈Sdistr,v(l ,T))/ f (S)
is minimized whenS is the set ofk nearest vertices tor. Amongst then different choices fork, and hence
for S, we choose the set for which the above ratio is minimum. Having found the besttriple (T,S, r) we now
determine the extent to whichx(T,S, r) is increased by considering all edges inT and finding the edge for
whichc(e)/ue(T,S, r) is minimum.

The subroutine thus requiresn single-source shortest path computations. The running time of the procedure is
obtained by noting that the subroutine is invoked once in each of them⌈1

ε log1+ε m⌉ iterations.

Theorem 4.1. There is an algorithm that computes a(1+ ω)-approximation to Spreading metrics in time
O(ω−2mnlogm·Tsp) where Tsp is the time required to compute single-source shortest paths in a graph with
non-negative edge-weights.

It is easy to improve the running time by a factorn by using Fleischer’s idea. After computing the shortest path
tree from a certain root vertex and finding the best setSwe continue with the same root vertex till the ratio is
at least(1+ ε) times the ratio at the start of the phase. Our analysis is now almost exactly the sameas for the
maximum multicommodity flow problem and leads to a running time ofÕ(ω−2m2).
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5 Maximum concurrent flow

Once again we are given a graph with edge capacitiesc : E →R
+ andk commodities withsj , t j being the source

and sink, respectively, for commodityj. Now each commodity has a demandd( j) associated with it and we
want to find the largestλ such that there is a multicommodity flow which routesλd( j) units of commodityj.

In the following, letF j be the set of flows that transportd( j) units of flow fromsj to t j for all 1 ≤ j ≤ k.
Similar to Section 2 we useF to denote the union ofF1, . . . ,Fk. For a flow f ∈ F and an edgee∈ E, we let
fe be the amount of flow sent acrosse. We can then formulate the maximum concurrent flow problem as the
following LP:

max λ (Pmcf)

s.t. ∑
f∈F

fe ·x( f ) ≤ c(e) ∀e∈ E

∑
f∈F j

x( f ) ≥ λ ∀1≤ j ≤ k

x≥ 0,λ ≥ 0.

Its dual has a lengthl(e) for each edgee∈ E, and a variablez( j) for each commodity 1≤ j ≤ k.

min D(l)
def
= ∑

e∈E

c(e)l(e) (Dmcf)

s.t. ∑
e∈E

fe · l(e) ≥ z( j) ∀1≤ j ≤ k,∀ f ∈ F j

k

∑
j=1

z( j) ≥ 1

l ,z≥ 0.

For a givenl : E →R
+, z( j) is the minimum cost of shippingd( j) units of flow fromsj to t j under cost function

l ; henceforth denoted bymin cost j(l). Let

α(l)
def
=

k

∑
j=1

min cost j(l).

LP (Dmcf) can now be recast as finding an assignment of lengths to the edges,l : E → R
+, such thatD(l)/α(l)

is minimized. Letβ be this minimum. For now we assume thatβ ≥ 1 and shall remove this assumption later.

The algorithm now proceeds in phases; each phase is composed ofk iterations. Consider thej th iteration of
the ith phase and letl i, j−1 be the length function before this iteration. In this iteration we routed( j) units of
commodity j along the paths given bymin cost j(l i, j−1). Let fi, j(e) be the flow through edgee. The length
function is modified asl i, j(e) = l i, j−1(e)(1+ ε fi, j(e)/c(e)). Then

D(l i, j) = ∑
e

l i, j(e)c(e)

= D(l i, j−1)+ ε ∑
e

l i, j−1(e) fi, j(e)

= D(l i, j−1)+ ε ·min cost j(l i, j−1)

The lengths at the start of the(i + 1)th phase are the same as that at the end of theith phase,ie., l i+1,0 = l i,k.
Initially, for any edgee, l1,0(e) = δ/c(e) = l0,k(e).
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5.1 The Analysis

We shall be interested in the values of the functionsD(),α() only for the length functionsl i,k, i ≥ 0. For brevity
we denoteD(l i,k),α(l i,k) by D(i),α(i) respectively. With these new notations we have fori ≥ 1

D(i) = D(l i,k) = D(l i,0)+ ε
k

∑
j=1

min cost j(l i, j−1)

Since the edge-lengths are monotonically increasingmin cost j(l i, j−1) ≤ min cost j(l i,k) and hence

D(i) ≤ D(l i,0)+ ε
k

∑
j=1

min cost j(l i,k) = D(i−1)+ εα(i) (7)

SinceD(i)
α(i) ≥ β we have

D(i) ≤
D(i−1)

1− ε/β

SinceD(0) = mδ we have fori ≥ 1

D(i) ≤
mδ

(1− ε/β )i

=
mδ

1− ε/β
(1+

ε
β − ε

)i−1

≤
mδ

1− ε/β
e

ε(i−1)
β−ε

≤
mδ

1− ε
e

ε(i−1)
β (1−ε)

where the last inequality uses our assumption thatβ ≥ 1.

The procedure stops at the first phaset for whichD(t) ≥ 1. Therefore,

1≤ D(t) ≤
mδ

1− ε
e

ε(t−1)
β (1−ε)

which implies
β

t −1
≤

ε
(1− ε) ln 1−ε

mδ
(8)

In the first t − 1 phases, for every commodityj, we have routed(t − 1)d( j) units. However, this flow may
violate capacity constraints.

Claim 5.1. λ > t−1
log1+ε 1/δ .

Proof. Consider an edgee. For everyc(e) units of flow routed throughe, we increase its length by at least a
factor 1+ ε. Initially, its length isδ/c(e) and aftert −1 phases, sinceD(t −1) < 1, the length ofe satisfies
lt−1,k(e) < 1/c(e). Therefore the total amount of flow throughe in the firstt −1 phases is strictly less than

log1+ε
1/c(e)
δ/c(e) = log1+ε 1/δ times its capacity. Scaling the flow by log1+ε 1/δ implies the claim.
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Thus the ratio of the values of the dual and primal solutions,γ, is strictly less thanβ
t−1 log1+ε 1/δ . Substituting

the bound onβ/(t −1) from (8) we get

γ <
ε log1+ε 1/δ
(1− ε) ln 1−ε

mδ
=

ε
(1− ε) ln(1+ ε)

ln1/δ
ln 1−ε

mδ

For δ = (m/(1− ε))−1/ε the ratio ln1/δ
ln 1−ε

mδ
equals(1− ε)−1 and hence

γ ≤
ε

(1− ε)2 ln(1+ ε)
≤

ε
(1− ε)2(ε − ε2/2)

≤ (1− ε)−3

Now it remains to chooseε suitably so that(1− ε)−3 is at most our desired approximation ratio 1+w.

5.2 Running time

By weak-duality we have

1≤ γ <
β

t −1
log1+ε

1
δ

and hence the number of phases in the above procedure,t, is strictly less than 1+ β log1+ε 1/δ which implies

thatt = ⌈β
ε log1+ε

m
1−ε ⌉.

The running time of our computation depends onβ which can be reduced/increased by multiplying the de-

mands/capacities appropriately. Letzi be the maximum possible flow of commodityi and letz
def
= mini zi/d(i).

Thenzdenotes the maximum fraction of the demands that can be routed independentlyand hencez/k≤ β ≤ z.
We scale the capacities/demands so thatz/k = 1 thus satisfying our assumption thatβ ≥ 1. Note however that
β could now be as large ask.

If our procedure does not stop within 2⌈1
ε log1+ε

m
1−ε ⌉ (= T, say) phases then we know thatβ ≥ 2. We double

the demands of all commodities and continue the procedure. Note thatβ is now half its value in the previous
phase and is at least 1. We run the procedure for an additionalT phases and if it does not halt we again double
demands. Since we halve the value ofβ after everyT phases, the total number of phases is at mostT logk.

Theorem 5.1. There is an algorithm that computes a(1+ω)-approximation to the maximum concurrent flow
in time O(ω−2k logk logm·Tmcf) where Tmcf is the time required to compute a minimum cost s-t flow in a graph
with non-negative edge-costs.

The number of phases can be reduced further using an idea from [20]. We first compute a 2-approximation toβ
using the procedure outlined above. This requiresO(logk logm) phases and returnŝβ , β ≤ β̂ ≤ 2β . Now create
a new instance by multiplying demands byβ̂/2; this instance has 1≤ β ≤ 2. Therefore we need at most an
additionalT phases to obtain a(1+w)-approximation. Thus the number of phases isO(logm(logk+(ε ln1+
ε)−1)) which multiplied byk gives the number of single commodity min-cost flow computations required.

5.3 Avoiding min-cost flow computations

We now show how min-cost flow computations can be avoided in the above algorithm for the maximum-
concurrent flow problem. Using the notation introduced in Section 2, an alternate path-flow LP formulation of

12



the maximum concurrent flow problem is as follows:

max λ (P2
mcf)

s.t. ∑
p∈Pe

x(p) ≤ c(e) ∀e∈ E

∑
p∈P j

x(p) ≥ λ ·d( j) ∀1≤ j ≤ k

x≥ 0,λ ≥ 0.

Its linear-programming dual has a lengthl(e) for each edgee∈ E and a variablez( j) for each commodityj.

min D(l)
def
= ∑

e∈E

c(e)l(e) (D2
mcf)

s.t. ∑
e∈p

l(e) ≥ z( j) ∀1≤ j ≤ k,∀p∈ P j

k

∑
j=1

d( j) ·z( j) ≥ 1

l ,z≥ 0.

For a givenl : E → R
+, z( j) is the shortest path betweensj andt j under length functionl . Define

α(l)
def
= ∑

j

d( j)dist j(l)

wheredist j(l) denotes the shortest path distance betweensj andt j under the length functionl . The dual (D2
mcf)

can then be viewed as an assignment of lengths to edges,l : E → R
+, such thatD(l)/α(l) is minimized. Letβ

be this minimum.

The structure of this new algorithm is similar to that in the previous section. Thusthe algorithm runs in phases
each of which is composed ofk iterations. In thej th iteration of theith phase we routed( j) units of commodity
j in a sequence of steps. Letls−1

i, j be the length function before thesth step and letPs
i, j be the shortest path

betweensj andt j , ie., Ps
i, j has lengthdist j(l

s−1
i, j ). In this step we routef s

i, j = min
{

c,ds−1
i, j

}
units of flow along

Ps
i, j wherec is the capacity of the minimum capacity edge on this path. We now setds

i, j to ds−1
i, j − f s

i, j ; the
iteration ends afterp steps wheredp

i, j = 0.

Thus at each step we perform a shortest path computation instead of a min-cost flow computation as in section 6.
The length functions are modified in exactly the same manner as before and theanalysis is almost exactly the
same. Thus after routing all flow of commodityj we have

D(l p
i, j) ≤ D(l0

i, j)+ ε ·d( j)dist j(l
p
i, j)

and after routing all commodities in theith phase we have

D(l i,k) ≤ D(l i,0)+ ε
k

∑
j=1

d( j)dist j(l i,k)

Using the same abbreviations as before we again obtain

D(i) ≤ D(i−1)+ εα(i)
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Beyond this point we follow the analysis of section 5.1 to argue that we have a(1+ ω)-approximation for the
same choice ofε andδ .

For the running time we again note that in each step, except the last one in an iteration, we increase the length
of at least one edge by a factor 1+ ε. Since each edge has an initial length ofδ and a final length less than
1+ ε, the number of steps exceeds the number of iterations by at mostmlog1+ε

1+ε
δ . Thus the total number of

steps is at most(2k logk+m)⌈1
ε log1+ε

m
1−ε ⌉ and each of these involves one shortest path computation.

Recall from the previous section that we neededk initial max-flow computations to compute an approximate in-
terval for the optimum throughput. We now describe a technique introducedby Grigoriadis and Khachiyan [14]
to compute a slightly larger interval usingk shortest path computations.

Define a lengthl(e) = 1/c(e) for each edgee∈ E. For 1≤ i ≤ k, let Pi be a shortestsi , ti-path with respect
to this length. Then letf be the flow obtained by sendingd(i) units of flow along pathPi for all 1 ≤ i ≤ k
concurrently. Letf ∗ be an optimum concurrent flow that feasibly routesβ ·d(i) units of flow fromsi to ti for
each commodityi and definef̄ as(1/β ) f ∗. Flow f̄ routes the full demand ofd(i) units of flow betweensi and
ti for each 1≤ i ≤ k while sending at most(1/β ) ·c(e) of flow on each edgee∈ E. The total length of flowf̄
underl is

∑
e∈E

1
c(e)

· f̄e ≤
m
β

.

It is not hard to see that the total length of flowf is at most that off̄ and hence

1
c(ē)

· fē ≤ ∑
e∈E

fe
c(e)

≤
m
β

for all edges ¯e∈ E. Equivalently, the flowf · (β/m) is feasible. The maximum congestion off is given by

λ = max
e∈E

fe
c(e)

≤
m
β

.

Thus, the flowf/λ is feasible and has a throughput of at leastβ/m, i.e.,β ∈ [1/λ ,m/λ ]. Using this interval
for β , the total number of phases used in our algorithm becomesT logm.

Theorem 5.2. There is an algorithm that computes a(1+ω)-approximation to the maximum concurrent flow
in time O(ω−2(k logm+m) logm·Tsp) where Tsp is the time required to compute the shortest s-t path in a graph
with non-negative edge-weights.

5.4 Subsequent improvements

Karakostas [15] improved the running time of the above algorithm by removingthe dependence onk. This was
done in a manner similar to the approach followed for maximum multicommodity flow. Thusin an iteration
all commodities with the same source are considered together. The shortest path to all sinks are computed
with one call to Dijkstra’s algorithm and flow is routed along these paths in ratio of the demands of the various
commodities. As before, in each step of the iteration, except the last, the lengthof at least one edge increases
by a factor 1+ ε. However, the number of iterations in a phase is now at most min(k,n) and hence the overall
running time isÕ(ω−2m2).
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6 Minimum cost multicommodity flow

Given an instance of the multicommodity flow problem, as in the previous section, edge costsb : E → R
+,

whereb(e) represents the cost incurred in shipping 1 unit of flow along edgee, and a boundB, we consider the
problem of maximizingλ subject to the additional constraint that the cost of the flow is no more thanB. In the
following LP formulation we use the notation introduced in Section 5 and we letb( f ) denote the cost of a flow
f ∈ F under cost-functionb.

max λ (Pmcmcf)

s.t. ∑
f∈F

fe ·x( f ) ≤ c(e) ∀e∈ E

∑
f∈F j

x( f ) ≥ λ ∀1≤ j ≤ k

∑
f∈F

b( f ) ·x( f ) ≤ B

x≥ 0,λ ≥ 0

Its dual has a lengthl(e) for each edgee∈ E, variablesz(1), . . . ,z(k) for the throughput constraints, and a
variableφ for the cost constraint. We will viewφ as thelengthof the cost constraint.

min D(l ,φ)
def
= ∑

e∈E

c(e)l(e)+B·φ (Dmcmcf)

s.t. ∑
e∈E

fe · (l(e)+b(e)φ) ≥ z( j) ∀1≤ j ≤ k,∀ f ∈ F j

k

∑
j=1

z( j) ≥ 1

l ,z≥ 0.

For a givenl : E →R
+, z( j) is the minimum cost of shippingd( j) units of flow fromsj to t j under cost function

l +bφ . Defineα(l ,φ)
def
= ∑ j min cost j(l +φb). Then (Dmcmcf) can be restated as finding a length function(l ,φ)

such thatD(l ,φ)/α(l ,φ) is minimum; letβ denote this minimum value. As in the case of maximum concurrent
flow we begin by assuming thatβ ≥ 1.

Once again the algorithm proceeds in phases each of which is composed ofk iterations. In thej th iteration of
the ith phase we begin with length functions(l i, j−1,φi, j−1) and routed( j) units of commodityj. As before, for
all edgese, definel i+1,0(e) = l i,k(e) andl1,0(e) = l0,k(e) = δ/c(e). Similarly φi+1,0 = φi,k andφ1,0 = δ/B.

The flow in each iteration is routed in a sequence of steps; in each step we only route so much flow that its cost
does not exceed the boundB. Let (ls−1

i, j ,φ s−1
i, j ) be the length functions at the start of thesth step (see Fig. 1);

the lengths at the start of the first step are given byl0
i, j = l i, j−1 andφ0

i, j = φi, j−1. Further, letds−1
i, j be the flow

of commodity j that remains to be routed in this iteration. We computef s
i, j

def
=min cost j(l

s−1
i, j +bφ s−1

i, j ) which

routesd( j) units of flow of commodityj. Since we need to route onlyds−1
i, j units of flow we multiply the flow

function f s
i, j by ds−1

i, j /d( j). If Bs
i, j is the cost of flowf s

i, j then the cost of the scaled flow isBs
i, jd

s−1
i, j /d( j). If this

quantity exceedsB then we multiply the original flow functionf s
i, j by Bs

i, j/B. We reuse notation and denote the

final scaled flow and its cost byf s
i, j ,B

s
i, j respectively. Nowf s

i, j routes at mostds−1
i, j units of flow at costBs

i, j ≤ B.
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l p
i, jlsi, j l i, j l i,kl i−1,k

ith phase

1st iter j th iter. kth iter

pth stepsth step1st step

l0i, j ls−1
i, j l i+1,0l i, j−1l i,0

Figure 1: The notation used in section 6. The length functions above the central axis are the lengthsbeforethe box on the
right and the ones below are the lengthsafter the box on the left.

The length functions are modified in a similar manner as before. Thusls
i, j = ls−1

i, j (1+ ε f s
i, j(e)/c(e)) andφ s

i, j =

φ s−1
i, j (1+ εBs

i, j/B). Further, onlyds
i, j = ds−1

i, j − f s
i, j , more units of commodityj remain to be routed in this

iteration. The iteration ends at the stepp for which dp
i, j = 0. The procedure stops at the first step at whichD()

exceeds 1; let this happen in thet th phase.

6.1 Analysis

Note that now

D(ls
i, j ,φ s

i, j)

= D(ls−1
i, j ,φ s−1

i, j )+ ε ·min cost j(l
s−1
i, j +bφ s−1

i, j ) f s
i, j/d( j)

≤ D(ls−1
i, j ,φ s−1

i, j )+ ε ·min cost j(l
p
i, j +bφ p

i, j) f s
i, j/d( j)

where the last inequality holds because the edge-lengths are monotonically increasing over steps. The total
flow routed in thep steps equals the demand of commodityj, ie., ∑p

s=1 f s
i, j = d( j). Summing over allp steps

we get
D(l p

i, j ,φ
p
i, j) ≤ D(l0

i, j ,φ0
i, j)+ ε ·min cost j(l

p
i, j +bφ p

i, j)

The length functions at the start of the( j + 1)th iteration are given byl i, j = l p
i, j andφi, j = φ p

i, j . Moving from
steps to iterations we have

D(l i, j ,φi, j)

≤ D(l i, j−1,φi, j−1)+ ε ·min cost j(l i, j +bφi, j)

≤ D(l i, j−1,φi, j−1)+ ε ·min cost j(l i,k +bφi,k)

where the last inequality uses the fact that the edge-lengths are monotonically increasing over iterations. Sum-
ming over all iterations in theith phase we have

D(l i,k,φi,k) ≤ D(l i,0,φi,0)+ ε
k

∑
j=1

min cost j(l i,k +bφi,k)

= D(l i−1,k,φi−1,k)+ εα(l i,k,φi,k)

As before we abbreviateD(l i,k,φi,k),α(l i,k,φi,k) to D(i),α(i) respectively to obtain

D(i) ≤ D(i−1)+ εα(i)
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The remainder of the analysis is exactly as in section 5.1. The only modification isin the claim about the
throughput of the flow routed. Now we need to argue that the cost of the flow after we scale it by log1+ε 1/δ
is at mostB, or equivalently, that the cost of the flow routed in the firstt −1 iterations is at mostBlog1+ε 1/δ .
This follows from the fact thatφt−1,k < 1/B (sinceD(t −1) < 1), thatφ1,0 = δ/B and that in our procedure
every time we route flow whose total cost isB we increaseφ by at least a factor 1+ ε.

6.2 Running time

Note that except for the last step in each iteration, in all other steps we increase the length functionφ by a factor
1+ ε. This implies that the total number of steps exceeds the number of iterations by at most log1+ε 1/δ .

Now definezi as the maximum possible flow of commodityi of cost no more thanB. Again z
def
= mini zi/d(i)

denotes the maximum fraction of the demands that can be routed if the capacity constraints and the bound
B on the cost of the flow applied independently to each commodity. Thusz/k ≤ β ≤ z and we multiply de-
mands suitably so that for the new instance 1≤ β ≤ k. As before we double the demands, thereby halvingβ ,
after everyT = 2⌈1

ε log1+ε
m

1−ε ⌉ phases. Thus the number of iterations iskT logk and our procedure for min-
imum cost multicommodity flow needs at most(2k logk+ 1)⌈1

ε log1+ε
m

1−ε ⌉ single-commodity min-cost flow
computations.

Theorem 6.1. There is an algorithm that computes a(1+ ω)-approximation to the maximum cost-bounded
concurrent flow in time O(ω−2k logk logm·Tmcf+kTmcbf) where Tmcf is the time required to compute a minimum
cost s-t flow in a graph with non-negative edge-costs and Tmcbf is the time required to compute the maximum
s-t flow of cost at most B in a capacitated network with non-negative edgecosts.

6.3 Avoiding min-cost flow computations

Much like in Section 5.3 we can give an alternate path-flow formulation for the minimum-cost multicommodity
flow problem. In the following we letb(p) denote the cost of pathp∈ P.

max λ (P2
mcmcf)

s.t. ∑
p∈Pe

x(p) ≤ c(e) ∀e∈ E

∑
p∈P j

x(p) ≥ λ ·d( j) ∀1≤ j ≤ k

∑
p∈P

b(p) ·x(p) ≤ B

x≥ 0,λ ≥ 0.
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Its linear-programming dual has a lengthl(e) for each edgee∈ E, a lengthφ for the cost constraint and a
variablez( j) for each commodityj.

min D(l ,φ)
def
= ∑

e∈E

c(e)l(e)+B·φ (D2
mcmcf)

s.t. ∑
e∈p

(l(e)+b(e)φ) ≥ z( j) ∀1≤ j ≤ k,∀p∈ P j

k

∑
j=1

d( j) ·z( j) ≥ 1

l ,z≥ 0.

For a givenl : E → R
+, z( j) is the shortest path betweensj andt j under length functionl +bφ . We now define

α(l ,φ)
def
= ∑ j d( j)dist j(l +bφ). The dual to the min-cost multicommodity flow problem is an assignment of

lengths to edges,l : E → R
+, and a scalarφ such thatD(l)/α(l) is minimized. Letβ be this minimum.

The algorithm differs from the one developed in section 6 in that at any stepwe route flow along only one path,
which, if this is thesth step of thej th phase of theith iteration, is the shortest path betweensj andt j under the
length functionls−1

i, j +bφ s−1
i, j . If the minimum capacity edge on this path has capacityc then the flow function

at this step,f s
i, j , corresponds to routingc units of flow along this path. Ifc≤ ds−1

i, j and the cost of this flow is
less thanB we route this flow completely. Else we scale it so that the flow routed in this step has cost no more
thanB and the total flow routed in this iteration does not exceedd( j).

The analysis of the algorithm proceeds as in section 6.1 with the only modificationthatmin cost j(.) is replaced
with d( j)dist j(.). For the running time we need only observe that in each step, except the last step in an
iteration, we increase, either the length of some edge or the value ofφ by a factor 1+ ε. The lengths of the
edges andφ can each be increased by a factor 1+ ε at most log1+ε

1+ε
δ times. Hence the number of steps

exceeds the number of iterations by at most(m+1)⌈1
ε log1+ε

m
1−ε ⌉.

Similar to Section 5.3, we now describe how an idea proposed by Grigoriadis and Khachiyan [14] can be
adapted to find a good estimate on the maximum throughputβ subject to capacity and cost-bounds. Once
again, we define the lengthle of each edgee∈ E asb(e)/B+1/c(e). For each 1≤ i ≤ k, let Pi be the shortest
si , ti-path for this length. Then definef to be the flow obtained by routingd(i) units of flow longPi for all
commoditiesi simultaneously. As before, letf ∗ be an optimum cost-bounded flow with throughputβ and
define f̄ as f ∗ · (1/β ). The flow f̄ routesd(i) units of flow between the terminals of each of thek commodities.

The total length of flowf̄ under lengthl is

∑
e∈E

(b(e)/B+1/c(e)) · f̄e ≤
m+1

β
.

The total length of flowf is at most that off̄ and hence

1
c(e)

· fe ≤
m+1

β

for all edgese∈ E and
1
B
· ∑

e∈E

b(e) fe ≤
m+1

β
.

The flow(β/(m+1)) f is therefore a feasible cost-bounded flow with throughputβ/(m+1).
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Define the congestion off as

λ = max

{
∑e∈E b(e) fe

B
,max

e∈E

fe
c(e)

}
≤

m+1
β

.

From the above we conclude that the optimal throughputβ must be in the interval[1/λ ,(m+1)/λ ]. Using this
interval forβ , the total number of phases used in the algorithm becomesT log(m+1).

Theorem 6.2. There is an algorithm that computes a(1+ω)-approximation to the maximum concurrent flow
in time O(ω−2(m+k logm) logm·Tsp) where Tsp is the time required to compute the shortest s-t path in a graph
with non-negative edge-weights.

6.4 Subsequent Improvements

Karakostas [15] showed how to remove the dependence of the running timeonk by grouping commodities with
a common source. The shortest paths are now computed with respect to the length functionl + φb and only
so much flow is routed that the cost of flow routed is no more thanB. This leads to a(1+ ω)-approximation
algorithm for computing the maximum cost-bounded concurrent flow in timeÕ(ω−2m2).

7 Integrality

A multicommodity flow has integralityq if the flow of every commodity on every edge is a non-negative integer
multiple ofq. In this section we show how small modifications to the algorithms discussed in previous sections
lead to flows that have small integrality.

Our algorithm for maximum multicommodity flow routes flow along a pathP in the ith iteration. If c is the
minimum capacity of an edge onP then we require that the flow routed in this iteration be no more thanc.
However, note that if we routeq < c units alongP and increase the length of an edgee on P by a factor
(1+ εq/c(e)) then the algorithm still delivers a(1− ε)−2-approximation to the maximum multicommodity
flow, albeit with a worse running time. To obtain a feasible flow we eventually scale the flow constructed in this
manner by log1+ε 1/δ . Thus if we were routingq units in a certain iteration then only q

log1+ε 1/δ units “appear”
in the feasible solution.

Theorem 7.1.Let e be the minimum capacity edge in G and q≤ c(e). Then one can in polynomial time compute
a flow f which is a(1− ε)−2-approximation to the maximum multicommodity flow and has integralityqε

log1+ε L .

Corollary 7.2. If all edges in G have capacity at least1
ε log1+ε L then there is an integral flow which is a

(1− ε)−2-approximation to the maximum multicommodity flow.

For maximum concurrent flow we use the algorithm from section 5.3. Recall that in thesth step of thej th

iteration in theith phase we routef s
i, j = min

{
c,ds−1

i, j

}
units of flow along pathPs

i, j wherec is the minimum

capacity of an edge on this path andds−1
i, j is the residual demand of thej th commodity. As in the case of

maximum multicommodity flow we routeq < f s
i, j units of flow in this step and increase the length of an edge

e on P by a factor(1+ εq/c(e)). To ensure that exactlyq units of flow can be routed in each step of thej th

iteration we require thatd( j) be an integral multiple ofq. To obtain a feasible flow we scale the flow constructed
by log1+ε 1/δ . Hence in the final solution the flow appears in units of qε

log1+ε m/(1−ε) .
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Theorem 7.3. Let e be the minimum capacity edge in G and q≤ c(e). If all demands are integral multiples
of q then one can, in polynomial time, compute a flow f which is a(1− ε)−3-approximation to the maximum
concurrent flow and f has integrality qε

log1+ε m/(1−ε) .

Corollary 7.4. If all edges in G have capacity at least1
ε log1+ε

m
1−ε and all demands are integral multiples of

1
ε log1+ε

m
1−ε then there is an integral flow which is a(1−ε)−3-approximation to the maximum concurrent flow.

The above theorem and its corollary also hold for the setting of min-cost multicommodity flows.

8 Improvements in Practice

In this section we propose a heuristic for our algorithms that turns out to improve running times greatly in
practice. The idea is best explained with the example of the maximum multicommodity algorithm from Section
2. To route( fi − fi−1) units of flow in iterationi, we computedk shortest paths which was later improved to
one shortest path computation by Fleischer.

The idea now is to allow flow to be routed along paths which have length more thanthe shortest path. More
precisely, letl be the vector of current edge lengths and letf be the total flow routed so far. Let̂β be an

upper-bound onβ . We allow flow to be routed along a pathP if its length is at mostLδeε f/β̂ whereL,ε andδ
are defined as in Section 2. The amount of flow routed alongP equals the minimum capacity of an edge onP.
The edge lengths are updated in the same manner as before. The procedure stops when

1≤ Lδeε f/β̂ .

We first show that in the modified algorithm we can always find a path whose length is at most the given bound.
Observe that theα( j −1) on the right side of equation 1 really denotes the length of the path along whichflow

was routed in thej th iteration. As our induction hypothesis we assume that this quantity is at mostδLeε f j−1/β̂ ,
which in turn is at mostδLeε f j−1/β ; we denote this last expression byy( j −1). This implies that the length of
the shortest path at theith iteration,α(i), is bounded as

α(i) ≤ δL+
ε
β

i

∑
j=1

( f j − f j−1)y( j −1)

Recall the solution of the recurrence for the sequencex in Section 2.1. It follows that the expression on the
right is at mostδLeε fi/β which shows that the shortest path between any pair has length less than thespecified
bound.

In the original algorithm in Section 5 we used the stopping condition in two ways.We argued that the length of
any edge is no more than 1+ ε and thatδLeε ft/β ≥ 1. The termination condition of the modified algorithm is
the same as the second property. The first property also holds since all paths along which flow was ever routed
had length at most 1.

This modification to the algorithm allows one to continue sending flow on a path till its length exceeds the
specified bound. Thus we can now route more flow for every shortest path computation performed. This same
heuristic can be adapted to the other problems considered in this paper to obtain better running times in practice.
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