Faster and Simpler Algorithms for Multicommodity Flow and@th
Fractional Packing Problems

Naveen Garg Jochen bnemann
Computer Science and Engineering Dept. of Combinatorics and Optimization
Indian Institute of Technology, New Delhi University of Waterloo, Ontario N2L 3G1

Abstract

This paper considers the problem of designing fast, appratd, combinatorial algorithms for multi-
commodity flows and other fractional packing problems. Wespnt new faster and much simpler algo-
rithms for these problems.

1 Introduction

Consider the problem of computing a maxims#flow in a graph with unit edge capacities. While there are
many different algorithms known for this problem we discuss one whichsvikw problem purely as one of
packingst paths so that constraints imposed by edge-capacities are not violatedlgdhithen associates a
length with each edge and at any step it routes a unit flow along the shsttesth. It then multiplies the
length of every edge on this path by-k for a fixede. Thus the longer an edge is the more is the flow through
it. Since we always choose the shortestpath to route flow along, we essentially try to balance the flow on
all edges in the graph. One can argue that, if, after sufficiently many, $feiggthe maximum flow through an
edge, then the flow computed is almdstimes the maximuns-t flow. Therefore scaling the flow byl gives

a feasible flow which is almost maximum.

Note that the length of an edge at any step is exponential in the total flow twough the edge. Such a length
function was first proposed by Shahrokhi and Matula [22] who usé&a dbmpute the throughput of a given
multicommodity flow instance. While this problem (and all other problems consldarthis paper) can be
formulated as a linear program and solved to optimality using fast matrix multiplicE#jnthe authors of
[22] were mainly interested in providing fast, possibly approximate, combiaagdgorithms. Their procedure,
which applied only to the case of uniform edge capacities, computéd &)-approximation to the maximum
throughput in time polynomial inv=!. The key idea of their procedure, which was adopted in numerous
subsequent papers, was to compute an initial flow by disregarding eqggeities and then to reroute this,
iteratively, along short paths so as to reduce the maximum congestion @ugey

The running time of [22] was improved significantly by Kleshal.[17]. It was then extended and refined to
the case of arbitrary edge capacities by Leighetal. [18], Goldberg [11] and Radzik [21] to obtain better
running times; see Table 1 for the current best bound.

*Supported by the EU ESPRIT LTR Project N. 20244 (ALCOM-IT). Wddne while the author was at the Max-Planck-Institut
fur Informatik, Im Stadtwald, 66123 Saaiizcken, Germany.
TWork done while the author was at the Univeisidles Saarlandes, Im Stadtwald, 66123 Séaken, Germany.

Plotkin, Shmoys and Tardos [20] observed that a similar technique coughfdeed to solve any fractional
packing problem. Their approach, for packing problems, starts with &asitfle solution. The amount by
which a packing constraint is violated is captured by a variable which isrexypi@l in the extent of this
violation. At any step the packing is modified byieed amountn a direction determined by these variables.
Hence, the running time of the procedure depends upon the maximum exvgmttoany constraint could be
violated; this is referred to as thedth of the problem [20]. The running time of their algorithm for packing
problems being only pseudo-polynomial, [20] suggest different whysdncing the width of the problem.

Grigoriadis and Khachiyan [13] consider block angular packing problehich are problems of the form
min{A|3k, fi(x)<Aex eB,1<i<k}

whereB' is a convex setf' : B' — R™ is a non-negative convex function ards the vector of all 1's. They
assume the existence of an oracle which givdn< i < k, non-negative vectoy and scalamu computes
min{y" fi(x)|f1(x) < ue,x e B‘} and show how to find 41 + €)-approximation to the block angular pack-
ing problem with onlyk?Inm(£~2 4+ Ink) calls to this oracle. In [14], Grigoriadis and Khachiyan, show that this
problem can also be solved km(¢ 2Ine~1+Inm) calls to an oracle which computes iyl f'(x)|x € B'}.
Note that both these running times are independent of the width of the problem.

All the problems that we consider in this paper can be formulated as bloakaampacking problems. This
is immediate for the maximum concurrent flow and the min-cost multicommaodity flow prsblé-or these

problems, the blocks are single commodity flows. In [13], the oracle quorets to finding a min-cost single-
commodity flow, while in [14], the oracle is a shortest path computation.

The maximum multicommodity flow problem can also be formulated as a block-amgadking problem with
one block,B, which is the set of all multicommodity flows of total value 1. For a flow B, f(X) is a vector
denoting the fraction of the capacity utilized kyn the edges. If for a flow, f(x) < Ae, then the flowx/A
satisfies all capacities and routeS\1units. Thus computing maximum flow is the same as minimiangA
similar idea can also be used to formulate fractional packing as a blochaargmvex program.

In a significant departure from this line of research and motivated by fuea randomized rounding, Young [25]
proposed amblivious roundingapproach to packing problems. Young's approach has the essentidiiegt

of previous approaches — a length function which measures, and is@xjal in, the extent to which each
constraint is violated by a given solution. However, [25] builds the soldtimm scratch and at each step adds
to the packing a variable which violates only such packing constraints teataralready too violated. In
particular, for multicommodity flow, it implies a procedure which does not invoéreuting flow (the flow is
only scaled at the end) and which for the case of maxinsurflow reduces to the algorithm discussed at the
beginning of this section.

Our Contributions. In this paper we provide a unified framework for multicommodity flow and pagkin
problems which yields significantly simpler and faster algorithms than previousiwhk. Our approach is
similar to Young’s approach for packing problems. However, we devalogw and simple combinatorial
analysis which has the added flexibility that it allows us to make the greatesibjgadvance at each step.
Thus for the setting of maximumst flows with integral edge capacities, Young’s procedure routes a uwit flo
at each step while our procedure would route enough flow so as totsetiueaninimum capacity edge on the
shortestst path. This simple modification is quite powerful and delivers a slightly betterimgntme and
much simpler proof.

Our approach yields a new, very natural, algorithm for maximum coneufi@v (section 5) which extends in
a straightforward manner to min-cost multicommaodity flows (section 6). Theseithigns use a min-cost flow
computation as a subroutine and have running times that match the best k@aaiso provide algorithms

2

for these two problems which use shortest path computations as a subrandirere faster than previous
algorithms. One idea in these algorithms which is key to the faster running timesrgaitize all computation
sequentially, and to use the length updates done at one step in the computatierat all subsequent steps.
This is, in some ways, similar to the round-robin idea employed by Radzik [21].

This paper first appeared as a technical report in [9] and then astamded abstract in [10]. Subsequently
the approach presented here has been extended and improved fetsuttiscbfor almost all the problems con-
sidered here. For the maximum multicommodity flow problem, Fleischer [7] obta@madning time that is
independent of the number of commodities. Karakostas [15], obtained-@sponding result for the maxi-
mum multicommodity flow and min-cost multicommaodity flow problems. We discuss the iddasthese
improvements in the appropriate sections.

Bienstock and lyengar [4] recently adapted a method by Nesterov [b8dlér to obtain &1+ w)-approximation
for generalized packing problems. Thedependence of the running time of their algorithmO§1/w) -
log1/w) as opposed to a dependencedsi/w?) of our algorithms. However, their algorithm needs to solve
a convex quadratic program in each iteration and this is computationally stibdyamore expensive than
the oracle calls necessary in our algorithms. As a result, our algorithms réasésn than the algorithm by
Bienstock and lyengar for a fixed or moderately small

Table 1 summarizes our results. All our algorithms are deterministic and complite @)-approximation to
the optimum solution. In giving the running times we ignore polylog factorsQtlenotes this fact.

Problem ‘ Previous Best ‘ Our running time‘ Subsequent Improveme#t
Max. multicomm. | O(cw 2kn?) [14] | O(w2kn?) O(w2mP) [7]

flow

Fractional Packing| O(c2mD) [14] | O(w 2mD) O(w 2(mL+D)) [26]
Maximum O(w2kmn) [21] | O(cw 2kmn)

concurrent flow | O(w2kn?) [14] | O(w 2(k+m)m) | O(w2mP) [15]
Max. cost-bounded O(cw2kmn) [12] | O(cw2kmn)
concurrent flow | O(w2kn?) [14] | O(w 2(k+m)m) | O(w 2mP) [15]

Table 1: A summary of our results. Her® denotes the number of non-zero entries in the given constraint
matrix andL is the maximum number of non-zero entries in a column.

The framework introduced in this paper for multicommodity flow problems wasdet by Fleischer and
Wayne [8] to generalized flow. The book by Bienstock [3] is a good eyumf the theoretical issues and
computational studies done on this topic.

2 Maximum multicommodity flow

Given a graplG = (V, E) with edge capacities: E — R andk pairs of terminalgsy, t1), ..., (S, t), with one
commodity associated with each pair, we want to find a multicommaodity flow such thauth of the flows
of all commodities is maximized. Le¥’; be the set o§j,tj-paths inG for all 1 < j <k, and define? to be
the union of#4,..., Z. Also let Z, be the set of paths i’ that use edge for all e € E. The path-flow

linear programming formulation for the maximum-multicommodity flow problem has ablandp) for the
flow sent along each patne &7:

max % X(p) (Pmme)
peP

s.t. Z X(p) <c(e) VeeE
PEPe
x> 0.

The dual to this linear program associates a leh@hwith each of the edgesc E.

min D(NE' EEc(e) 1(e) (Dmma)
Z l(e)>1 VpeZ
eep
| >0.

Observe that the above two linear programs.{c) and Ommc) have exponential size. Optimal solutions can,
however, be found in polynomial time as equivalent polynomial-size edgefirmulations exist (e.g., see

[1].

In the following letdist(l) be the length of the shortest t;-path with respect to lengthfor 1 < j <k. Also
Ieta(l)Ole min;jdist;(l) be the minimum length path between any palr of terminals. TBgm() is equivalent
to finding a length functioh: E — R* such tha% is minimized. LetB_ min D(l)/a(l).

The algorithm proceeds in iterations. llet; be the length function at the beginning of iHeiteration andf;_,
be the total flow routed in iterations 1i — 1. LetP be a path of lengtlxr (l;_1) between a pair of terminals and
let ¢ be the capacity of the minimum capacity edgeRorin theit iteration we route units of flow alongP.
Thusf; = fi_1+c¢. The function; differs froml;_; only in the lengths of the edges aloRgthese are modified
asli(e) =li_1(e)(1+ ec/c(e)), wheree is a constant to be chosen later.

Initially every edgee has lengthd, ie., Io(e) = d for some constand to be chosen later. For brevity we denote
a(li),D(liy) by a(i),D(i) respectively. The procedure stops aftgerations where is the smallest number such
thata (t) > 1.

2.1 Analysis

For every iteration > 1

D) = Yli(e)c(e)
= Slia(e)ce)+e¢ Zblifl(e)c

= D(@i—-1)+e(fi—fipna(i—1)
which implies that

z i~ fia(i—1) (1)

Consider the length functioin— . Note thatD(l; —1lg) = D(i) — D(0) anda(l; —lg) > a(i) — oL whereL is
the maximum number of edges on any simple patBG.itHence

D(li —lo) < D(i) —D(0)
a(li—lg) = a(i)—aoL

Substituting this bound oB (i) — D(0) in equation (1) we get
8 i
B Z - fj 1 J -)

To solve the above recurrence we first note that the sequédce(1),...x(i),... wherex(i) = 6L+§ z‘jzl(fj—
fi—_1)X(j — 1) dominates the sequena€0), a(1),...,a(i),... wherex(0) = a(0). Now

B< (2)

£

X(i) B

6L+BZ — fox(j = D)+ £ (f— fu)x(i—1)

= X(i—1)(1+e(fi—fi_1)/B)
< x(i— 1)e£(fi—fi—l)/B

Sincex(0) = a(0) < 6L we havex(i) < Le?fi/B and this implies

a(i) < oLefhi/P
By our stopping condition
1<a(t) <oLef/B 3)
and hence 8
€
L
fi — In(oL)~1 “)

Claim 2.1. There is a feasible flow of valqe—m
l+s

Proof. Consider an edge For everyc(e) units of flow routed througle the length ofe increases by a factor
of at least L+ €. The last time its length was increasedyas on a path of length strictly less than 1. Since
every increase in edge-length is by a factor of at mostlli(e) < 1+ €. Sincelg(e) = 9 it follows that the
total flow throughe is at mostc(e) log, ., . 1%5. Scaling the flowf;, by log, ., . 1%55 then gives a feasible flow of
claimed value. O

Thus the ratio of the values of the optimum dual and the primal solut'wris,fﬁl logy ¢ %. By substituting
the bound o3/ f; from (4) we obtain

glogy 15 £ In14£

Y=Lt T in(1+ &) in(aL)"?

The ratio (1(38 — equals(1—)"t for & = (14 ¢&)((1+&)L)~ Y. Hence with this choice o we have

&

&
A einiie A ae 2m 8"

y=<

Since this quantity should be no more than our approximation ¢atiow) we choose appropriately.

5

2.2 Running time

In thei!" iteration we increase the length of the minimum capacity edge @dmnga factor of 1+ €. Since for
any edgee, lp(e) = 0 andli(e) < 1+ € the number of iterations in whiahis the minimum capacity edge on the
path chosen in that iteration is at mc[i%tlog1+€ L]. Using the fact that there areedges we get the following
theorem.

Theorem 2.1. There is an algorithm that computeg B+ w)-approximation to the maximum multicommodity
flow in time Qw~2kmlogL - Tsp) where L is the maximum number of edges on a path between any sokce-s
pair and Tsp is the time required to compute the shortest s-t path in a graph with nortinegaige-weights.

2.3 Subsequent Improvements

Fleischer [7] made the interesting observation that it suffices to route ftowg @n approximate shortest path
and that if the path chosen at each step ia approximation to the shortest path then the approximation guar-
antee worsens only by a multiplicative factorHer algorithm proceeds in phases each of which is composed
of k iterations. If at the start of th#" phase the shortest path between each pair has length atiehsh

in the j™ iteration of this phase we route thj& commaodity along any path of length at mastl + &) and
move to the next iteration only when the shortest path betwgenis at leasta(1+ €). This ensures that at
the end of theé'™ phase everys;,t;) pair is at leastr(1+ €) apart. Hence the number of phases is at most
logy . &L. The algorithm performs one shortest path computation in each iterationosndt result in flow
being routed. Hence the total number of shortest path computatidms+ik) [%Iogl+£ L]. Sincek can be as
large as Of?), Fleischer eliminates the dependence of the running timelmnrouting all commodities with

the same source in an iteration. It is possible to do this without additionat effme Dijkstra’s algorithm for
computing shortest paths gives the shortest path to every node in the grap

3 Packing LP

A packingLP is a linear program of the kind mgx"x|Ax < b,x > 0} whereA,b andc are(mx n),(mx 1)
and (n x 1) matrices all of whose entries are positive. We also assume that fiof alhe (i, j)" entry of A,
A,]), is at mosb(i). The dual of thid P is min{b"y|ATy > c,y > 0}.

We view the rows ofA as edges and the columns as pati{s) is the capacity of edgeand every unit of flow
routed along thg™" column consume&(i, j) units of capacity of edgewnhile providing a benefit of(j) units.

The dual variable/(i) corresponds to the length of edgeDefine thelengthof a columnj with respect to

the dual variabley aslengthy(j)d:efziA(i, j)y(i)/c(j). Finding a shortest path now corresponds to finding

a column whose length is minimum; definQy)d:efminj lengthy(j). Also defineD(y)d:Ebey. Then the dual

program is equivalent to finding a variable assignmesuch thaD(y)/a(y) is minimized.

Once again our procedure will be iterative. lygt, be the dual variables anfg_; the value of the primal solu-
tion at the beginning of thi" iteration. Letq be the minimum length column &fie, a(yk_1) = lengthy, ,(q)

— this corresponds to the path along which we route flow in this iteration. The minicapacity edge is the
row for which b(i)/A(i,q) is minimum; let this be rowp. Thus in this iteration we will increase the primal
variablex(q) by an amounb(p)/A(p,q) so thatf, = f_1+c(q)b(p)/A(p,q). The dual variables are modified

as

k(i) = Yk 1()(1+8p2

wheree is a constant to be chosen later.

The initial values of the dual variables are givenygyi) = /b(i), for some constard to be chosen later. For
brevity we denotex (yk),D(yk) by a(k),D(k) respectively. Thu®(0) = md. The procedure stops at the first
iterationt such thaD(t) > 1.

3.1 Analysis

The analysis here proceeds almost exactly as in the case of maximum multicomfioediyor every iteration
k>1

DK = ¥ byl

= 3 bl e S Al ()
= D(k—1)+&(f— fir)a(k—1) (5)

which, as before, implies that

K
Zl—fll -1

Let 8% min, D(y)/a(y). Thenp < D(I —1)/a(l — 1) and so

=

D(K)<md+ =S (fi— fi_1)D(I —1).

| ™

In order to solve this recurrence, we first define

k
. €
X(@)=md+ - > (fi—fiy)x(1-1)
B&
for alli > 0. We note that the sequen€i));>o dominates the sequen@(i))i>o. Now

k1

x(k) = m5+BZi (f— fia)x(— 1) + ;(fk—fk_l)x(k—l)

<1+ 50— e 1)) x(k— 1)

< e£<fk—fk—l)/ﬁx(k_1)
< eMPx(0)=ms. WA,

UsingD(k) < x(k) we therefore obtain
D(k) < moe?f/P

and by our stopping condition
1<D(t) < moef/P (6)

7

and hence

B €

R —
ft — In(md)—1

ft
lte

1091, =5

Claim 3.1. There is a feasible solution to the packibg of value

Proof. The primal solutiorx we constructed has valde However, it may not be feasible since some packing
constraint(’y ; A(i, j)x(j))/b(i) <1 may be violated. When we pick colungrand increasg(q) by b(p)/A(p,q)

we increase the left-hand-side (LHS) of #feconstraint bx@(ﬁ'ﬂ&?ﬁﬁ% (= zsay). Simultaneously we increase
the dual variablg(i) by a multiplicative factor of z. By our definition ofp it follows thatz < 1 and hence
increasing the LHS of thid constraint by 1 causes an increasg(in by a multiplicative factor of at least{ €.
Note thaty:_1(i) < 1/b(i) and soy (i) < (14 €)/b(i). Sinceyo(i) = &/b(i) it follows that the final value of the
LHS of thei" constraint is no more than l9g, %. Since this is true for every scaling the primal solution

by log, ., . 1%5 gives a feasible solution of value as in the claim. O

The rest of the analysis is exactly the same as in section 2. hwigplacingL. Thusd = (1+¢&)((14€&)m) /e,

3.2 Running time

In thek! iteration we increase the dual variable of the “minimum capacity” row by arfaétd +). Since for
any rowi, yo(i) = &/b(i) andy: (i) < (1+¢)/b(i) and there arenrows in all, the total number of iterations is at
mostm[% log,. . m|. For explicitly given packing programs one requiredP{ime to compute the minimum
length column, wher® is the number of non-zero entries in the matix This implies a running time of
mD(% log, . m| for computing a(1— £)~?-approximation to the PackirlgP.

Theorem 3.1. There is an algorithm that computes (& + w)-approximation to the PackingP in time
O(w?mDlogm) where m is the number of rows and D is the number of non-zero entrieg igiven con-
straint matrix.

3.3 Subsequent Improvements

Young [26] observed that with Fleischer’s technique this running time inwmé(w*2(mL+ D)) whereL is
the maximum number of non-zero entries in a column Rrislthe number of non-zero entries in the constraint
matrix.

4 Spreading metrics

Given a graphG = (V,E) with edge costg : E — R, a spreading metric is an assignment of lengths to the
edges) : E — R, so as to minimiz& ¢l (e)c(e) subject to the constraint that for any €€ V and vertex
res Yyesdistry(l) > f(S) wheredist,(l) is the distance from to v under the length functiohand f () is

a function only of the size dB. For the linear arrangement probleitS) = (|S — 1)(|§ — 3) /4 [6] while for

the problem of computing a-separatdr f (S) is defined agS — p|V| [5].

1a minimum cost set of edges whose removal disconnects the graptoimieated components each of which has at nedét
vertices.

Since the length functiohis positive, the shortest paths franto the other vertices i forms a tree — the
shortest path tree rootedmtThus the above constraints can be equivalently stated as: for any,tfeeany
subsetSof vertices inT and for any vertex € S

zdistw(l,T) > (9

wheredist,y(l,T) denotes the distance fronto vin treeT under the length functioh

Letue(T,S) be the number of vertices &in the subtree below edgavhenT is rooted at. Then the above
constraint can be rewritten again to obtain L

min ZI(e)c(e)
s.t. Zl(e)ue(T,Sr)zf(S) VT,VSCT,VresS

>0

The dual of this program, which is a packibg, has a non-negative variabt€T, S r) for every tre€eT, subset
SC T and vertex € Sand is as follows

max T% X(T,Sr)f(S)

s.t. Z X(T,Sr)ue(T,Sr) <c(e) VecE
TieeT

x>0

Note that the packingP has exponentially many variables. However, the- w)-approximation to the opti-
mum fractional solution, in the previous section, only needed an oraclegtahed the “most violated con-
straint” of the duaLP. In this setting, this oracle is a subroutine, which, given a length funtfiiowls a triple
(T,Sr) for which (Sect [(€)Ue(T,S))/(S), or equivalently(Scsdistry(l,T))/f(S), is minimum.

Our subroutine will try out alh choices for vertex and for each of these it will determine the best choicé,&
For a givernr and every subses, the expressiofy .sdist,y(l,T) is minimized wher is the tree of shortest
paths fromr and under the length functidn Therefore, for a givem, our choice ofT will be the shortest
path tree rooted at Since f(S) depends only oS, given that|S = k, the ratio(3csdisty(I,T))/f(9
is minimized wherS is the set ofk nearest vertices to. Amongst then different choices fok, and hence
for S, we choose the set for which the above ratio is minimum. Having found therip@st(T, S r) we now
determine the extent to whick(T,Sr) is increased by considering all edgesTirand finding the edge for
whichc(e)/ue(T, S r) is minimum.

The subroutine thus requiressingle-source shortest path computations. The running time of the precsdu
obtained by noting that the subroutine is invoked once in each 0ﬁﬂ§daogl+s m| iterations.

Theorem 4.1. There is an algorithm that computes(&+ w)-approximation to Spreading metrics in time
O(a)*zmnlogm-Tsp) where Tp is the time required to compute single-source shortest paths in a graph with
non-negative edge-weights.

It is easy to improve the running time by a factooy using Fleischer's idea. After computing the shortest path
tree from a certain root vertex and finding the best3e&e continue with the same root vertex till the ratio is
at least(1+ ¢) times the ratio at the start of the phase. Our analysis is now almost exactly thasdon¢he
maximum multicommodity flow problem and leads to a running tim&@b—2n?).

9

5 Maximum concurrent flow

Once again we are given a graph with edge capaditi&s— R* andk commodities witts;, tj; being the source
and sink, respectively, for commodify Now each commodity has a demaah@) associated with it and we
want to find the largest such that there is a multicommaodity flow which roufed(j) units of commodityj.

In the following, let.#; be the set of flows that transpaitj) units of flow froms; to t; for all 1 < j <k.
Similar to Section 2 we usé& to denote the union of#;, ..., %. For aflowf € . and an edge € E, we let

fe be the amount of flow sent acroesWe can then formulate the maximum concurrent flow problem as the
following LP:

max A (Prcr)
s.t. Z fe-X(f) <c(e) VecE

fesz

Zx(f)>)\ Vi<j<k

fe.7;

x>0,A>0.

Its dual has a length(e) for each edge € E, and a variable(j) for each commodity ¥ j <k.
min D(HE' EEc(e)I (e) (Dmei)

ec
st EEfe-I(e) >7(j) Vi<j<kVfe.Z
ec
k

> ai)=1
=1

l,z>0.
For agiverl : E — R™, z(j) is the minimum cost of shipping(j) units of flow froms; tot; under cost function
I; henceforth denoted byin_costj(l). Let

a(l)dgfi min_costj(l).

=1

LP (Dmcf) can now be recast as finding an assignment of lengths to the éd@es; R*, such thaD(l)/a(l)
is minimized. LetB be this minimum. For now we assume tiffat- 1 and shall remove this assumption later.

The algorithm now proceeds in phases; each phase is compogdteaitions. Consider th@" iteration of
thei" phase and Ieff ;1 be the length function before this iteration. In this iteration we ral{e units of
commodity j along the paths given hyin_costj(lij—1). Let fi j(e) be the flow through edge The length
function is modified a§ j(e) =i j—1(e)(1+£f; j(e)/c(e)). Then

D(lij) = > lij(e)c(e)
= D(|i7j_1)+£Z|i_’j_1(e)fi_’j(e)
= D(Ii‘j,l)+E-min,costj(|i7j,1)

The lengths at the start of t{e+ 1) phase are the same as that at the end of'ttghaseje., livi0=lik
Initially, for any edgee, 110(e) = &/c(e) = lox(e).

10

5.1 The Analysis

We shall be interested in the values of the functibiig o () only for the length functionk x,i > 0. For brevity
we denoteD(l; k), a(li k) by D(i), a(i) respectively. With these new notations we havei forl

k
D(i) = D(Ii,k) = D('i,O) +£ Z min,costj(li,j,l)
=1
Since the edge-lengths are monotonically increasiitgcostj(lj j—1) <min_costj(ljk) and hence

D(i) <D(lio)+¢€ i min_cost(lix) =D(i—1)+€a(i) @)

Smce > B we have

SinceD(0) = md we have fori > 1

mo

(1-¢/B)
mo N
~ Tepttpe
mo 22:1)
1-¢/B°

mo -1
e

<

<

where the last inequality uses our assumption fhat1.
The procedure stops at the first phager whichD(t) > 1. Therefore,

g(t-1)
1<D(t) < 71m5 ehir e

which implies

B £
t—lg(l—e)lnﬂ)

In the firstt — 1 phases, for every commodify we have routedt — 1)d(j) units. However, this flow may
violate capacity constraints.

Claim5.1. A > Iog+ 1/5

Proof. Consider an edge. For everyc(e) units of flow routed througle, we increase its length by at least a
factor 14 €. Initially, its length isd/c(e) and aftert — 1 phases, sincB(t — 1) < 1, the length ok satisfies
li—1k(e) < 1/c(e). Therefore the total amount of flow througtin the firstt — 1 phases is strictly less than

logy, ¢ % =log,, . 1/4 times its capacity. Scaling the flow by Ipg 1/ implies the claim. O

11

Thus the ratio of the values of the dual and primal solutignis strictly less thaqf#1 log,, . 1/&. Substituting
the bound or3/(t — 1) from (8) we get

glog;,.1/6 € In1/o

(1-g)inle (1-g)in(l+e)inle

Ford = (m/(1—¢)) V¢ the ratiol'zi/;iS equals(1— &)t and hence
mo

&

& _
T e e < 1 e ez =79

VS(

Now it remains to choose suitably so thaf1 — £)~3 is at most our desired approximation ratig- .

5.2 Running time

By weak-duality we have

B 1
1<y< ,[_71|091+sg

and hence the number of phases in the above proceisestrictly less than ¥ log, . 1/ which implies
thatt = [g l0g;, ¢ 1% |
The running time of our computation depends [®nvhich can be reduced/increased by multiplying the de-

mands/capacities appropriately. lzzbe the maximum possible flow of commoditand Ietzd:e'cmini z/d(i).
Thenz denotes the maximum fraction of the demands that can be routed indeperasehiignce/k < g < z.
We scale the capacities/demands so #ilat= 1 thus satisfying our assumption that> 1. Note however that
B could now be as large &s

If our procedure does not stop Withilﬁ?logHg | (=T, say) phases then we know thfat> 2. We double
the demands of all commodities and continue the procedure. Notg tlkatow half its value in the previous
phase and is at least 1. We run the procedure for an addiflopabses and if it does not halt we again double
demands. Since we halve the valugBadfter everyT phases, the total number of phases is at mdsgk.

Theorem 5.1. There is an algorithm that computeg A+ w)-approximation to the maximum concurrent flow
in time Q(w?klogklogm- Tcf) Where Tnet is the time required to compute a minimum cost s-t flow in a graph
with non-negative edge-costs.

The number of phases can be reduced further using an idea from/J2d]rst compute a 2-approximation o
using the procedure outlined above. This requd@sgklogm) phases and returifs 8 < 3 < 23. Now create

a new instance by multiplying demands By2; this instance has & 3 < 2. Therefore we need at most an
additionalT phases to obtain @ + w)-approximation. Thus the number of phase®{®gm(logk+ (eIn1+
£)~1)) which multiplied byk gives the number of single commodity min-cost flow computations required.

5.3 Avoiding min-cost flow computations

We now show how min-cost flow computations can be avoided in the abovéathigdor the maximum-
concurrent flow problem. Using the notation introduced in Section 2, amatepath-flow LP formulation of

12

the maximum concurrent flow problem is as follows:

max A (G2
s.t. Z x(p) <c(e) VecE
pE Pe

;X(p)zx\'d(J) Vi<j<k
pe

x>0,A>0.

Its linear-programming dual has a lengtle) for each edge € E and a variable(j) for each commodity;.

min D(HE' > clel@ (D2
s.t. l(e) >2z(j) V1<]j<kVpeZ

For a givenl : E — R™, z(j) is the shortest path betwespandt; under length functioh. Define
a(hE'S d(j)aist;(l)
]

wheredistj(l) denotes the shortest path distance betvegandt; under the length function The dual P?,,)
can then be viewed as an assignment of lengths to egEs» R™, such thaD(l)/a(l) is minimized. Let3
be this minimum.

The structure of this new algorithm is similar to that in the previous section. fieusigorithm runs in phases
each of which is composed kifiterations. In the™ iteration of the™ phase we routd(j) units of commodity
j in a sequence of steps. ngaf'ql be the length function before ti# step and IePfj be the shortest path
betweers; andt;, ie., P%, has lengthiist;(I%;%). In this step we routds, = min{c, dﬁjfl} units of flow along
Pifj wherec is the capacity of the minimum capacity edge on this path. We nowiﬁerb dﬁjfl — fifj; the
iteration ends aftep steps Whertlali'f’j =0.

Thus at each step we perform a shortest path computation instead of ashfloew computation as in section 6.
The length functions are modified in exactly the same manner as before aaltlgsis is almost exactly the
same. Thus after routing all flow of commodityve have

D(If}) < D(I?) +e-d(j)aist(1?)

and after routing all commodities in th#8 phase we have

k
D(lix) <D(lig)+¢€ Y d(j)distj(l;.
(lix) <D(lip) J; (j)distj(li)

Using the same abbreviations as before we again obtain

D(i) < D(i — 1) +£a(i)

13

Beyond this point we follow the analysis of section 5.1 to argue that we hale-a)-approximation for the
same choice of andd.

For the running time we again note that in each step, except the last one inadioitewe increase the length
of at least one edge by a factor-le. Since each edge has an initial lengthdo&nd a final length less than
1+ ¢, the number of steps exceeds the number of iterations by atmiogt , . %. Thus the total number of

steps is at mogklogk + m) (% log, , . 1= | and each of these involves one shortest path computation.

Recall from the previous section that we neell@dtial max-flow computations to compute an approximate in-
terval for the optimum throughput. We now describe a technique introduc€digoriadis and Khachiyan [14]
to compute a slightly larger interval usikgshortest path computations.

Define a lengtH (e) = 1/c(e) for each edgee € E. For 1<i <Kk, let R be a shortes$, t;-path with respect
to this length. Then lef be the flow obtained by sendirdfi) units of flow along patiR for all 1 <i <k
concurrently. Letf* be an optimum concurrent flow that feasibly rougesd(i) units of flow froms tot; for
each commodity and definef as(1/8)f*. Flow f routes the full demand af(i) units of flow betweers and
t; for each 1<i < k while sending at mostl/f3) - c(e) of flow on each edge € E. The total length of flowf

underl is
1

— m
2.9 *<p

It is not hard to see that the total length of fldws at most that of and hence

1 fe m

T e § 8 <«
o§ = Zcle < B
for all edges € E. Equivalently, the flowf - (8/m) is feasible. The maximum congestion fofs given by

fe m

A= Tealéxc(e) - B

Thus, the flowf /A is feasible and has a throughput of at Ig8g, i.e., B € [1/A,m/A]. Using this interval
for 3, the total number of phases used in our algorithm becomegm.

Theorem 5.2. There is an algorithm that computeg &+ w)-approximation to the maximum concurrent flow
in time Qw~?(klogm+m)logm- Tsp) Where T, is the time required to compute the shortest s-t path in a graph
with non-negative edge-weights.

5.4 Subsequent improvements

Karakostas [15] improved the running time of the above algorithm by remakiandependence da This was
done in a manner similar to the approach followed for maximum multicommaodity flow. iFhas iteration
all commodities with the same source are considered together. The shaitteso @ll sinks are computed
with one call to Dijkstra’s algorithm and flow is routed along these paths in ratitecdemands of the various
commodities. As before, in each step of the iteration, except the last, the Hraftteast one edge increases
by a factor 14- €. However, the number of iterations in a phase is now at mostkyminand hence the overall
running time isO(w—2mA).

14

6 Minimum cost multicommodity flow

Given an instance of the multicommodity flow problem, as in the previous sectige, @std : E — R,
whereb(e) represents the cost incurred in shipping 1 unit of flow along edgad a bounds, we consider the
problem of maximizing\ subject to the additional constraint that the cost of the flow is no moreBhamthe
foIIowing LP formulation we use the notation introduced in Section 5 and wg fetdenote the cost of a flow
f € .# under cost-functiofy.

max A (Pmeme)
s.t fe-x(f) <c(e) VecE

feZz

X(f)>A VvVi<j<k

fe.7;

Y b(f)-x(f)<B

feF

Xx>0,A>0

Its dual has a length(e) for each edges € E, variablesz(1),...,z(k) for the throughput constraints, and a
variableg for the cost constraint. We will view as thelengthof the cost constraint.

min D(l, qv)defzz (e)l(e)+B- ¢ (Dmemc)
s.t. Z;fe (&) >z(j) VI<j<kVfe.Z

5 a(i)> 1

=1

1, z>0.

Foragiverl : E — R™, z(j) is the minimum cost of shipping(j) units of flow froms; tot; under cost function

| +be. Definea(l,)dEfzj min_costj(l + ¢@b). Then Dmcmc) can be restated as finding a length funciiom)
such thaD(l, @)/a(l, @) is minimum; letB denote this minimum value. As in the case of maximum concurrent
flow we begin by assuming thgt> 1.

Once again the algorithm proceeds in phases each of which is compdséerations. In thej™ iteration of
thei™ phase we begin with length functiofisj_1, @ ;1) and routed(j) units of commodityj. As before, for

all edgese, defineli;10(e) =i x(e) andlig(e) = lok(e) = d/c(e). Similarly @110= @k and@ o= 6/B.

The flow in each iteration is routed in a sequence of steps; in each stegyvewote so much flow that its cost
does not exceed the bould Let (I¥;*,@* *) be the length functions at the start of t step (see Fig. 1);
the lengths at the start of the first step are giveriorj)y: lij—1 and(qoJ = @ j-1. Further, Ietd-s-‘1 be the flow

of commaodity j that remains to be routed in this iteration. We compi,fge:mln cost IS 1+bqqu) which
routesd(j) units of flow of commodityj. Since we need to route ontljfJ units of row we multiply the flow
function £$; by d¥;*/d(j). If Bf; is the cost of flowfS; then the cost of the scaled rowﬁjdfj‘l/d(). If this
guantity exceedB then we multlply the original flow functior®; ; by B7 /B. We reuse notation and denote the

final scaled flow and its cost bi;, B} ; respectively. Nowf?; routes at mosﬂfj‘l units of flow at cosB}; < B.

15

it phase

18titer jMiter. KM iter
1Ststep shstep phstep

i1,
P
ii Ih li k

Figure 1: The notation used in section 6. The length functions abegeéntral axis are the lengthsforethe box on the
right and the ones below are the lengdfiter the box on the left.

Ii,O lij-1 i ij

Jlil,k L L9

]

The length functions are modified in a similar manner as before. Tﬁrpusls‘ (1+efS(e)/c(e) and g’ =

@ a4+ €B};/B). Further, onlyd®; = d7} 1o fi$;, more units of commodityj remain to be routed in this
iteration. The iteration ends at the slp[ﬁor which di'?j = 0. The procedure stops at the first step at whd¢h
exceeds 1; let this happen in ttféphase.

6.1 Analysis

Note that now
D(I%j, @)
= (i,j 7(2‘1)+€-min cost-(l.sf1_|_b S— 1)fsj/d()
D(Iis:j_l,(ﬂj)+ €-min_cost; (+b(R)flsj/d()

IN

where the last inequality holds because the edge-lengths are monotonicedigsimg over steps. The total
flow routed in thep steps equals the demand of commoditye., z_f;l fifj =d(]). Summing over alp steps
we get

D(IP;, @) < D(?},¢%) + & min_cost;(If; +bg”)

The length functions at the start of thg+ 1)™ iteration are given by = I and(n = c,q it Moving from
steps to iterations we have

D(lij, @)
< D(li,j—1,,j-1) + € -min_cost(l; ; + b@ j)
< D(lij-1,,j-1) +&-min_costj(li x+b@)

where the last inequality uses the fact that the edge-lengths are montiyanizizasing over iterations. Sum-
ming over all iterations in thé" phase we have

k
D(lik.@x) < D(lio,@0)+€) mincostj(lix+bak)
=

= D(li—1k,@-1k) +€a(lix, @k)
As before we abbreviat@(li k, @ x),a (li x, @) to D(i), a (i) respectively to obtain
D(i) <D(i—1)+e€a(i)

16

The remainder of the analysis is exactly as in section 5.1. The only modificatiarthe claim about the
throughput of the flow routed. Now we need to argue that the cost ofdhediter we scale it by log . 1/0
is at mostB, or equivalently, that the cost of the flow routed in the firstl iterations is at mos8log, . 1/0.
This follows from the fact thatz 1 < 1/B (sinceD(t — 1) < 1), thatg, o = 6/B and that in our procedure
every time we route flow whose total cosHsave increasep by at least a factor 4 €.

6.2 Runningtime

Note that except for the last step in each iteration, in all other steps wagectiee length functiog by a factor
1+ ¢. This implies that the total number of steps exceeds the number of iterationsnmgtlog . 1/9.

Now definez as the maximum possible flow of commoditgf cost no more thaB. Again 2 min, z/d(i)
denotes the maximum fraction of the demands that can be routed if the capatityaints and the bound
B on the cost of the flow applied independently to each commodity. THus. 8 < z and we multiply de-
mands suitably so that for the new instance B < k. As before we double the demands, thereby halyng
after everyT = 2[% log, , ¢ 72 | phases. Thus the number of iteration&Tdogk and our procedure for min-
imum cost multicommodity flow needs at mdgklogk + 1) [% log, , ¢ 7= | single-commodity min-cost flow
computations.

Theorem 6.1. There is an algorithm that computes(a+ w)-approximation to the maximum cost-bounded
concurrent flow in time @rzklogklog M- Tmet+ KTmebf) Where Ter is the time required to compute a minimum
cost s-t flow in a graph with non-negative edge-costs apgds Is the time required to compute the maximum
s-t flow of cost at most B in a capacitated network with non-negative ukje.

6.3 Avoiding min-cost flow computations

Much like in Section 5.3 we can give an alternate path-flow formulation for themim-cost multicommodity
flow problem. In the following we leb(p) denote the cost of pathe &,

max A (P2
s.t. X(p) <c(e) VeecE
pe;e

X(p) >A-d(j) ViI<j<Kk
peZj

cmcf)

17

Its linear-programming dual has a lend{te) for each edge € E, a lengthg for the cost constraint and a
variablez(j) for each commodity.

min D(,)% EEc(e)l(e) +B-¢ (Dfcme?

ec

s.t. (I(e)+b(e)p) > z(j) V1< j<kVpe P

Foragiven : E — R™, z(j) is the shortest path betwespandt; under length functioh+ bg. We now define

a(l,)defzj (j)distj(l +bg). The dual to the min-cost multicommodity flow problem is an assignment of
lengths to edges,: E — R ™, and a scalap such thaD(l)/a(l) is minimized. LetB be this minimum.

The algorithm differs from the one developed in section 6 in that at anysapute flow along only one path,
which, if this is thes™ step of thej" phase of thé™" iteration, is the shortest path betwegrandt; under the
length functionl; ‘l+ bqqu‘l If the minimum capacity edge on this path has capacityen the flow function
at this step f,sj, corresponds to routingunits of flow along this path. It < dsl‘ and the cost of this flow is
less tharB we route this flow completely. Else we scale it so that the flow routed in this seepdsano more
thanB and the total flow routed in this iteration does not excegd.

The analysis of the algorithm proceeds as in section 6.1 with the only modifithtibrin_cost(.) is replaced
with d(j)distj(.). For the running time we need only observe that in each step, except ttstejpsn an
iteration, we increase, either the length of some edge or the valgebgfa factor 1+ €. The lengths of the
edges andp can each be increased by a factor & at most log, . 1%5 times. Hence the number of steps

exceeds the number of iterations by at m@st- 1) [% l0gy ¢ 725 |

Similar to Section 5.3, we now describe how an idea proposed by Grigoriadi&laachiyan [14] can be
adapted to find a good estimate on the maximum througBpsiibject to capacity and cost-bounds. Once
again, we define the lengthof each edge € E asb(e)/B+ 1/c(e). For each K i <Kk, let R be the shortest
s, ti-path for this length. Then defineto be the flow obtained by routind(i) units of flow longR for all
commoditiesi simultaneously. As before, ldt" be an optimum cost-bounded flow with throughguand
definef asf*-(1/B). The flowf routesd(i) units of flow between the terminals of each of theommaodities.

The total length of flowf under lengtH is

+1

egE((€)/B+1/c(e))- f ST-

The total length of flowf is at most that of and hence

1 om+l
c(e)

- B

for all edges € E and
1 m+1

=Y ble)fe< ——.
B egE = B
The flow(B/(m+ 1)) f is therefore a feasible cost-bounded flow with throughpiim+ 1).

18

Define the congestion df as

A= max{ 5 ’Te?zxc(e) S

From the above we conclude that the optimal througlfjomust be in the intervgll/A, (m+ 1) /A]. Using this
interval for 3, the total number of phases used in the algorithm becdnteg(m-+ 1).

Theorem 6.2. There is an algorithm that computeg A+ w)-approximation to the maximum concurrent flow
in time Q(w~?(m+-klogm) logm- Tsp) Where T, is the time required to compute the shortest s-t path in a graph
with non-negative edge-weights.

6.4 Subsequent Improvements

Karakostas [15] showed how to remove the dependence of the runningriki®y grouping commaodities with
a common source. The shortest paths are now computed with respect tagtteflenctionl 4 @b and only

so much flow is routed that the cost of flow routed is no more ®aifihis leads to 41+ w)-approximation

algorithm for computing the maximum cost-bounded concurrent flow in @e2n?).

7 Integrality

A multicommodity flow has integrality if the flow of every commodity on every edge is a non-negative integer
multiple ofg. In this section we show how small modifications to the algorithms discussedviopsesections
lead to flows that have small integrality.

Our algorithm for maximum multicommodity flow routes flow along a pBtm the it iteration. Ifc is the
minimum capacity of an edge dathen we require that the flow routed in this iteration be no more than
However, note that if we routg < c units alongP and increase the length of an edgen P by a factor
(1+ £g/c(e)) then the algorithm still delivers &L — €)~2-approximation to the maximum multicommodity
flow, albeit with a worse running time. To obtain a feasible flow we eventuatiiesbe flow constructed in this
manner by log, . 1/5. Thus if we were routingj units in a certain iteration then on%ﬂ“g—m units “appear”
in the feasible solution.

Theorem 7.1.Let e be the minimum capacity edge in G and ¢(e). Then one can in polynomial time compute
a flow f which is a1 — £) ~?-approximation to the maximum multicommodity flow and has integr@b%.
Te

Corollary 7.2. If all edges in G have capacity at Iea%iogHgL then there is an integral flow which is a
(1— &)~2-approximation to the maximum multicommodity flow.

For maximum concurrent flow we use the algorithm from section 5.3. Recalliththes™ step of thej™

iteration in thei® phase we routéfj = min{c, dfj‘l} units of flow along patfPfjj wherec is the minimum

capacity of an edge on this path adi?j1 is the residual demand of th& commodity. As in the case of
maximum multicommaodity flow we routg < ffj units of flow in this step and increase the length of an edge
e on P by a factor(1+ £g/c(e)). To ensure that exactly units of flow can be routed in each step of &
iteration we require that(j) be an integral multiple af. To obtain a feasible flow we scale the flow constructed
by log,, . 1/5. Hence in the final solution the flow appears in un't%ﬁ%-

19

Theorem 7.3. Let e be the minimum capacity edge in G and q(e). If all demands are integral multiples

of g then one can, in polynomial time, compute a flow f which(is-a&)~3-approximation to the maximum
: . qe

concurrent flow and f has integrali G m/e)"

Corollary 7.4. If all edges in G have capacity at Iea%tog1+£ 1= and all demands are integral multiples of
% log, , . 72 then there is an integral flow which is(a — £)~3-approximation to the maximum concurrent flow.

The above theorem and its corollary also hold for the setting of min-cost muitnamity flows.

8 Improvements in Practice

In this section we propose a heuristic for our algorithms that turns out to irpronning times greatly in
practice. The idea is best explained with the example of the maximum multicommoditittatgérom Section

2. To route(fi — fi_1) units of flow in iterationi, we computedc shortest paths which was later improved to
one shortest path computation by Fleischer.

The idea now is to allow flow to be routed along paths which have length moretibahortest path. More
precisely, letl be the vector of current edge lengths andflete the total flow routed so far. Lé be an
upper-bound oiB. We allow flow to be routed along a pafhif its length is at most.5eff/B whereL, e andd
are defined as in Section 2. The amount of flow routed af®aguals the minimum capacity of an edgeRn
The edge lengths are updated in the same manner as before. The peatega when

1< L€ f/ﬁ

We first show that in the modified algorithm we can always find a path whag#hés at most the given bound.
Observe that the(j — 1) on the right side of equation 1 really denotes the length of the path along fdich
was routed in thg!" iteration. As our induction hypothesis we assume that this quantity is atdhest-1/7,
which in turn is at mosbLe?fi-1/B; we denote this last expression ffj — 1). This implies that the length of
the shortest path at th#® iteration,a (i), is bounded as

;i i—fi—)y(i—1)

Recall the solution of the recurrence for the sequeniteSection 2.1. It follows that the expression on the
right is at mos©Le#fi/B which shows that the shortest path between any pair has length less tispedifeed
bound.

In the original algorithm in Section 5 we used the stopping condition in two Wafsargued that the length of

any edge is no more thantle and thatdLef /B > 1. The termination condition of the modified algorithm is
the same as the second property. The first property also holds sineghallgtlong which flow was ever routed
had length at most 1.

This modification to the algorithm allows one to continue sending flow on a path tillntgtheexceeds the
specified bound. Thus we can now route more flow for every shoréistqgpmputation performed. This same
heuristic can be adapted to the other problems considered in this paperitdo@iter running times in practice.

Acknowledgments.The authors thank Philip Klein, Cliff Stein and Neal Young for useful dsstons.

20

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. OrlifMNetwork Flows Prentice Hall, 1993.

[2] B. Awerbuch and F. T. Leighton. Improved approximation algorithmigtie multicommodity flow prob-
lem and local competitive routing in dynamic networks.Pimceedings, ACM Symposium on Theory of
Computing pages 487—-496, 1994.

[3] D. Bienstock. Potential Function Methods for Approximately Solving Linear Programmirabems:
Theory and PracticeKluwer Academic Publishers, 2002.

[4] D. Bienstock and G. lyengar. Approximating fractional packings emverings in O(1/epsilon) iterations.
SIAM Journal on Computing5(4):825-854, 2006.

[5] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximgbé geartitioning algorithmsSIAM Journal
on Computing28, 1999.

[6] G. Even, S. Naor, S. Rao, and B. Schieber. Divide-and-cengpproximation algorithms via spreading
metrics.J. ACM 47, 2000.

[7] L. K. Fleischer. Approximating fractional multicommodity flow independehthe number of commodi-
ties. SIAM J. Discrete Math.13(4):505-520, 2000.

[8] L.K. Fleischer and K.D. Wayne. Fast and simple approximation scheanegeheralized flow.Mathe-
matical Programming91(2):215-238, 2002.

[9] N. Garg and J. Kknemann. Faster and simpler algorithms for multicommodity flow and other fraktiona

packing problems. Technical Report 97-1-025, Max-Planck Institulrfformatik, 1997.

[10] N. Garg and J. Knemann. Faster and simpler algorithms for multicommodity flow and other fraktiona

packing problems. IfProceedings, IEEE Symposium on Foundations of Computer Scieages 300—
309, 1998.

[11] A. V. Goldberg. A natural randomization strategy for multicommodity flowd aelated algorithmsin-
form. Process. Lett42:249-256, 1992.

[12] M. Grigoriadis and L. G. Khachiyan. Approximate minimum-cost multicommofiiys in G(S—anm)
time. Math. Programming75:477-482, 1996.

[13] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schefoesonvex programs with many
blocks and coupling constraintSIAM J. Optimization4(1):86-107, 1994.

[14] M. D. Grigoriadis and L. G. Khachiyan. Coordination complexity ofglel price-directive decomposi-
tion. Math. Oper. Res21(2):321-340, 1996.

[15] G. Karakostas. Faster approximation schemes for fractional multicaityrftow problems. InProceed-
ings, ACM-SIAM Symposium on Discrete Algorithpeges 166-173, 2002.

[16] D. Karger and S. Plotkin. Adding multiple cost constraints to combindtopimization problems, with
applications to multicommodity flows. IRroceedings, ACM Symposium on Theory of Compugages
18-25, 1995.

21

[17] P.Klein, S. Plotkin, C. Stein, and E. Tardos. Faster approximatiaritigns for the unit capacity concur-
rent flow problem with applications to routing and finding sparse &it8M J. Comput.23(3):466—487,
1994.

[18] T.Leighton, F. Makedon, S. Plotkin, C. Stein, S. TragoudasEafi@rdos. Fast approximation algorithms
for multicommaodity flow problemsJ. Comput. System Scb0:228—-243, 1995.

[19] Yu. Nesterov. Smooth minimization of non-smooth functioMath. Programming 103(1):127-152,
2005.

[20] S. Plotkin, D. Shmoys, anfl. Tardos. Fast approximation algorithms for fractional packing andromy
problems.Math. Oper. Res20:257-301, 1995.

[21] T. Radzik. Fast deterministic approximation for the multicommodity flow probldn Proceedings,
ACM-SIAM Symposium on Discrete Algorithrmpages 486—492, 1995.

[22] F. Shahrokhi and D. Matula. The maximum concurrent flow problémCM 37(2):318-334, 1990.

[23] C. Stein.Approximation algorithms for multicommodity flow and scheduling probld?h® thesis, MIT,
1992.

[24] P. M. Vaidya. Speeding up linear programming using fast matrix multiplinatla Proceedings, IEEE
Symposium on Foundations of Computer Sciepages 332—-337, 1989.

[25] N. Young. Randomized rounding without solving the linear programPrbceedings, ACM-SIAM Sym-
posium on Discrete Algorithm470-178, 1995.

[26] N. E. Young. Sequential and parallel algorithms for mixed packirdyavering. InProceedings, IEEE
Symposium on Foundations of Computer Sciepages 538-546, 2001.

22

