Assignment 6

[1pt] 1. Find a basis for the orthogonal complement of Span $\left\{ \begin{bmatrix} 1\\2\\5 \end{bmatrix} \right\}$.

[3pt] 2. Use the Gram-Schmidt Procedure to produce an orthogonal basis for the subspace spanned by

$$\left\{ \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\5\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\3\\-1\\2 \end{bmatrix} \right\}$$

[3pt] 3. Find a and b to obtain the best-fitting equation of the form y = a + btfor the data $\{(0,-5),(2,-1),(4,2)\}.$

[3pt] 4. Determine the vector \vec{x} that minimizes $||\vec{b} - A\vec{x}||$ for the system

$$3x_1 - x_2 = 3$$

$$x_1 + x_2 = 2$$

$$3x_1 - x_2 = 3$$

$$x_1 + x_2 = 2$$

$$2x_1 - 2x_2 = 4$$