Solution to Practice 1s

B1(a) We define
$$L: P_4 \to \mathbb{R}^5$$
 by $L(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4) = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$.

To prove that it is an isomorphism, we must prove that it is linear, one-to-one, and onto.

Linear: Let $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4$ and $q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3 + q_4 x^4$ $q_3x^3 + q_4x^4$ be elements of P_4 , and let $t \in \mathbb{R}$. Then we have

$$L(tp(x) + q(x)) = L(t(p_0 + p_1x + p_2x^2 + p_3x^3 + p_4x^4) + (q_0 + q_1x + q_2x^2 + q_3x^3 + q_4x^4))$$

$$= L(t(p_0 + q_0) + (tp_1 + q_1)x + (tp_2 + q_2)x^2 + (tp_3 + q_3)x^3 + (tp_4 + q_4)x^4)$$

$$= \begin{bmatrix} tp_0 + q_0 \\ tp_1 + q_1 \\ tp_2 + q_2 \\ tp_3 + q_3 \\ tp_4 + q_4 \end{bmatrix}$$

$$= t \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} + \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix}$$

$$= tL(p(x)) + L(q(x))$$

Therefore, L is linear.

One-to-one: Let
$$p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 \in \text{Null}(L)$$
. Then $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} =$

One-to-one: Let
$$p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 \in \text{Null}(L)$$
. Then $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = L(p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4) = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$. Hence $p_0 = 0$, $p_1 = 0$, $p_2 = 0$,

 $p_3 = 0$, and $p_4 = 0$, which means that $p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4$ is the zero polynomial. Since the only vector in the nullspace is the zero vector, by Lemma 4.7.1 we have that L is one-to-one.

Onto: For any
$$\begin{bmatrix} a_0\\a_1\\a_2\\a_3\\a_4 \end{bmatrix} \in \mathbb{R}^5$$
, we have $a_0+a_1x+a_2x^2+a_3x^3+a_4x^4 \in P_4$ such

that
$$L(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4) = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
. Hence, L is onto.

B1(b) We define
$$L: M(2,3) \to \mathbb{R}^6$$
 by $L\left(\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}\right) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix}$. To

prove that it is an isomorphism, we must prove that it is linear, one-to-one, and onto.

Linear: Let $A=\begin{bmatrix}a_1&a_2&a_3\\a_4&a_5&a_6\end{bmatrix}$ and $B=\begin{bmatrix}b_1&b_2&b_3\\b_4&b_5&b_6\end{bmatrix}$ be elements of M(2,3), and let $t\in\mathbb{R}$. Then we have

$$L(tA+B) = L\left(t\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{bmatrix}\right)$$

$$= L\left(\begin{bmatrix} ta_1 + b_1 & ta_2 + b_2 & ta_3 + b_3 \\ ta_4 + b_4 & ta_5 + b_5 & ta_6 + b_6 \end{bmatrix}\right)$$

$$= \begin{bmatrix} ta_1 + b_1 \\ ta_2 + b_2 \\ ta_3 + b_3 \\ ta_4 + b_4 \\ ta_5 + b_5 \\ ta_6 + b_6 \end{bmatrix}$$

$$= t\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}$$

$$= tL(A) + L(B)$$

Therefore, L is linear.

$$One\text{-}to\text{-}one\text{: Let} \left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{array} \right] \in \text{Null}(L). \text{ Then} \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] = L \left(\left[\begin{array}{cccc} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{array} \right] \right) =$$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix}$$
. Hence $a_1 = 0$, $a_2 = 0$, $a_3 = 0$, $a_4 = 0$, $a_5 =$, and $a_6 = 0$, which means

that $\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}$ is the zero matrix. Since the only vector in the nullspace is the zero vector, by Lemma 4.7.1 we have that L is one-to-one.

Onto: For any
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} \in \mathbb{R}^6$$
, we have
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix} \in M(2,3)$$
 such that

$$L\left(\left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{array}\right]\right) = \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{array}\right]. \text{ Hence, } L \text{ is onto.}$$

B1(c) We define
$$L: \mathbb{R}^2 \to \mathcal{S}$$
 by $L\left(\left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]\right) = a_1 \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right] + a_2 \left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right]$. To prove that it is an isomorphism, we must prove that it is linear, one-to-one, and onto.
Linear: Let $\vec{a} = \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]$ and $\vec{b} = \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$ be elements of \mathbb{R}^2 , and let $t \in \mathbb{R}$. Then we have

$$\begin{split} L(t\vec{a}+\vec{b}) &= L\left(t\begin{bmatrix}a_1\\a_2\end{bmatrix} + \begin{bmatrix}b_1\\b_2\end{bmatrix}\right) \\ &= L\left(\begin{bmatrix}ta_1+b_1\\ta_2+b_2\end{bmatrix}\right) \\ &= (ta_1+b_1)\begin{bmatrix}1\\0\\1\end{bmatrix} + (ta_2+b_2)\begin{bmatrix}1\\2\\1\end{bmatrix} \\ &= ta_1\begin{bmatrix}1\\0\\1\end{bmatrix} + ta_2\begin{bmatrix}1\\2\\1\end{bmatrix} + b_1\begin{bmatrix}1\\0\\1\end{bmatrix} + b_2\begin{bmatrix}1\\2\\1\end{bmatrix} \\ &= tL(\vec{a}) + L(\vec{b}) \end{split}$$

Therefore, L is linear.

$$\begin{aligned} &One\text{-}to\text{-}one\text{: Let} \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right] \in \text{Null}(L). \text{ Then } \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right] = L\left(\left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]\right) = a_1 \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right] + \\ &a_2 \left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right] = \left[\begin{array}{c} a_1 + a_2 \\ a_2 \\ a_1 + a_2 \end{array}\right]. \text{ Setting the components equal, we see that this means } \\ &\text{that } a_1 + a_2 = 0 \text{ and } a_2 = 0. \text{ Plugging } a_2 = 0 \text{ into } a_1 + a_2 = 0 \text{ gives us } a_1 = 0. \\ &\text{As such } \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]. \text{ Since the only vector in the nullspace is the zero } \\ &\text{vector, by Lemma 4.7.1 we have that } L \text{ is one-to-one.} \end{aligned}$$

Onto: For any $\vec{s} \in \mathcal{S}$, there are scalars s_1 and s_2 such that $\vec{s} = s_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. Which means that $\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \in \mathbb{R}^2$ is such that $L\left(\begin{bmatrix} s_1 \\ s_2 \end{bmatrix}\right) = s_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \vec{s}$. Hence, L is onto.

B1(d) Before I define my isomorphism, I first want to find a basis for \mathbb{P} . Elements of \mathbb{P} are polynomials $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$ such that $0 = p(1) = p_0 + p_1(1) + p_2(1) + p_3(1) = p_0 + p_1 + p_2 + p_3$. Since $p_0 + p_1 + p_2 + p_3 = 0$, we know $p_3 = -p_0 - p_1 - p_2$. This leads me to think that $\mathcal{B} = \{1 - x^3, x - x^3, x^2 - x^3\}$ is a basis for \mathbb{P} . To see this, let's first show that \mathcal{B} is linearly independent. To that end, suppose that $t_1, t_2, t_3 \in \mathbb{R}$ are such that

$$t_1(1-x^3) + t_2(x-x^3) + t_3(x^2-x^3) = 0 + 0x + 0x^2 + 0x^3$$

Then we have $t_1 + t_2x + t_3x^2 + (-t_1 - t_2 - t_3)x^3 = 0 + 0x + 0x^2 + 0x^3$. Setting the coefficients equal, we get that $t_1 = 0$, $t_2 = 0$, $t_3 = 0$, and $-t_1 - t_2 - t_3 = 0$. Which means that $t_1 = t_2 = t_3 = 0$, so \mathcal{B} is linearly independent. Now we need to show that \mathcal{B} is a spanning set for \mathbb{P} . To that end, suppose that $p_0 + p_1x + p_2x^2 + p_3x^3 \in \mathbb{P}$. As noted above, this means that $p_3 = -p_0 - p_1 - p_2$. And this means that

$$p(x) = p_0 + p_1 x + p_2 x^2 + (-p_0 - p_1 - p_2)x^3 = p_0(1 - x^3) + p_1(x - x^3) + p_2(x^2 - x^3)$$

and so we see that $p(x) \in \text{Span } \mathcal{B}$, which means that \mathcal{B} is a spanning set for \mathbb{P} . And since \mathcal{B} is a linearly independent spanning set for \mathbb{P} , it is a basis for \mathbb{P}

And we can use this basis to define our linear mapping. For, given any $p(x) \in \mathbb{P}$, there are unique $a,b,c \in \mathbb{R}$ such that $p(x) = a(1-x^3) + b(x-x^3) + c(x^2-x^3)$. And so we define $L(p(x)) = L(a(1-x^3) + b(x-x^3) + c(x^2-x^3)) = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$. To prove that L is an isomorphism, we must prove that it is linear, one-to-one, and onto.

Linear: Let $p(x) = a_1(1-x^3) + b_1(x-x^3) + c_1(x^2-x^3)$ and $q(x) = a_2(1-x^3) + b_2(x-x^3) + c_2(x^2-x^3)$ be elements of \mathbb{P} , and let $t \in \mathbb{R}$. Then we have

$$\begin{split} L(tp(x)+q(x)) &= L(t(a_1(1-x^3)+b_1(x-x^3)+c_1(x^2-x^3))+(a_2(1-x^3)+b_2(x-x^3)+c_2(x^2-x^3))) \\ &= L((ta_1+a_2)(1-x^3)+(tb_1+b_2)(x-x^3)+(tc_1+c_2)(x^2-x^3)) \\ &= \begin{bmatrix} ta_1+a_2 & tb_1+b_2 \\ 0 & tc_1+c_2 \end{bmatrix} \\ &= t\begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} + \begin{bmatrix} a_1 & b_2 \\ 0 & c_2 \end{bmatrix} \\ &= tL(p(x)) + L(q(x)) \end{split}$$

Therefore, L is linear.

 $\begin{aligned} & \textit{One-to-one:} \text{ Let } a(1-x^3) + b(x-x^3) + c(x^2-x^3) \in \text{Null}(L). \text{ Then } \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] = \\ & L(a(1-x^3) + b(x-x^3) + c(x^2-x^3)) = \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right]. \text{ Hence } a = 0, \ b = 0, \text{ and } c = 0, \text{ which means that } a(1-x^3) + b(x-x^3) + c(x^2-x^3) = 0(1-x^3) + 0(x-x^3) + 0(x^2-x^3) = 0 + 0x + 0x^2 + 0x^3. \text{ Since the only vector in the nullspace is the zero vector, by Lemma 4.7.1 we have that L is one-to-one.} \end{aligned}$

Onto: For any $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in \mathbb{T}$, we have $a(1-x^3) + b(x-x^3) + c(x^2-x^3) \in \mathbb{P}$ such that $L(a(1-x^3) + b(x-x^3) + c(x^2-x^3)) = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$. Hence, L is onto.

D2(a) Suppose that M and L are one-to-one, and suppose $M \circ L(\mathbf{u}_1) = M \circ$

 $L(\mathbf{u}_2)$. Then we have $M(L(\mathbf{u}_1) = M(L(\mathbf{u}_2))$, and since M is one-to-one this means that $L(\mathbf{u}_1) = L(\mathbf{u}_2)$. And since L is one-to-one, this means that $\mathbf{u}_1 = \mathbf{u}_2$. And so we see that $M \circ L$ is one-to-one.

D2(b) Let $M: \mathbb{R}^4 \to \mathbb{R}^2$ be defined by M(a,b,c,d) = (a,b) and $L: \mathbb{R}^2 \to \mathbb{R}^4$ be defined by L(a,b) = (a,b,0,0). We first note that M is not one-to-one, since M(1,2,1,2) = M(1,2,3,4). But $M \circ L$ is one-to-one, since $M \circ L(a,b) = M(L(a,b)) = M(a,b,0,0) = (a,b)$, so we see that $M \circ L$ is in fact the identity map.

D2(c) No, this is not possible. Suppose that $M \circ L$ is one-to-one, and suppose that $L(\mathbf{u}_1) = L(\mathbf{u}_2)$. Then $M(L(\mathbf{u}_1) = M(L(\mathbf{u}_2))$, which means that $M \circ L(\mathbf{u}_1) = M \circ L(\mathbf{u}_2)$. Since $M \circ L$ is one-to-one, we have $\mathbf{u}_1 = \mathbf{u}_2$. And so we see that L is one-to-one.

D3 Suppose the L and M are onto, and that $\mathbf{w} \in \mathbb{W}$. Then, since M is onto, there is some $\mathbf{v} \in \mathbb{V}$ such that $M(\mathbf{v}) = \mathbf{w}$. And since L is onto, there is some $\mathbf{u} \in \mathbb{U}$ such that $L(\mathbf{u}) = \mathbf{v}$. This means that there is $\mathbf{u} \in \mathbb{U}$ such that $M \circ L(\mathbf{u}) = M(L(\mathbf{u})) = M(\mathbf{v}) = \mathbf{w}$. Thus, $M \circ L$ is onto.