Assignment 4

[3pt] 1. Determine the matrix of the linear mapping $L: M(2,2) \to P_3$ defined by $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = b + cx + dx^2 + ax^3$ with respect to the basis $\mathcal{B} = \left\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}\right\} \text{ for } M(2,2) \text{ and the basis } \mathcal{C} = \{1 + x, 1 - x, x^2 + x^3, x^2 - x^3\} \text{ for } P_3.$

[4pt] 2. Let $\begin{bmatrix} -1 & 3 \\ -3 & 2 \end{bmatrix}$ be the standard matrix of a linear mapping $L: \mathbb{R}^2 \to \mathbb{R}^2$. Determine the matrix of L with respect to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 7 \end{bmatrix} \right\}$, and use it to determine $[L(\vec{x})]_{\mathcal{B}}$ if $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$.

[3pt] 3. Define an explicit isomorphism to establish that the spaces P_2 and \mathbb{D}_3 (the space of 3×3 diagonal matrices) are isomorphic. Prove that your map is an isomorphism.