Assignment 3

- [2pt] 1. Find the coordinates of $p(x)=-6+x-3x^2$ with respect to the basis $\mathcal{B}=\{1+x^2,1-x+2x^2,-1-x+x^2\}$ of P_2 .
- [4pt] 2. Find the change of coordinates matrix to and from the standard basis

of
$$\mathbb{R}^3$$
 and $\mathcal{B} = \left\{ \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\1\\5 \end{bmatrix} \right\}.$

- [2pt] 3. Show that the mapping $L: \mathbb{R}^3 \to P_1$ given by $L\left(\left[\begin{array}{c} a \\ b \\ c \end{array}\right]\right) = (a+b) + (b+c)x$ is linear.
- [2pt] 4. Show that the mapping $M: \mathbb{R}^3 \to P_1$ given by $M\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix}\right) = (ab) + (bc)x$ is not linear.