Solution to Practice 1f

B1(a) Let
$$A = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mid x_1 + x_3 = x_4, \ x_1, x_2, x_3, x_4 \in \mathbb{R} \right\}.$$

S0: A is defined as a subset of \mathbb{R}^4 , and since 0+0=0, we have $\vec{0} \in A$, so A is non-empty.

S1: Let $\vec{x}, \vec{y} \in A$, and let $\vec{z} = \vec{x} + \vec{y}$. Then

$$z_1 + z_3 = (x_1 + y_1) + (x_3 + y_3)$$
 definition of \vec{z}
 $= (x_1 + x_3) + (y_1 + y_3)$ properties of \mathbb{R}
 $= x_4 + y_4$ because $\vec{x}, \vec{y} \in A$
 $= z_4$ definition of \vec{z}

As we have shown that $z_1 + z_3 = z_4$, we have that $\vec{z} \in A$, and thus A is closed under addition.

S2: Let $\vec{x} \in A$, $t \in \mathbb{R}$, and let $\vec{w} = t\vec{x}$. Then

$$w_1 + w_3 = tx_1 + tx_3$$
 definition of \vec{w}
= $t(x_1 + x_3)$ properties of \mathbb{R}
= tx_4 because $\vec{x} \in A$
= w_4 definition of \vec{w}

As we have shown that $w_1 + w_3 = w_4$, we have that $\vec{w} \in A$, and thus A is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, A is a subspace of \mathbb{R}^4 .

B1(b) Let
$$B = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \mid a_1 + a_3 = a_4, \ a_1, a_2, a_3, a_4 \in \mathbb{R} \right\}.$$

S0: B is defined as a subset of M(2,2), and since 0+0=0, we see that the zero matrix is in B, so B is non-empty.

S1: Let $X, Y \in B$, and let Z = X + Y. Then

$$z_1 + z_3 = (x_1 + y_1) + (x_3 + y_3)$$
 definition of Z
 $= (x_1 + x_3) + (y_1 + y_3)$ properties of \mathbb{R}
 $= x_4 + y_4$ because $X, Y \in B$
 $= z_4$ definition of Z

As we have shown that $z_1 + z_3 = z_4$, we have that $Z \in B$, and thus B is closed under addition.

S2: Let $X \in B$, $t \in \mathbb{R}$, and let W = tX. Then

$$w_1 + w_3 = tx_1 + tx_3$$
 definition of W
= $t(x_1 + x_3)$ properties of \mathbb{R}
= tx_4 because $X \in B$
= w_4 definition of W

As we have shown that $w_1 + w_3 = w_4$, we have that $W \in B$, and thus B is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, B is a subspace of M(2,2).

B1(c) Let
$$C = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_0 + a_2 = a_3, a_0, a_1, a_2, a_3 \in \mathbb{R}\}.$$

S0: C is defined as a subset of P_3 , and since 0+0=0, we see that the zero polynomial is in C, so C is non-empty.

S1: Let $a(x), b(x) \in C$, and let c(x) = a(x) + b(x). Then

$$c_0 + c_2 = (a_0 + b_0) + (a_2 + b_2)$$
 definition of $c(x)$
= $(a_0 + a_2) + (b_0 + b_2)$ properties of \mathbb{R}
= $a_3 + b_3$ because $a(x), b(x) \in C$
= c_3 definition of $c(x)$

As we have shown that $c_0 + c_2 = c_3$, we have that $c(x) \in C$, and thus C is closed under addition.

S2: Let $a(x) \in C$, $t \in \mathbb{R}$, and let d(x) = ta(x). Then

$$d_0 + d_2 = ta_0 + ta_2$$
 definition of $d(x)$
 $= t(a_0 + a_2)$ properties of \mathbb{R}
 $= ta_3$ because $a(x) \in C$
 $= d_3$ definition of $d(x)$

As we have shown that $d_0 + d_2 = d_3$, we have that $d(x) \in C$, and thus C is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, C is a subspace of P_3 .

B1(d) Let
$$D = \{a_0 + a_1 x^2 \mid a_0, a_1 \in \mathbb{R}\}$$

S0: D is defined as a subset of P_2 , but this is also a subset of P_4 . And since $0 + 0x^2 = 0 + 0x + 0x^2 + 0x^3 + 0x^4$, the zero polynomial is in D, so D is non-empty.

S1: Let $a(x), b(x) \in D$. Then $a(x) + b(x) = (a_0 + a_1 x^2) + (b_0 + b_1 x^2) = (a_0 + b_0) + (a_1 + b_1)x^2$. So, if we let $c_0 = a_0 + b_0$, and $c_1 = a_1 + b_1$, then we have that $a(x) + b(x) = c_0 + c_1 x^2$, where $c_0, c_1 \in \mathbb{R}$, and thus $a(x) + b(x) \in D$. So D is closed under addition.

S2: Let $a(x) \in D$ and $t \in \mathbb{R}$. Then $ta(x) = t(a_0 + a_1 x^2) = (ta_0) + (ta_1)x^2$.

So, if we let $d_0 = ta_0$ and $d_1 = ta_1$, then we see that $ta(x) = d_0 + d_1x^2$ where $d_0, d_1 \in \mathbb{R}$, and thus $ta(x) \in D$. So D is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, D is a subspace of P_4 . (And P_3 , and P_2 .)

B1(e) Let $E = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right\}$ Then the zero matrix is not in E, so E cannot be a vector space, and thus cannot be a subspace of M(2,2).

B1(f) Let $F = \left\{ \begin{bmatrix} a_1 & a_2 \\ 0 & a_3 \end{bmatrix} \mid a_1 - a_3 = 1, \ a_1, a_2, a_3 \in \mathbb{R} \right\}$. Then the zero matrix is not in F, since 0-0=0, not 1. So F cannot be a vector space, and thus cannot be a subspace of M(2,2).

B2(a) Let
$$A = \{A \in M(3,3) \mid tr(A) = 0\}.$$

S0: \mathcal{A} is defined as a subset of M(3,3), and since $\operatorname{tr}\left(\begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\right) = 0 + 0 + 0 = 0$, we see that the zero matrix is in \mathcal{A} , and thus that \mathcal{A} is non-empty.

S1: Let $A, B \in \mathcal{A}$, and let C = A + B. Then

$$tr(C) = c_{11} + c_{22} + c_{33}$$

$$= (a_{11} + b_{11}) + (a_{22} + b_{22}) + (a_{33} + b_{33})$$

$$= (a_{11} + a_{22} + a_{33}) + (b_{11} + b_{22} + b_{33})$$

$$= 0 + 0$$

$$= 0$$

As we have shown that tr(C) = 0, we see that $C = A + B \in \mathcal{A}$, and thus \mathcal{A} is closed under addition.

S2: Let $A \in \mathcal{A}$, $t \in \mathbb{R}$, and let D = tA. Then

$$tr(D) = d_{11} + d_{22} + d_{33}$$

$$= ta_{11} + ta_{22} + ta_{33}$$

$$= t(a_{11} + a_{22} + a_{33})$$

$$= t(0)$$

$$= 0$$

As we have shown that tr(D) = 0, we see that $D = tA \in \mathcal{A}$, and thus \mathcal{A} is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, \mathcal{A} is a subspace of M(3,3).

B2(b) The subset of invertible matrices is not a subspace of M(3,3) because is does not contain the zero matrix.

B2(c) Let
$$C = \left\{ A \in M(3,3) \mid A \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

S0: \mathcal{C} is defined as a subset of M(3,3), and since $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, we see that the zero matrix is in \mathcal{C} , and thus that \mathcal{C} is non-empty.

S1: Let
$$A, B \in \mathcal{C}$$
. Then $(A + B) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = A \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + B \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Since $(A + B) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, we see that $A + B \in \mathcal{C}$, and thus \mathcal{C} is closed under addition.

S2: Let
$$A \in \mathcal{C}$$
, $t \in \mathbb{R}$. Then $(tA) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = t \left(A \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right) = t \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Since $(tA)\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$, we see that $tA \in \mathcal{C}$, and thus \mathcal{C} is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, C is a subspace of M(3,3).

$$\mathbf{B2(d)} \ \mathrm{Let} \ \mathcal{D} = \left\{ A \in M(3,3) \mid A \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}. \ \mathrm{Since} \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{c} 4 \\ 5 \\ 6 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \neq \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right], \ \mathrm{we \ see \ that \ the \ zero \ matrix \ is \ not \ in } \ \mathcal{D}, \ \mathrm{and \ thus} \ \mathcal{D} \ \mathrm{is \ not \ a}$$
 subspace of $M(3,3)$.

B2(e) Let
$$\mathcal{E} = \{A \in M(3,3) \mid A^T = -A\}$$
. Note that $A^T = -A$ if and only if $a_{ij} = -a_{ji}$ for all $1 \leq i, j \leq 3$.

S0: \mathcal{E} is defined as a subset of M(3,3), and since 0=-0, we see that the zero matrix is in \mathcal{E} , and thus that \mathcal{E} is non-empty.

S1: Let $A, B \in \mathcal{E}$, and let C = (A + B). Then for all i and j we see that

$$c_{ij} = a_{ij} + b_{ij}$$

$$= -a_{ji} - b_{ji}$$

$$= -(a_{ji} + b_{ji})$$

$$= -c_{ji}$$

As such, $C^T = -C$, so $C = (A + B) \in \mathcal{E}$, and thus \mathcal{E} is closed under addition.

S2: Let $A \in \mathcal{E}$, $t \in \mathbb{R}$, and let D = tA. Then for all i and j we see that

$$d_{ij} = ta_{ij}$$

$$= t(-a_{ji})$$

$$= -(ta_{ji})$$

$$= -d_{ji}$$

As such, $D^T = -D$, so $D = tA \in \mathcal{E}$, and thus \mathcal{E} is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, \mathcal{E} is a subspace of M(3,3).

B3(a) Let
$$A = \{p(x) \in P_5 \mid p(-x) = p(x) \text{ for all } x \in \mathbb{R}\}.$$

S0: A is defined as a subset of P_5 , and since $\mathbf{0}(-x) = 0 = \mathbf{0}(x)$ for all $x \in \mathbb{R}$, we see that the zero polynomial is in A, and thus A is non-empty.

S1: Let $p(x), q(x) \in A$. Then (p+q)(-x) = p(-x) + q(-x) = -p(x) - q(x) = -(p(x) + q(x)) = -(p+q)(x). And since (p+q)(-x) = -(p+q)(x), we have that $(p+q)(x) \in A$, and thus A is closed under addition.

S2: Let $p(x) \in A$ and $t \in \mathbb{R}$. Then (tp)(-x) = t(p(-x)) = t(-p(x)) = -(t(p(x))) = -(tp)(x). And since (tp)(-x) = -(tp)(x), we have that $(tp)(x) \in A$, and thus A is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, A is a subspace of P_5 .

B3(b) Let $B = \{(p(x))^2 \mid p(x) \in P_2\}$. Then $x^2 \in B$ (since $x^2 = (x)^2$, where $x \in P_2$), and $x^4 \in B$ (since $x^4 = (x^2)^2$, where $x^2 \in P_2$). But $x^2 + x^4 \notin B$, since $x^2 + x^4 = x^2(1 + x^2) \neq (p(x))^2$ for any $p(x) \in P_2$. As such, B is not closed under addition, and therefore is not a subspace of P_5 .

B3(c) Let $C = \{a_0 + a_1x + \cdots + a_4x^4 \mid a_1a_4 = 1, a_0, a_1, a_2, a_3, a_4 \in \mathbb{R}\}$. Then the zero polynomial is not in C, since (0)(0)=0, not 1. As such, C is not a subspace of P_5 .

B3(d) Let
$$D = \{x^3 p(x) \mid p(x) \in P_2\}.$$

S0: D is defined as a subset of P_5 , and since $\mathbf{0}(x) \in P_2$ and $x^3(\mathbf{0}(x)) = \mathbf{0}(x)$,

we see that the zero polynomial is in D, and thus D is non-empty.

S1: Let $p(x), q(x) \in D$, with $p(x) = x^3 a(x)$ and $q(x) = x^3 b(x)$ $(a(x), b(x) \in P_2)$. Then $(p+q)(x) = x^3 a(x) + x^3 b(x) = x^3 (a(x) + b(x)) = x^3 ((a+b)(x))$. Since $a(x), b(x) \in P_2$ (and since P_2 is closed under addition), we have that $(a+b)(x) \in P_2$. Therefore, we have that $(p+q)(x) = x^3 (a+b)(x)$ for $(a+b)(x) \in P_2$, which means that $(p+q)(x) \in D$. And thus, D is closed under addition.

S2: Let $p(x) \in D$ (with $p(x) = x^3 a(x)$ for $a(x) \in P_2$), and $t \in \mathbb{R}$. Then $(tp)(x) = t(p(x)) = t(x^3 a(x)) = x^3 (ta)(x)$. Because P_2 is a vector space, we know it is closed under scalar multiplication, which means that $(ta)(x) \in P_2$. Therefore, we have that $(tp)(x) = x^3 (ta)(x)$ for $(ta)(x) \in P_2$, which means that $(tp)(x) \in D$. And thus, D is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, D is a subspace of P_5 .

B3(e) Let
$$E = \{p(x) \in P_5 \mid p(1) = 0\}.$$

S0: E is defined as a subset of P_5 , and since $\mathbf{0}(1) = 0$, we see that the zero polynomial is in E, and thus E is non-empty.

S1: Let $p(x), q(x) \in E$. Then (p+q)(1) = p(1) + q(1) = 0 + 0 = 0. So (p+q)(1) = 0, which means that $(p+q)(x) \in E$. And so we see that E is closed under addition.

S2: Let $p(x) \in E$ and $t \in \mathbb{R}$. Then (tp)(1) = t(p(1)) = t(0) = 0. So (tp)(1) = 0, which means that $(tp)(x) \in E$. And so we see that E is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, E is a subspace of P_5 .

B4(a) Let
$$A = \{ f \in \mathcal{F} \mid f(3) + f(5) = 0 \}.$$

S0: First we note that A is defined to be a subset of \mathcal{F} . Moreover, since $\mathbf{0}(3) + \mathbf{0}(5) = 0 + 0 = 0$, we see that the zero function is in A, and thus A is non-empty.

S1: Let $f, g \in A$. Then (f+g)(3) + (f+g)(5) = (f(3)+g(3)) + (f(5)+g(5)) = (f(3)+f(5)) + (g(3)+g(5)) = 0 + 0 = 0. And since (f+g)(3) + (f+g)(5) = 0, we have that $f+g \in A$, which shows that A is closed under addition.

S2: Let $f \in A$ and $t \in \mathbb{R}$. Then (tf)(3) + (tf)(5) = t(f(3)) + t(f(5)) = t(f(3) + f(5)) = t(0) = 0. And since (tf)(3) + (tf)(5) = 0, we have that $tf \in A$, which shows that A is closed under scalar multiplication.

Since properties S0, S1, and S2 all hold, A is a subspace of \mathcal{F} .

B4(b) Let $B = \{ f \in \mathcal{F} \mid f(1) + f(2) = 1 \}$. Then the zero function is not in B, since $\mathbf{0}(1) + \mathbf{0}(2) = 0 + 0 = 0 \neq 1$. As such, B is not a vector space, and thus cannot be a subspace of \mathcal{F} .

B4(c) Let $C = \{ f \in \mathcal{F} \mid |f(x)| \leq 1 \}$. Then the constant function f(x) = 1 is in C, but the scalar multiple 2f(x) is not in C, since 2f(x) = 2 for all x, which means that |2f(x)| > 1, and thus $2f \notin C$. Since C is not closed under scalar multiplication, C is not a subspace of \mathcal{F} .

B4(d) Let $D = \{ f \in \mathcal{F} \mid f \text{ is increasing on } \mathbb{R} \}$. That is, $f \in D$ if and only if we have $f(x) \leq f(y)$ whenever $x \leq y$.

Then D is not a subspace of \mathcal{F} , because D is not closed under scalar multiplication. For a counterexample, consider that the function f(x) = x is in D, but the scalar multiple -f(x) is a decreasing function, and thus not in D.