Solution to Practice 3q

A1(a) Let $A = \begin{bmatrix} 0 & 4 \\ -1 & 0 \end{bmatrix}$. To find the eigenvalues of A, we need to first find the characteristic polynomial.

$$\det (A - \lambda I) = \det \begin{bmatrix} -\lambda & 4 \\ -1 & -\lambda \end{bmatrix}$$
$$= (-\lambda)^2 + 4$$
$$= \lambda^2 + 4$$
$$= (\lambda - 2i)(\lambda + 2i)$$

So, our eigenvalues are $\lambda=2i$ and $\overline{\lambda}=-2i$. The eigenvectors for $\lambda=2i$ are the nullspace of $\begin{bmatrix} -2i & 4 \\ -1 & -2i \end{bmatrix}$, which we find by row reducing this matrix:

$$\begin{bmatrix} -2i & 4 \\ -1 & -2i \end{bmatrix} R_1 \updownarrow R_2 \sim \begin{bmatrix} -1 & -2i \\ -2i & 4 \end{bmatrix} -R_1$$
$$\sim \begin{bmatrix} 1 & 2i \\ -2i & 4 \end{bmatrix} R_2 + 2iR_1 \sim \begin{bmatrix} 1 & 2i \\ 0 & 0 \end{bmatrix}$$

So, the eigenvectors satisfy the equation $z_1 + 2iz_2 = 0$, which is the same as the set Span $\left\{ \begin{bmatrix} -2i \\ 1 \end{bmatrix} \right\}$.

Using Theorem 9.4.1, we know that the eigenvectors for $\overline{\lambda} = -2i$ are Span $\left\{ \begin{bmatrix} \overline{-2i} \\ \overline{1} \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 2i \\ 1 \end{bmatrix} \right\}$.

And so we have that $P=\begin{bmatrix} -2i & 2i \\ 1 & 1 \end{bmatrix}$ is an invertible matrix and $D=\begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix}$ is a diagonal matrix such that $P^{-1}AP=D$.

A1(b) Let $A = \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix}$. To find the eigenvalues of A, we need to first find the characteristic polynomial.

$$\det (A - \lambda I) = \det \begin{bmatrix} -1 - \lambda & 2 \\ -1 & -3 - \lambda \end{bmatrix}$$
$$= (-1 - \lambda)(-3 - \lambda) + 2$$
$$= 3 + \lambda + 3\lambda + \lambda^2 + 2$$
$$= \lambda^2 + 4\lambda + 5$$

We can use the quadratic formula to find the roots of this equation:

$$\lambda = \frac{-4 \pm \sqrt{16 - 4(1)(5)}}{2(1)} = \frac{-4 \pm \sqrt{-4}}{2} = -2 \pm i$$

So, our eigenvalues are $\lambda=-2+i$ and $\overline{\lambda}=-2-i$. The eigenvectors for $\lambda=-2+i$ are the nullspace of $\begin{bmatrix} -1-(-2+i) & 2 \\ -1 & -3-(-2+i) \end{bmatrix} = \begin{bmatrix} 1-i & 2 \\ -1 & -1+i \end{bmatrix},$ which we find by row reducing this matrix:

$$\begin{bmatrix} 1-i & 2 \\ -1 & -1-i \end{bmatrix} (1/2)(1+i)R_1 \sim \begin{bmatrix} 1 & 1+i \\ -1 & -1-i \end{bmatrix} R_2 + R_1 \sim \begin{bmatrix} 1 & 1+i \\ 0 & 0 \end{bmatrix}$$

So, the eigenvectors satisfy the equation $z_1 + (1+i)z_2 = 0$, which is the same as the set Span $\left\{ \begin{bmatrix} -1-i\\1 \end{bmatrix} \right\}$.

Using Theorem 9.4.1, we know that the eigenvectors for $\overline{\lambda} = -2 - i$ are Span $\left\{ \begin{bmatrix} \overline{-1-i} \\ \overline{1} \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} -1+i \\ 1 \end{bmatrix} \right\}$.

And so we have that $P=\begin{bmatrix} -1-i & -1+i \\ 1 & 1 \end{bmatrix}$ is an invertible matrix and $D=\begin{bmatrix} -2+i & 0 \\ 0 & -2-i \end{bmatrix}$ is a diagonal matrix such that $P^{-1}AP=D$.

A1(c) Let $A = \begin{bmatrix} 2 & 2 & -1 \\ -4 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$. To find the eigenvalues of A, we need to first find the characteristic polynomial.

$$\det (A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 2 & -1 \\ -4 & 1 - \lambda & 2 \\ 2 & 2 & -1 - \lambda \end{bmatrix}$$

$$= (2 - \lambda) \begin{vmatrix} 1 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -4 & 2 \\ 2 & -1 - \lambda \end{vmatrix} - \begin{vmatrix} -4 & 1 - \lambda \\ 2 & 2 \end{vmatrix}$$

$$= (2 - \lambda)((1 - \lambda)(-1 - \lambda) - 4) - 2((-4)(-1 - \lambda) - 4) - (-8 - 2(1 - \lambda))$$

$$= (2 - \lambda)(-1 - \lambda + \lambda + \lambda^2 - 4) - 2(4 + 4\lambda - 4) - (-8 - 2 + 2\lambda)$$

$$= (2 - \lambda)(\lambda^2 + 5) - 2(4\lambda) - (-10 + 2\lambda)$$

$$= 2\lambda^2 - 10 - \lambda^3 + 5\lambda - 8\lambda + 10 + 2\lambda$$

$$= -5\lambda + 2\lambda^2 - \lambda^3$$

$$= -\lambda(5 - 2\lambda + \lambda^2)$$

Because $-\lambda$ is a factor of the characteristic polynomial, we know that $\lambda = 0$ is an eigenvalue of A. To find the other eigenvalues of A, we use the quadratic formula to find the roots of $5 - 2\lambda + \lambda^2$:

$$\lambda = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)} = \frac{2 \pm \sqrt{-16}}{2} = 1 \pm 2i$$

So, the eigenvalues of A are $\lambda = 0, 1+2i, 1-2i$. Now let's find their eigenspaces.

The eigenspace for $\lambda=0$ is the null space of $A-\lambda I=A-0I=A$, and to find the null space of A we need to row reduce A. $\begin{bmatrix} 2 & 2 & -1 \\ -4 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

$$\left[\begin{array}{ccc} 2 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

So the eigenvectors of $\lambda = 0$ are the the vectors that satisfy $2z_1 - z_3 = 0$ and

 $z_2 = 0$, which we can write as Span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\}$.

The eigenspace for $\lambda = 1 + 2i$ is the nullspace of $A - \lambda I = \begin{bmatrix} 2 - (1 + 2i) & 2 & -1 \\ -4 & 1 - (1 + 2i) & 2 \\ 2 & 2 & -1 - (1 + 2i) \end{bmatrix} = 2i$

$$\begin{bmatrix} 1-2i & 2 & -1 \\ -4 & -2i & 2 \\ 2 & 2 & -2-2i \end{bmatrix}$$
, which we find by row reducing this matrix.

$$\begin{bmatrix} 1-2i & 2 & -1 \\ -4 & -2i & 2 \\ 2 & 2 & -2-2i \end{bmatrix} R_1 \updownarrow R_3 \sim \begin{bmatrix} 2 & 2 & -2-2i \\ -4 & -2i & 2 \\ 1-2i & 2 & -1 \end{bmatrix} (1/2)R_1$$

$$\sim \begin{bmatrix} 1 & 1 & -1-1i \\ -4 & -2i & 2 \\ 1-2i & 2 & -1 \end{bmatrix} R_2 + 4R_1 \sim \begin{bmatrix} 1 & 1 & -1-i \\ 0 & 4-2i & -2-4i \\ 0 & 1+2i & 2-i \end{bmatrix} (1/20)(4+2i)R_2$$

$$\sim \begin{bmatrix} 1 & 1 & -1-i \\ 0 & 1 & -i \\ 0 & 1+2i & 2-i \end{bmatrix} R_1 - R_2 \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -i \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors of $\lambda = 1 + 2i$ are the the vectors that satisfy $z_1 - z_3 = 0$ and $z_2 - iz_3 = 0$. If we replace the variable z_3 with the parameter α , we see that the general solution to this system is

$$\left[\begin{array}{c} z_1 \\ z_2 \\ z_3 \end{array}\right] = \left[\begin{array}{c} \alpha \\ i\alpha \\ \alpha \end{array}\right] = \alpha \left[\begin{array}{c} 1 \\ i \\ 1 \end{array}\right] =$$

which we can write as Span
$$\left\{ \begin{bmatrix} 1\\i\\1 \end{bmatrix} \right\}$$
.

By Theorem 9.4.1, the eigenspace for
$$\lambda = 1 - 2i$$
 is Span $\left\{ \begin{bmatrix} \overline{1} \\ \overline{i} \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -i \\ 1 \end{bmatrix} \right\}$.

So we have that
$$\begin{bmatrix} 1\\0\\2 \end{bmatrix}$$
 is an eigenvector for the eigenvalue $\lambda=0,$ $\begin{bmatrix} 1\\i\\1 \end{bmatrix}$ is an

eigenvector for the eigenvalue
$$\lambda = 1 + 2i$$
, and $\begin{bmatrix} 1 \\ -i \\ 1 \end{bmatrix}$ is an eigenvector for the

eigenvalue
$$\lambda = 1 - 2i$$
. And this means that the matrix $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & i & -i \\ 2 & 1 & 1 \end{bmatrix}$ is

such that
$$P^{-1}AP = D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1+2i & 0 \\ 0 & 0 & 1-2i \end{bmatrix}$$
.

A1(d) Let
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 3 & -1 & 2 \end{bmatrix}$$
. To find the eigenvalues of A , we need to first find the characteristic polynomial.

$$\det (A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 & -1 \\ 2 & 1 - \lambda & 0 \\ 3 & -1 & 2 - \lambda \end{bmatrix}$$

$$= -2 \begin{vmatrix} 1 & -1 \\ -1 & 2 - \lambda \end{vmatrix} + (1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 3 & 2 - \lambda \end{vmatrix} - 0$$

$$= -2(2 - \lambda - 1) + (1 - \lambda)(4 - 2\lambda - 2\lambda + \lambda^2 + 3)$$

$$= -2(1 - \lambda) + (1 - \lambda)(7 - 4\lambda + \lambda^2)$$

$$= (1 - \lambda)(-2 + 7 - 4\lambda + \lambda^2)$$

$$= (1 - \lambda)(5 - 4\lambda + \lambda^2)$$

Because $1 - \lambda$ is a factor of the characteristic polynomial, we know that $\lambda = 1$ is an eigenvalue of A. To find the other eigenvalues of A, we use the quadratic formula to find the roots of $5 - 4\lambda + \lambda^2$:

$$\lambda = \frac{4 \pm \sqrt{16 - 4(1)(5)}}{2(1)} = \frac{4 \pm \sqrt{-4}}{2} = 2 \pm i$$

So, the eigenvalues of A are $\lambda = 2, 2+i, 2-i$. Now let's find their eigenspaces.

The eigenspace for
$$\lambda=1$$
 is the null
space of $A-\lambda I=\begin{bmatrix} 2-1 & 1 & -1\\ 2 & 1-1 & 0\\ 3 & -1 & 2-1 \end{bmatrix}=$

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$
, which we find by row reducing this matrix.

$$\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 3 & -1 & 1 \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right]$$

So the eigenvectors of $\lambda=1$ are the the vectors that satisfy $z_1=0$ and $z_2-z_3=0$

0, which we can write as Span $\left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$.

The eigenspace for
$$\lambda = 2+i$$
 is the null
space of $A-\lambda I = \begin{bmatrix} 2-(2+i) & 1 & -1 \\ 2 & 1-(2+i) & 0 \\ 3 & -1 & 2-(2+i) \end{bmatrix} = 1$

$$\begin{bmatrix} -i & 1 & -1 \\ 2 & -1 - i & 0 \\ 3 & -1 & -i \end{bmatrix}$$
, which we find by row reducing this matrix.

$$\begin{bmatrix} -i & 1 & -1 \\ 2 & -1 - i & 0 \\ 3 & -1 & -i \end{bmatrix} iR_1 \sim \begin{bmatrix} 1 & i & -i \\ 2 & -1 - i & 0 \\ 3 & -1 & -i \end{bmatrix} R_2 - 2R_1 \\ R_3 - 3R_1 \sim \begin{bmatrix} 1 & i & -i \\ 0 & -1 - 3i & 2i \\ 0 & -1 - 3i & 2i \end{bmatrix} R_3 - R_2 \sim \begin{bmatrix} 1 & i & -i \\ 0 & -1 - 3i & 2i \\ 0 & 0 & 0 \end{bmatrix} (1/10)(-1 + 3i)R_2 \\ \sim \begin{bmatrix} 1 & i & -i \\ 0 & 1 & -\frac{3}{5} - \frac{1}{5}i \\ 0 & 0 & 0 \end{bmatrix} R_1 - iR_2 \sim \begin{bmatrix} 1 & 0 & \frac{1}{5}(-1 - 2i) \\ 0 & 1 & \frac{1}{5}(-3 - i) \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors of $\lambda = 2 + i$ are the the vectors that satisfy $z_1 + (1/5)(-1 - 2i)z_3 = 0$ and $z_2 + (1/5)(-3 - i)z_3 = 0$. If we replace the variable z_3 with the parameter α , we see that the general solution to this system is

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} (1/5)(1+2i)\alpha \\ (1/5)(3+i)\alpha \\ \alpha \end{bmatrix} = (1/5)\alpha \begin{bmatrix} 1+2i \\ 3+i \\ 5 \end{bmatrix} =$$

which we can write as Span $\left\{ \begin{bmatrix} 1+2i\\3+i\\5 \end{bmatrix} \right\}$.

By Theorem 9.4.1, the eigenspace for $\lambda=2-i$ is $\operatorname{Span}\left\{\left[\begin{array}{c} \overline{1+2i}\\ \overline{3+i}\\ \overline{5} \end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{c} 1-2i\\ \overline{3}-i\\ \overline{5} \end{array}\right]\right\}.$ So we have that $\begin{bmatrix}0\\1\\1\end{bmatrix}$ is an eigenvector for the eigenvalue $\lambda=1,\begin{bmatrix}1+2i\\3+i\\5\end{bmatrix}$ is an eigenvector for the eigenvalue $\lambda=2+i,$ and $\begin{bmatrix}1-2i\\3-i\\5\end{bmatrix}$ is an eigenvector for the eigenvalue $\lambda=2+i.$ This means that the matrix $P=\begin{bmatrix}0&1+2i&1-2i\\1&3+i&3-i\\1&5&5\end{bmatrix}$ is such that $P^{-1}AP=D=\begin{bmatrix}1&0&0\\0&1+2i&0\\0&0&1-2i\end{bmatrix}$.