Solution to Practice 3w

$$\mathbf{B1(a)} \ E = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so }$$

$$EA = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 10 & 1 & 19 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} \quad R_1 + 4R_2 \quad \sim \begin{bmatrix} 10 & 1 & 19 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix}$$

B1(b)
$$E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, so

$$EA = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -3 & -2 \\ 2 & 0 & 5 \\ 2 & 1 & -1 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} \quad R_1 \updownarrow R_3 \qquad \sim \begin{bmatrix} 1 & -3 & -2 \\ 2 & 0 & 5 \\ 2 & 1 & -1 \end{bmatrix}$$

B1(c)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, so

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -6 & 0 & -15 \\ 1 & -3 & -2 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} -3R_2 \sim \begin{bmatrix} 2 & 1 & -1 \\ -6 & 0 & -15 \\ 1 & -3 & -2 \end{bmatrix}$$

B1(d)
$$E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, so

$$EA = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} \quad 2R_1 \sim \begin{bmatrix} 4 & 2 & -2 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix}$$

B1(e)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
, so

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ -3 & -5 & 0 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} R_3 - 2R_1 \sim \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ -3 & -5 & 0 \end{bmatrix}$$

$$\mathbf{B1(f)} \ E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so }$$

$$EA = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 5 \\ 2 & 1 & -1 \\ 1 & -3 & -2 \end{bmatrix}$$

which is the same as

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 0 & 5 \\ 1 & -3 & -2 \end{bmatrix} R_1 \updownarrow R_2 \sim \begin{bmatrix} 2 & 0 & 5 \\ 2 & 1 & -1 \\ 1 & -3 & -2 \end{bmatrix}$$

$$\mathbf{B2(a)} \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B2(b)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B2(c)} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B2(d)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{B2(e)} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B2(f)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

B3(a) This is not an elementary matrix, because is takes two row operations $(R_1 \updownarrow R_2$, then $R_2 \updownarrow R_3$; others are possible) to row reduce this matrix to I.

B3(b) This is an elementary matrix, corresponding to the row operation $R_3 + 3R_2$.

B3(c) This is not an elementary matrix, because it takes two row operations $(-R_1 \text{ and } R_2 \updownarrow R_3)$ to row reduce this matrix to I.

 $\mathbf{B3}(\mathbf{d})$ This is not an elementary matrix. It is not even row equivalent to I.

B3(e) This is an elementary matrix, corresponding to the row operation $2R_1$.

B3(f) This is an elementary matrix, corresponding to the row operation R_2-R_1 .