Solution to Practice 3i

B3(a) The domain of f is \mathbb{R}^2 , and the codomain of f is \mathbb{R}^2 as well. We show that f preserves addition as follows:

```
f(x_1 + y_1, x_2 + y_2) = (2(x_2 + y_2), (x_1 + y_1) - (x_2 - y_2))
= (2x_2 + 2y_2, (x_1 - x_2) + (y_1 - y_2))
= (2x_2, x_1 - x_2) + (2y_2, y_1 - y_2)
= f(x_1, x_2) + f(y_1, y_2)
```

We show that f preserves scalar multiplication as follows:

$$f(tx_1, tx_2) = (2tx_2, tx_1 - tx_2)$$

$$= (t(2x_2), t(x_1 - x_2))$$

$$= t(2x_2, x_1 - x_2)$$

$$= tf(x_1, x_2)$$

Thus, f IS a linear mapping.

B3(b) The domain of g is \mathbb{R}^2 and the codomain of g is \mathbb{R}^2 as well. But g is NOT a linear mapping. As a counterexample, consider that g(0,0)=(1,0) and $g(1,\pi)=(-1,\pi^3)$, so $g(0,0)+g(1,\pi)=(1,0)+(-1,\pi^3)=(0,\pi^3)$. But $g((0,0)+(1,\pi))=g(1,\pi)=(-1,\pi^3)\neq g(0,0)+g(1,\pi)$.

B3(c) The domain of h is \mathbb{R}^3 and the codomain of h is \mathbb{R}^3 as well. We show that h preserves addition as follows:

$$\begin{array}{lll} h(x_1+y_1,x_2+y_2,x_3+y_3) & = & (0,0,(x_1+y_1)+(x_2+y_2)+(x_3+y_3)) \\ & = & (0,0,(x_1+x_2+x_3)+(y_1+y_2+y_3)) \\ & = & (0,0,x_1+x_2+x_3)+(0,0,y_1+y_2+y_3) \\ & = & h(x_1,x_2,x_3)+h(y_1,y_2,y_3) \end{array}$$

We show that h preserves scalar multiplication as follows:

$$h(tx_1, tx_2, tx_3) = (0, 0, tx_1 + tx_2 + tx_3)$$

$$= (t(0), t(0), t(x_1 + x_2 + x_3))$$

$$= t(0, 0, x_1 + x_2 + x_3)$$

$$= th(x_1, x_2, x_3)$$

Thus, h IS a linear mapping.

B3(d) The domain of k is \mathbb{R}^3 , and the codomain of k is \mathbb{R}^3 as well. We see that k preserves addition as follows:

$$k(x_1 + y_1, x_2 + y_2, x_3 + y_3) = (0, 0, 0)$$

$$= (0, 0, 0) + (0, 0, 0)$$

$$= k(x_1, x_2, x_3) + k(y_1, y_2, y_3)$$

We show that h preserves scalar multiplication as follows:

```
k(tx_1, tx_2, tx_3) = (0, 0, 0)
= (t(0), t(0), t(0))
= t(0, 0, 0)
= tk(x_1, x_2, x_3)
```

Thus, k IS a linear mapping.

B3(e) The domain of l is \mathbb{R}^4 , and the codomain of l is \mathbb{R}^3 . But l is NOT a linear mapping. As a counterexample, consider that l(1,0,0,0) = (1,1,0) and l(0,1,0,0) = (0,1,0), so l(1,0,0,0) + l(0,1,0,0) = (1,1,0) + (0,1,0) = (1,2,0). But $l((1,0,0,0) + (0,1,0,0)) = l(1,1,0,0) = (1,1,0) \neq l(1,0,0,0) + l(0,1,0,0)$.

B3(f) The domain of m is \mathbb{R}^4 , and the codomain of m is $\mathbb{R}^1 = \mathbb{R}$. We show that m preserves addition as follows:

```
\begin{array}{lll} m(x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4) & = & ((x_1+y_1)+(x_2+y_2)-(x_3+y_3)) \\ & = & ((x_1+x_2-x_3)+(y_1+y_2-y_3)) \\ & = & (x_1+x_2-x_3)+(y_1+y_2-y_3) \\ & = & m(x_1,x_2,x_3,x_4)+m(y_1,y_2,y_3,y_4) \end{array}
```

We show that m preserves scalar multiplication as follows:

$$m(tx_1, tx_2, tx_3, tx_4) = (tx_1 + tx_2 - tx_3)$$

= $t(x_1 + x_2 - x_3)$
= $tm(x_1, x_2, x_3, x_4)$

Course Author question: Let $f(\vec{0}) = \vec{x}$, where $\vec{x} \neq \vec{0}$. Then $2\vec{x} \neq \vec{x}$. And we have $f(2(\vec{0})) = f(\vec{0}) = \vec{x}$, but $2f(\vec{0}) = 2\vec{x}$. So $f(2(\vec{0})) \neq 2f(\vec{0})$, and so we see that f does not preserve scalar multiplication.