Lecture 11

Length and Dot Product in \mathbb{R}^n

(pages 31-34)

Okay, now that we eased into the notion of length and the dot product in \mathbb{R}^2 and \mathbb{R}^3 , we can expand our definitions to a general \mathbb{R}^n .

Definition Let
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ be vectors in \mathbb{R}^n . Then the **dot product** of \vec{x} and \vec{y} is

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Note: The dot product is also known as the scalar product or the standard inner product.

And now that we have a general definition of the dot product, we get the following "useful properties" theorem:

Theorem 1.3.1 Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Then

$$(1)\vec{x} \cdot \vec{x} \ge 0$$
 and $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$

$$(2)\vec{x} \cdot \vec{y} = \vec{y} \cdot \bar{x}$$

$$(3)\vec{x}\cdot(\vec{y}+\vec{z}) = \vec{x}\cdot\vec{y} + \vec{x}\cdot\vec{z}$$

$$(2)\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$$

$$(3)\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$$

$$(4)(t\vec{x}) \cdot \vec{y} = t(\vec{x} \cdot \vec{y}) = \vec{x} \cdot (t\vec{y})$$

The proof of these properties is pretty straightforward. I shall prove property (2) as an example:

Let
$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
. Then $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = y_1 x_1 + y_2 x_2 + \dots + y_n x_n = \vec{y} \cdot \vec{x}$.

We define the dot product first, as we can use the dot product to get a quite nice definition of the length of a vector...

Definition Let
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
. Then we define the **norm** or **length** of \vec{x} by

$$||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2}$$

Example: Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
. Then $||\vec{x}|| = \sqrt{1^2 + 2^2 + 3^2 + 4^2 + 5^2} = \sqrt{1 + 4 + 9 + 16 + 25} = \sqrt{55}$.

Example: The length from
$$P(2, -5, 3, 8)$$
 to $Q(7, 6, -2, -3)$ is the length of the vector $\vec{PQ} = \begin{bmatrix} 7 \\ 6 \\ -2 \\ -3 \end{bmatrix} - \begin{bmatrix} 2 \\ -5 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \\ -5 \\ -11 \end{bmatrix}$, which is $\sqrt{5^2 + 11^2 + (-5)^2 + (-11)^2} = \sqrt{25 + 121 + 25 + 121} = \sqrt{292} = 2\sqrt{73}$.

And now that we have a general definition for the norm, we have a theorem listing some of its useful properties:

Theorem 1.3.2 Let $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Then

 $(1)||\vec{x}|| \ge 0$ and $||\vec{x}|| = 0$ if and only if $\vec{x} = \vec{0}$

 $(2)||t\vec{x}|| = |t| ||\vec{x}||$

 $(3)|\vec{x}\cdot\vec{y}| \leq ||\vec{x}|| ||\vec{y}||$, with equality if and only if $\{\vec{x},\vec{y}\}$ is linearly independent

 $(4)||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$

Property (3) is known as the Cauchy-Schwarz Inequality, and property (4) is known as the **Triangle Inequality**. I want to bring some extra notice to property (4), because it is quite natural to want to say $||\vec{x} + \vec{y}|| = ||\vec{x}|| + ||\vec{y}||$, but we see in property (4) that this would be INCORRECT. Consider the following example:

Example: Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and let $\vec{y} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Then $\vec{x} + \vec{y} = \begin{bmatrix} 1-1 \\ 2+3 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$. So we have $||\vec{x}|| = \sqrt{1^2 + 2^2} = \sqrt{5}$, $||\vec{y}|| = \sqrt{(-1)^2 + (3)^2} = \sqrt{10}$, and $||\vec{x} + \vec{y}|| = \sqrt{0^2 + 5^2} = 5 \neq \sqrt{5} + \sqrt{10}$.

Before we move on to the next major topic, we have a couple more definitions to throw at you:

<u>Definition</u> A vector $\vec{x} \in \mathbb{R}^n$ such that $||\vec{x}|| = 1$ is called a **unit vector**.

The value of a unit vector comes from the occasional desire to divide or multiply by $||\vec{x}||$, and 1 is just such a lovely number to multiply or divide by. But starting from an arbitrary vector \vec{x} , we can find a unit vector with the same direction as \vec{x} , given by

$$\hat{x} = \frac{1}{||\vec{x}||} \vec{x}$$

Example: Find a unit vector in the direction of $\vec{x} = \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}$.

First we need to compute $||\vec{x}|| = \sqrt{2^2 + (-1)^2 + (-3)^2} = \sqrt{14}$. Then a unit vector in the direction of \vec{x} is $\frac{1}{\sqrt{14}}\begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{14}\\ -1/\sqrt{14}\\ -3/\sqrt{14} \end{bmatrix}$.

<u>Definition</u> Two vectors \vec{x} and \vec{y} in \mathbb{R}^n are **orthogonal** to each other if and only if $\vec{x} \cdot \vec{y} = 0$.

Note that this definition implies that $\vec{0}$ is orthogonal to every vector in \mathbb{R}^n . But if \vec{x} and \vec{y} are both not $\vec{0}$, then the notion of orthogonal is the same as the vectors \vec{x} and \vec{y} being perpendicular. That is, the angle between \vec{x} and \vec{y} is $\frac{\pi}{2}$, which we see using the formula for the angle between vectors.

Example: The vectors $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$ are not orthogonal, be-

cause $\vec{x} \cdot \vec{y} = (1)(3) + (2)(-1) + (1)(-2) = -1$, but the vectors $\vec{w} = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}$ and

 $\vec{z} = \begin{bmatrix} -3 \\ 5 \\ -1 \end{bmatrix}$ are orthogonal, because $\vec{w} \cdot \vec{z} = (4)(-3) + (2)(5) + (-2)(-1) = 0$.