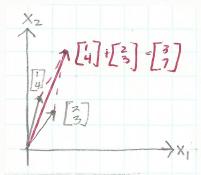
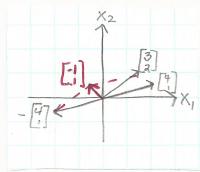
Solution to Assignment 1a

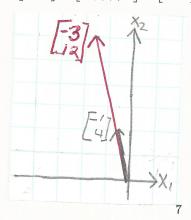
A1(a)
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1+2 \\ 4+3 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$



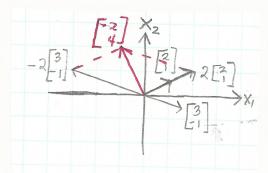
A1(b)
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 3-4 \\ 2-1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$



A1(c)
$$3\begin{bmatrix} -1\\4\end{bmatrix} = \begin{bmatrix} (3)(-1)\\(3)(4)\end{bmatrix} = \begin{bmatrix} -3\\12\end{bmatrix}$$



A1(d)
$$2\begin{bmatrix} 2 \\ 1 \end{bmatrix} - 2\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} (2)(2) - (2)(3) \\ (2)(1) - (2)(-1) \end{bmatrix} = \begin{bmatrix} 4 - 6 \\ 2 - (-2) \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$



$$\mathbf{A2(a)} \begin{bmatrix} 4 \\ -2 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4-1 \\ -2+3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{A2(b)} \begin{bmatrix} -3 \\ -4 \end{bmatrix} - \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 - (-2) \\ -4 - 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -9 \end{bmatrix}$$

$$\mathbf{A2(c)} - 2 \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} (-2)(3) \\ (-2)(-2) \end{bmatrix} = \begin{bmatrix} -6 \\ 4 \end{bmatrix}$$

A2(d)
$$\frac{1}{2} \begin{bmatrix} 2 \\ 6 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 2/2 + 4/3 \\ 6/2 + 3/3 \end{bmatrix} = \begin{bmatrix} 7/3 \\ 4 \end{bmatrix}$$

$$\mathbf{A2(e)} \ \frac{2}{3} \left[\begin{array}{c} 3\\1 \end{array} \right] - 2 \left[\begin{array}{c} 1/4\\1/3 \end{array} \right] = \left[\begin{array}{c} 2\\2/3 \end{array} \right] - \left[\begin{array}{c} 1/2\\2/3 \end{array} \right] = \left[\begin{array}{c} 3/2\\0 \end{array} \right]$$

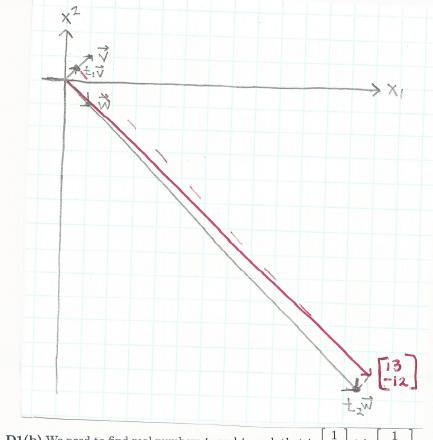
$$\mathbf{A2(f)}\ \sqrt{2}\left[\begin{array}{c}\sqrt{2}\\\sqrt{3}\end{array}\right] + 3\left[\begin{array}{c}1\\\sqrt{6}\end{array}\right] = \left[\begin{array}{c}2\\\sqrt{6}\end{array}\right] + \left[\begin{array}{c}3\\3\sqrt{6}\end{array}\right] = \left[\begin{array}{c}5\\4\sqrt{6}\end{array}\right]$$

D1(a) We need to find real numbers t_1 and t_2 such that $t_1 \left[\begin{array}{c} 1 \\ 1 \end{array} \right] + t_2 \left[\begin{array}{c} 1 \\ -1 \end{array} \right] =$

 $\begin{bmatrix} 13 \\ -12 \end{bmatrix}$. To do this, I will break the vector equation into its two components, getting the following two equations

$$t_1 + t_2 = 13 \qquad \qquad t_1 - t_2 = -12$$

Adding the two equations together, we get $2t_1 = 1$, so $t_1 = 1/2$. This means that $1/2 + t_2 = 13$, so $t_2 = 25/2$.



D1(b) We need to find real numbers t_1 and t_2 such that $t_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. To do this, I will break the vector equation into its two components, getting the following two equations

$$t_1 + t_2 = x_1 \qquad \qquad t_1 - t_2 = x_2$$

Adding the two equations together, we get $2t_1=x_1+x_2$, so $t_1=(x_1+x_2)/2$. This means that $(x_1+x_2)/2+t_2=x_1$, so $x_1+x_2+2t_2=2x_1$, and thus $t_2=(x_1-x_2)/2$. (Note that this result agrees with our result for part (a).)

D1(c) We have
$$t_1 = (x_1 + x_2)/2 = (\sqrt{2} + \pi)/2$$
 and $t_2 = (\sqrt{2} - \pi)/2$.