A Generalization of Tutte's Characterization of Totally Unimodular Matrices

J. F. Geelen

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

Received July 4, 1995

DEDICATED TO PROFESSOR W. T. TUTTE ON THE OCCASION OF HIS EIGHTIETH BIRTHDAY

We characterize the symmetric (0,1)-matrices that can be signed symmetrically so that every principal submatrix has determinant $0,\pm 1$. This characterization generalizes Tutte's famous characterization of totally unimodular matrices. The result can be viewed as an excluded minor theorem for an interesting class of deltamatroids. © 1997 Academic Press

1. INTRODUCTION

An integral square matrix A is called *principally unimodular* (PU if every nonsingular principal submatrix is unimodular (that is, has determinant ± 1). Principal unimodularity was originally studied with regard to skew-symmetric matrices; see [2, 4, 5]; here we consider symmetric matrices. Our main theorem is a generalization of Tutte's excluded minor characterization of totally unimodular matrices; the generalization arises in the following way: a matrix B is totally unimodular if and only if the matrix $(\frac{0}{B^T}|\frac{B}{0})$ is PU. Before stating the main theorem we need to introduce some terminology.

A signing of a symmetric (0, 1)-matrix $A = (a_{ij})$ is a symmetric $(0, \pm 1)$ -matrix, say $A' = (a'_{ij})$, such that $a_{ij} = |a'_{ij}|$, for all i, j. We are concerned with the symmetric (0, 1)-matrices that admit a signing which is PU; such a signing is called a PU-signing. Let A be a V by V matrix, where V is a finite set. An isomorphism of A is a matrix obtained from A by a relabeling of its ground set V. (Note that isomorphisms freely allow simultaneous row-column exchanges.) We denote by A[X] the principal submatrix of A induced by the set $X \subseteq V$. For a set $X \subseteq V$ such that A[X] is nonsingular, define matrices P, Q, R, S, such that P = A[X] and $A = (\frac{P}{R} \mid \frac{Q}{S})$. Then define

$$A * X = \left(\frac{-P^{-1} \mid P^{-1}Q}{RP^{-1} \mid S - RP^{-1}Q}\right).$$

0095-8956/97 \$25.00

We refer to this operation as a *pivot*; we are interested in pivoting over the reals and also over GF(2). We denote the pivot A * X performed over GF(2) by $A \times X$, and we call this a binary pivot. Note that if A is symmetric then A * Y is also symmetric. Let A and B be symmetric (0, 1)-matrices. If there exists a nonsingular, principal submatrix A[X] of A such that B is isomorphic to a principal submatrix of $A \times X$, then we say that A reduces to B. The main result of this paper is the following.

THEOREM 1.1. Let A be a symmetric (0, 1)-matrix. A has no PU-signing if and only if A reduces to one of the matrices $B_1, ..., B_5$ (defined in Fig. 1).

(Figure 2 depicts the matrices $B_1, ..., B_5$ graphically.) Let A and A' be symmetric matrices such that A reduces to A'. If, for some matrix B, $A = (\frac{0}{B^T} \mid \frac{B}{0})$, then there exists a matrix B' such that $A' = (\frac{0}{B^T} \mid \frac{B'}{0})$. Therefore, as a corollary of Theorem 1.1, we obtain Tutte's excluded minor characterization of totally unimodular matrices.

COROLLARY 1.2 (Tutte [11, 12]). Let B be a (0, 1)-matrix, and let $A = (\frac{0}{B^T} \mid \frac{B}{0})$. B cannot be signed to be totally unimodular if and only if A reduces to B_5 .

To prove our result, we consider the class of matrices that do not reduce to B_1 , and then we use a Theorem of Truemper [10] on beta-balanced matrices which gives us the general form of the matrices that do not admit PU-signings. Our original proof of Theorem 1.1 generalized Gerards [9] short proof of Tutte's theorem. By using Truemper's theorem we simplify the final case analysis.

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 0 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 0 & 1 \\ \frac{1}{1} & \frac{1}{1} & 1 & 0 & 0 & 1 \\ \frac{1}{1} & \frac{1}{1} & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 0 & 1 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 0 & 1 \\ \frac{1}{1} & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 1 & 1 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Fig. 1. Excluded principal submatrices.

2. PRELIMINARIES

Pivoting on principal submatrices was introduced with regard to the linear complementarity problem (see Cottle, Pang, and Stone [8]). Let A be a V by V matrix, that is, a square matrix whose rows and columns are both indexed by the set V Cottle $et\ al\ [8,\ p.\ 71]$ define an operation on a nonsingular principal submatrix A[X], that differs from A*X only by negating the columns indexed by X. (Their operation does not preserve symmetry.)

THEOREM 2.1 (See Cottle et al. [8, p. 230]). Let A[X] be a nonsingular principal submatrix of a V by V matrix A. Then, for $Y \subseteq V$,

$$\det(A*X \llbracket Y \rrbracket) = \pm \det(A \llbracket X \varDelta Y \rrbracket) / \det(A \llbracket X \rrbracket).$$

Let A and B be symmetric (0,1)-matrices such that A reduces to B. Suppose that A' is a PU-signing of A. Since A reduces to B, there exists a principal submatrix A[X] of A that is nonsingular over GF(2), and B is isomorphic to a principal submatrix of $A \times X$. Since A[X] is nonsingular over GF(2), $\det(A'[X]) \equiv 1$, modulo 2; hence A'[X] is nonsingular over the reals. By Theorem 2.1, A' * X is PU, and A' * X is a signing of $A \times X$. However, since A' * X is PU, every principal submatrix of A' * X is PU, in particular, B has a PU-signing. Therefore, the family of symmetric matrices that admit PU-signings is closed under reduction. Then proving that $B_1, ..., B_5$ do not admit PU-signings proves Theorem 1.1 in the easy direction; this is left as an exercise for the reader.

Delta-Matroids

Theorem 1.1 can be viewed as an excluded minor characterization for a class of delta-matroids. Let \mathscr{F} be a collection of subsets of V. If \mathscr{F} satisfies the symmetric exchange axiom (defined below) then $M = (V, \mathscr{F})$ is a delta-matroid (see Bouchet [1]).

(SEA) For $X, Y \in \mathcal{F}$ and $x \in X \Delta Y$ there exists $y \in X \Delta Y$ such that $X \Delta \{x, y\} \in \mathcal{F}$.

Let $M = (V, \mathcal{F})$ be a delta-matroid. It is easy to verify that, for any $S \subseteq V$, $(V, \mathcal{F} \Delta S)$ is also a delta-matroid, where $\mathcal{F} \Delta S = \{F\Delta S: F \in \mathcal{F}\}$; this operation is referred to as *twisting*. Also, $(V \setminus S, \{F \subseteq V \setminus S: F \in \mathcal{F}\})$ is a delta-matroid; we refer to this operation as *deletion*. Any delta-matroid that comes from M by twisting and/or deletion is referred to as a *minor* of M.

THEOREM 2.2 (Bouchet [3]). Let A be a symmetric V by V matrix, and define $\mathscr{F}_A = \{S \subseteq V : A[S] \text{ is nonsingular}\}$. Then $M(A) = (V, \mathscr{F}_A)$ is a delta-matroid.

Proof. Suppose $X, Y \in \mathcal{F}_A$ and $x \in X\Delta Y$ such that for all $y \in X\Delta Y$, $X\Delta\{x,y\} \notin \mathcal{F}_A$. Denote by $A' = (a_{ij})$ the matrix A*X. By Theorem 2.1, A'[S] is nonsingular if and only if $S\Delta X \in \mathcal{F}_A$. By assumption $X \subseteq \{x\} \notin \mathcal{F}_A$, so $a_{xx} = 0$. However, $A'[X\Delta Y]$ is nonsingular, so there exists $y \in X\Delta Y$ such that $a_{xy} \neq 0$. Then, since $a_{xx} = 0$, $A'[\{x,y\}]$ is nonsingular. Therefore, $X\Delta\{x,y\} \in \mathcal{F}_A$, which is a contradiction.

Bouchet proved that Theorem 2.2 also holds for skew-symmetric matrices. Delta-matroids arising from symmetric and skew-symmetric matrices are called *representable* (see [3]). A delta-matroid that can be represented by a symmetric PU-matrix is called *equable*. Deletion and twisting (by feasible sets) are both natural operations for representable delta-matroids. For $X \subseteq V$, the delta-matroid obtained by deleting X is $M(A[V \setminus X])$, and, for $X \in \mathscr{F}_A$, the delta-matroid obtained by twisting X is M(A * X).

Let M be a binary delta-matroid (that is, a delta-matroid representable over GF(2)). Theorem 1.1 implies that M is representable by a symmetric PU-matrix if and only if M does not contain a minor isomorphic to $M(B_i)$, for i=1,...,5. Bouchet and Duchamp [6] characterized the binary delta-matroids by excluded minors. Therefore we have an excluded minor characterization for the class of equable delta-matroids.

The following theorem shows that equable delta-matroids form a fundamental class of representable delta-matroids. (A referee noticed a gap in the original direct proof of the theorem and indicated how it could be fixed. However for brevity, we shall derive the theorem as a consequence of Theorem 1.1.)

Theorem 2.3. Let $M = (V, \mathcal{F})$ be a delta-matroid. The following are equivalent:

- (i) M is equable,
- (ii) M can be represented over every field by a symmetric matrix, and
- (iii) M can be represented over both GF(2) and GF(3) by a symmetric matrix.

Proof. That (i) implies (ii), and (ii) implies (iii) is easy. So it suffices to prove that (iii) implies (i). We shall prove the contrapositive.

Let M be a binary delta-matroid, and suppose that M is not equable. Then, by Theorem 1.1, M contains a minor that is isomorphic to one of the binary delta-matroids $M(B_1)$, ..., $M(B_5)$. It is left to the reader to check that

none of $M(B_1)$, ..., $M(B_5)$ is representable over GF(3) by a symmetric matrix. Hence M cannot be represented over GF(3) by a symmetric matrix.

Support Graphs

The techniques used in the proof of Theorem 1.1 are mainly graphical. In this section we set up the notation. Let $A=(a_{ij})$ be a V by V symmetric matrix, we call V the vertex set of A. If $a_{vv}\neq 0$ then we call the vertex v a loop-vertex (otherwise v is a nonloop-vertex). We denote the set of loop-vertices by V_A^1 . We now define a simple, undirected graph G(A)=(V,E(A)) such that $E(A)=\{vw\colon v\neq w,\, a_{vw}\neq 0\}$. G(A) is called the support graph of A. Note that if A is a (0,1)-matrix then A is uniquely defined by G(A) and V_A^1 . The support graphs of B_1 , ..., B_5 are depicted in Fig. 2 (we have depicted the loop-vertices in bold).

Let G = (V, E) be a graph. If $X \subseteq V$ then the graph *induced* by X, denoted G[X], is the graph obtained by deleting the vertices in $V \setminus X$ from G. We denote by $N_G(X)$ the neighbour set of X, that is, the set of vertices in $V \setminus X$ that are adjacent to some vertex in X. For a vertex v, we denote $N_G(\{v\})$ by $N_G(v)$ and we denote $G[V \setminus \{v\}]$ by G - v. Similarly, for the symmetric matrix A, we denote $A[V \setminus \{v\}]$ by A - v. For a graph G' we denote by $V_{G'}$ and $E_{G'}$ its vertex set and edge set.

Let X be a subset of the vertices of A, and let A' be the matrix obtained by multiplying the rows and columns corresponding to vertices in X by -1. A' is symmetric, and A' is PU if and only if A is PU; furthermore, the set $\{uv: a_{uv} \neq a'_{uv}\}$ forms a cut of G(A). We say that A and A' are equivalent under *cut-switching*. We refer to -A as the *negation* of A. Two matrices A and B are said to be *equivalent under switching* if A is equivalent under cut-switching to either A or the negation of A.

Beta-Balancedness

Let G be a graph. A signing of G is an assignment of ± 1 to the edges of G. Suppose that, for every chordless circuit C of G, we assign a $\{0, 1\}$ value β_C to C. A β -balanced signing of G is a signing with the property

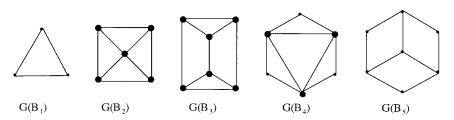


Fig. 2. Support graphs.

that, for every chordless circuit C, the number of edges of C signed +1 is equivalent to β_C modulo 2.

We now define two interesting classes of graphs. A three-path configuration is a graph of the form described in Fig. 3, where P_i is an induced path of length $|P_i|$, i=1,2,3. The second class of graphs consists of the partial wheels; a graph G is a partial wheel with hub v if v is a vertex of degree at least 3 in G, and G-v is a circuit. The following remarkable result is due to Truemper [10].

Theorem 2.4. Let G be a graph with $\{0,1\}$ value β_C assigned to every induced circuit C of G. If G has no β -balanced signing then G contains an induced subgraph that is either a partial wheel or a three-path configuration, and which has no β -balanced signing.

Elementary Pivoting

The following theorem about principal pivoting is implied by the quotient formula for the Schur complement (see Cottle *et al.* [8, p. 76]).

THEOREM 2.5. Let A[X] be a nonsingular principal submatrix of a square matrix A, and let A * X[Y] be a nonsingular principal submatrix of A * X. Then (A * X) * Y and $A * (X \Delta Y)$ are equivalent up to cut-switching.

Let A be a symmetric matrix. Suppose that A[X] is a nonsingular principal submatrix of A and that there exists $X' \subseteq X$ such that A[X'] is nonsingular. Then, by Theorem 2.5, A*X and $A*X'*(X\backslash X')$ are equivalent up to cut-switching. We call A*X an elementary pivot if there exists no proper subset X' of X such that A[X'] is nonsingular. Trivially, for each $v \in V_A^1$, $A*\{v\}$ is an elementary pivot. Define $V_A^2 = \{vw \in E(A): v, w \notin V_A^1\}$. For each $vw \in V_A^2$, $A*\{v, w\}$ is also an elementary pivot. Furthermore, these are the only elementary pivots. We denote by A*v and A*vw the elementary pivots $A*\{v\}$ and $A*\{v, w\}$ respectively.

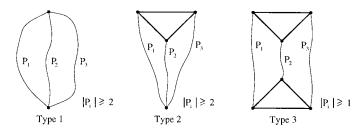


Fig. 3. Three-path configurations.

Let $A = (a_{ij})$ be a V by V symmetric (0, 1)-matrix. For a loop-vertex v of A, we have

$$A \times v = \left(\frac{1}{\chi_v} \middle| \begin{matrix} \chi_v^T \\ A[V-v] - \chi_v \chi_v^T \end{matrix}\right),$$

where χ_v is the submatrix of A indexed by rows V-v and column v. We now describe the graphical effect of an elementary binary pivot. Let v be a vertex of a graph G. We define a graph $G \times v$ by replacing the induced subgraph $G[N_G(v)]$ by its complement; that is, $E(G) \Delta E(G \times V) = \{uw: u, w \in N_G(v)\}$. This operation is called *local complementation*. The following proposition is immediate from the definitions.

PROPOSITION 2.6. If v is a loop-vertex of a symmetric (0, 1)-matrix A, then $G(A \times v) = G(A) \times v$ and $V^1_{A \times V} = V^1_A \Delta N_{G(A)}(v)$.

Let $uw \in V_A^2$, and χ_i be the submatrix of A indexed by rows V - u - w and column i. Thus

$$A = \begin{pmatrix} 0 & 1 & \chi_u^T \\ \hline 1 & 0 & \chi_w^T \\ \hline \chi_u & \chi_w & A[V-u-w] \end{pmatrix}$$

and

$$A \times uw = \begin{pmatrix} 0 & 1 & \chi_w^T \\ \hline 1 & 0 & \chi_u^T \\ \hline \chi_w & \chi_u & A[V-u-w] - (\chi_w \chi_u^T + \chi_u \chi_w^T) \end{pmatrix}$$

where the first and second rows are indexed by u and w. Graphically explaining the binary pivot in this case is more awkward. For a pair of disjoint subsets S, S' of V we define $[S, S'] = \{ss': s \in S, s' \in S'\}$. Let uw be an edge of a graph G. We define sets $S_u = (N_G(U) - w) \setminus N_G(w)$, $S_w = (N_G(w) - u) \setminus N_G(u)$, and $S_{uw} = N_G(u) \cap N_G(w)$. Now define an intermediate graph G' such that

$$E(G) \Delta E(G') = [S_u, S_w] \cup [S_u, S_{uw}] \cup [S_w, S_{uw}].$$

 $G \times uw$ is obtained from G' by switching the vertex labels u and w. (Curiously, $G \times uw = G \times u \times w \times u$.) The following proposition follows from these definitions.

PROPOSITION 2.7. Let A be a symmetric (0,1)-matrix. Then, for $uw \in V_A^2$, $G(A \times uw) = G(A) \times uw$ and $V_{A \times uw}^1 = V_A^1$.

3. LOOP-BALANCED SIGNINGS

In this section we show that, to find a PU-signing of a matrix, we can sign the diagonal without knowing the signs of the nondiagonal entries. Let A be a symmetric (0, 1)-matrix. For a path P of G(A) we denote by $\kappa_A(P)$ the number of nonloop-vertices of P. A signing $A' = (a'_{ij})$ of A is called *loop-balanced* if, for every pair of loop-vertices v, w and every chordless (v, w)-path P, $a'_{vv} = (-1)^{\kappa_A(P)} a'_{ww}$. If G(A) is connected then any two loop-balanced signings of A sign the loop-vertices equivalently under negation.

LEMMA 3.1. Let A be a symmetric $(0, \pm 1)$ -matrix such that G(A) is a path. A is PU if and only if A is loop-balanced.

Proof. If A has a zero diagonal, then, by an elementary determinant calculation, A is PU. Let v be a loop-vertex of A. If A*v is not a $(0,\pm 1)$ -matrix then, A is neither loop-balanced nor PU. If A*v is a $(0,\pm 1)$ -matrix, then G(A*v)-v is a path; furthermore A*v-v is loop-balanced if and only if A is loop-balanced. Hence the result follows inductively.

The following lemma is an immediate consequence of Lemma 3.1.

Lemma 3.2. Let A be a symmetric (0, 1)-matrix. Then every PU-signing of A is loop-balanced.

LEMMA 3.3. Let A be a symmetric (0, 1)-matrix. If A has no loop-balanced signing then A reduces to B_1 .

Proof. Suppose A has no loop-balanced signing. We begin by proving the result in the special case that G(A) is a circuit.

CLAIM. If G(A) is a circuit then A can be reduced to B_1 .

Let G(A) be a circuit. Then A has no loop-balanced signing if and only if the following conditions are satisfied:

- (i) A has an odd number of nonloop-vertices, and
- (ii) there exist two loop-vertices that are not adjacent in G(A).

We prove the result by induction on the size of A. By (ii), if A has size 3 then A has a loop-balanced signing. Suppose that A has size 4. By (i) and (ii), A has exactly three loop-vertices; let v be a loop-vertex whose neighbours in G(A) are both loop-vertices. Then $(A \times v) - v$ is isomorphic to B_1 .

Now suppose that A has size at least 5. By (ii), there exist two loop-vertices that are not adjacent in G(A), and, by (i), A has at least one nonloop-vertex. Then, since A has size at least 5, there exist vertices v, v', w such that v, w are loop-vertices that are not adjacent in G(A), and v' is a nonloop-vertex that is adjacent in G(A) to v but not w. Note that $G(A \times v) - v$ is a circuit, and $A \times v - v$ has an odd number of nonloop-vertices. Furthermore, v', w are loop-vertices of $A \times v$ that are not adjacent in $G(A \times v) - v$; hence $(A \times v) - v$ has no loop-balanced signing. Then, by induction, $(A \times v) - v$ reduces to B_1 , so A reduces to B_1 , which proves the claim.

We now suppose that there exist loop-vertices v, w and a pair of chordless (v, w)-paths, $P_1 = v$, x_1 , ..., x_a , w and $P_2 = v$, y_1 , ..., y_b , w of G(A) such that $\kappa_A(P_1) + \kappa_A(P_2)$ is odd. Furthermore, we suppose that the paths P_1 and P_2 are chosen so that $|V(P_1) \cup V(P_2)|$ is as small as possible.

Note that in $G(A \times v)$, P_1 and P_2 are chordless (v, w)-paths, and $\kappa_{a \times v}(P_1) + \kappa_{A \times v}(P_2)$ is odd. Hence $A \times v$ is not loop-balanceable. Similarly, $A \times w$ is not loop-balanceable.

Suppose that $x_1 = y_1$ we may assume, in this case, that x_1 is a loop vertex, for otherwise we can pivot on v. Now define $P'_1 = x_1, ..., x_a, w$ and $P'_2 = y_1, ..., y_b, w$; P'_1 and P'_2 are chordless (x_1, w) -paths such that $\kappa_A(P'_1) + \kappa_A(P'_2)$ is odd, and $|V_{P'_1} \cup V_{P'_2}| < |V_{P_1} \cup V_{P_2}|$, which is a contradiction. Hence, we may assume that $x_1 \neq y_1$; similarly we may assume that $x_a \neq y_b$. We may also assume that $x_1 y_1$ is not an edge, since otherwise pivoting on v would remove it. Similarly, we may assume that $x_a y_b$ is not an edge.

If $v, x_1, x_2, ..., x_a, w, y_b, y_{b-1}, ..., y_1$ is a chordless circuit then, by the claim, we can reduce A to B_1 . Hence we may assume that there exists an edge $x_i y_j$ in G(A). Let i be minimum such that x_i is adjacent to some y_j , and let j be maximum such that y_j is adjacent to x_i . Let P be the path $v, x_1, ..., x_i, y_j, ..., y_b, w$; note that P is chordless. Now let P' be one of P_1, P_2 such that $\kappa_A(P') \not\equiv \kappa_A(P)$ modulo 2. However, $|V(P) \cup V(P')| < |V(P_1) \cup V(P_2)|$. Hence we have a contradiction to the choice of P_1, P_2 .

Therefore, for every pair of loop-vertices v, w, and every pair of chordless (v, w)-paths P_1, P_2 , we have $\kappa_A(P_1) \equiv \kappa_A(P_2)$ modulo 2; denote by $\kappa(v, w)$ the value $\kappa_A(P_1)$. We may assume that G(A) is connected, so $\kappa(v, w)$ is well defined modulo 2, for every pair v, w of loop-vertices. Let x_1 be a loop-vertex of A. Define a signing $A' = (a_{ij})$ of A such that $a'_{x_1x_1} = +1$ and, for every other loop-vertex v of A, $a'_{vv} = (-1)^{\kappa(v, x_1)}$. Since A has no loop-balanced signing, A' is not loop-balanced, so there exist loop-vertices x_2, x_3 such that $a'_{x_2x_2} \neq (-1)^{\kappa(x_2, x_3)} a'_{x_3x_3}$. Therefore $\kappa(x_2, x_3) + \kappa(x_1, x_3) + \kappa(x_1, x_2)$ is odd.

Let $X \subseteq V$ be minimal such that X contains x_1, x_2, x_3 and G(A[X]) is connected. For each i, j, let P_{ij} be a chordless (x_i, x_j) -path in G(A[X]). The union of any two of the paths P_{12}, P_{23}, P_{13} yields a connected graph containing the vertices x_1, x_2, x_3 . Therefore, by the minimality of X, each

 $x \in X$, is contained in at least two of the paths P_{12} , P_{23} , P_{13} . However, since $\kappa_A(P_{12}) + \kappa_A(P_{13}) + \kappa_A(P_{23})$ is odd, there must exist a nonloop-vertex x that is contained in all three paths P_{12} , P_{13} , P_{23} . Then, since the paths P_{ij} are chordless, for i = 1, 2, 3, there is a unique (x, x_i) -path P_i in G(A[X]), and every edge of G(A[X]) is on one of these paths.

We claim that A[X] reduces to B_1 . We may assume that for i = 1, 2, 3, x_i is the only loop-vertex of A[X] on path P_i , since, otherwise we replace x_i by the closest loop-vertex to x on P_i , and redefine X accordingly. Furthermore, we may assume that P_i has length 1, since otherwise we shorten P_i by pivoting on x_i , and then deleting x_i from X. Then $A[X] \times x_1 \times x - x$ is isomorphic to B_1 .

4. BALANCEABLE MATRICES

We begin this section by proving some basic facts about circuits.

LEMMA 4.1. Let A be a loop-balanced $(0, \pm 1)$ -matrix such that G(A) is a circuit, and let $X \subseteq V$ such that $|X| \le |V| - 3$. If A[X] is nonsingular then $G(A * X)[V \setminus X]$ is a circuit, and $A * X[V \setminus X]$ is PU if and only if A is PU.

Proof. By Theorem 2.1 and Lemma 3.1, $A * X[V \setminus X]$ is PU if and only if A is PU. To see that $G(A * X)[V \setminus X]$ is a circuit, it suffices to check the elementary pivots, for which the result is obvious.

LEMMA 4.2. Let A be a (0, 1)-matrix such that G(A) is a circuit. If A has no PU-signing then A reduces to B_1 .

Proof. Suppose that A has no PU-signing. By Lemma 3.3, we may assume that A has a loop-balanced signing. By Lemma 4.1, we can reduce A to either a matrix of size 3, or a matrix of size 4 that has no loop-vertices. If G(A) is a circuit of length 3, and $A \neq B_1$ then there exists a loop-vertex v of A. Thus $G(A \times v)$ is a path, so by Lemma 3.1, A has a PU-signing. If G(A) is a circuit of length 4, and A has no loop-vertices then, for an edge vw of G(A), $G(A \times vw)$ is a path, so A has a PU-signing.

LEMMA 4.3. Let A be a (0,1)-matrix such that G(A) is a circuit. Any two PU-signings of A are equivalent under switching.

Proof. By Lemma 4.1, it suffices to check the result for circuits of length 3 or 4; this is left to the reader.

We call a symmetric $(0, \pm 1)$ -matrix A balanced if A is loop-balanced and, for every induced circuit C of G(A), A[V(C)] is PU. A symmetric (0, 1)-matrix A is called balanceable (otherwise it is nonbalanceable) if it has

a balanced signing. The following lemma is a generalization of a theorem of Camion [7] for totally unimodular matrices.

LEMMA 4.4. Let A be a symmetric (0,1)-matrix, such that G(A) is connected. Any two balanced signings of A are equivalent under switching. In particular, any two PU-signings of A are equivalent under switching.

Proof. Let $A_1=(a_{ij}^1)$ and $A_2=(a_{ij}^2)$ be balanced signings of A. The diagonals of A_1 and A_2 are equivalent up to reversing, so we may assume that they are the same. Define $S=\{ij\colon a_{ij}^1\neq a_{ij}^2\}$. By Lemma 4.3, for each chordless circuit C of G, $|E(C)\cap S|$ is even. Hence for each circuit C of G, $|E(C)\cap S|$ is even. Therefore the edge set S is a cut in G(A), so A_1 and A_2 are equivalent under cut-switching.

We define an *obstruction* to be a symmetric (0, 1)-matrix, that does not reduce to B_1 , that does not admit a PU-signing, and that does not reduce to any smaller matrix with these properties.

LEMMA 4.5. Let A be a balanceable obstruction, and let $X \subseteq V$ such that $|X| \leq |V| - 3$ and A[X] is nonsingular. Then $G(A \times X)[V \setminus X]$ is a circuit.

Proof. Let A' be a balanced signing of A. If $Y \subseteq V$ and A'[Y] is not unimodular then, by Lemma 4.4, A[Y] has no PU-signing. Therefore, since A is an obstruction, the only principal submatrix of A' that is not unimodular is A' itself. By Theorem 2.1, the only principal submatrix of A' * X that is not unimodular is $A' * X[V \setminus X]$. If A' * X is balanced then $A \times X[V \setminus X]$ has no PU-signing, contradicting that A is an obstruction. Therefore A' * X is not balanced; and, since $A' * X[V \setminus X]$ is the only non-unimodular submatrix of A' * X, $G(A' * X)[V \setminus X]$ must be a circuit.

The following proposition removes some trivial cases; the proof is left as an exercise. Note that if A is an obstruction, then G(A) is connected, and G(A) is neither a path nor a circuit. There are, up to isomorphism, just four such graphs with at most four vertices.

Proposition 4.6. Every obstruction has size at least 5.

LEMMA 4.7. If A is an obstruction, then A is equivalent under binary pivoting to a non-balanceable obstruction.

Proof. Suppose, by way of contradiction, that A is an obstruction and every matrix equivalent to A under pivoting is balanceable.

CLAIM. If $X \subseteq V$ such that $|X| \leq |V| - 3$, and A[X] is nonsingular, then $G(A)[V \setminus X]$ and $G(A \times X)[V \setminus X]$ are both circuits.

Since A[X] and $A \times X[X]$ are nonsingular, and A and $A \times X$ are balanceable, the claim follows by Lemma 4.5.

Suppose that A has a loop-vertex x. Let y be a neighbour of x in G(A). We may assume that y is a not a loop-vertex, since otherwise we could make y a nonloop-vertex by pivoting on x. Both $A[\{x\}]$ and $A[\{x,y\}]$ are nonsingular. Then, by the claim, G(A) - x and G(A) - x - y are both circuits, which is clearly impossible. Hence A has no loop-vertices.

Since A has no loop-vertices and A does not reduce to B_1 , G(A) is bipartite. By the claim, for every edge vw of G(A), G(A) - v - w is a circuit. Let v_1, v_2, v_3, v_4 be consecutive vertices in any such circuit. We may assume that v_1v_4 is not an edge, since otherwise we can remove the edge by pivoting on v_2v_3 . Since $G(A) - v_2 - v_3$ is a circuit and v_1v_4 is not an edge, v_1 has degree 3 in G(A). However, v_1 is adjacent to neither v_3 nor v_4 , which contradicts that $G(A) - v_3 - v_4$ is a circuit.

5. NONBALANCEABLE MATRICES

The problem has now simplified to finding the nonbalanceable obstructions. This task is made easy by the following lemma.

Lemma 5.1. Let A be a nonbalanceable obstruction. Then G(A) is either a three-path configuration or a partial wheel.

Proof. Recall that B_1 is not considered an obstruction. Then, by Lemma 3.3, A has a loop-balanced signing, say $A' = (a'_{ij})$. For each induced circuit C of G(A), let $H_C = A[V(C)]$. Then, by Lemma 4.2, H_C has a PU-signing, say $H'_C = (h'_{ij}^C)$. We may assume that for every loop-vertex v of H_C , $h'_{vv}^C = a'_{vv}$ (otherwise we negate H'_C). We now define $β_C$ to be 0 (respectively 1) if the number of edges vw of C with $h'_{vw}^C = +1$ is even (respectively odd). By Lemma 4.3, A'[V(C)] is PU if and only if it is equivalent under cutswitching to H'_C , that is, the number of edges vw of C with $a'_{vw} = +1$ is equivalent to $β_C$ modulo 2. Hence A is balanceable if and only if G(A) has a β-balanced signing. The result then follows by Theorem 2.4.

LEMMA 5.2. Let A be a nonbalanceable obstruction, and let $X \subseteq V$ such that $|X| \leq |V| - 3$, A[X] is nonsingular, and $G(A)[V \setminus X]$ is not a circuit. Then $A \times X$ is not balanceable. Furthermore, if $X = \{v\}$, then $N_{G(A)}(v)$ is not a stable set of G(A).

Proof. If $A \times X$ is balanceable then, by Lemma 4.5, $G(A)[V \setminus X] = G((A \times X) \times X)[V \setminus X]$ is a circuit, a contradiction. Therefore, $A \times X$ is a nonbalanceable obstruction. Now suppose that $X = \{v\}$, and that $N_{G(A)}(v)$ is a stable set of G(A). Then $N_{G(A)}(v)$ induces a clique of $G(A \times v)$. However, by Lemma 5.1, $G(A \times v)$ is a three-path configuration or a partial wheel, so it must be the case that $G(A \times v)$ is the complete graph on 4 vertices, contradicting Proposition 4.6.

Lemma 5.3. Let A be a nonbalanceable obstruction such that G(A) is a three-path configuration. Then G(A) is isomorphic to $G(B_3)$.

Proof. First suppose that G(A) is a three-path configuration of Type 1 or Type 2. Let w be a vertex of degree 3 in G(A) such that $N_{G(A)}(w)$ is a stable set. By Lemma 5.2, w is not a loop-vertex. If all three vertices adjacent to w in G(A) are loop-vertices then A is not loop-balanceable, which, by Lemma 3.3, is a contradiction. Therefore there exists a nonloop-vertex v adjacent to w in G(A). This is depicted in Fig. 4. G(A) - v - w is not a circuit; so, by Lemma 5.2, $A \times vw$ is nonbalanceable. Therefore, by Lemma 5.1, $G(A \times vw)$ is a three-path configuration or a partial wheel. Note that, in $G(A \times vw)$, either w is adjacent to a vertex of degree at least 4, or v is adjacent to a vertex of degree 1. This is a contradiction, since a three-path configuration or a partial wheel can have neither a vertex of degree 1 nor a vertex of degree 2 that is adjacent to a vertex of degree at least 4.

Now, suppose that G(A) is a three-path configuration of Type 3, and that G(A) is not isomorphic to $G(B_3)$, one of the paths, say P_3 , has length at least 2. Let v be an end vertex of P_3 , and let w be the vertex of P_3 that is adjacent to v, as depicted in Fig. 5. By Lemma 5.2, w is a nonloop-vertex. G(A)-v is not a circuit, so, by Lemma 4.5, if v is a loop-vertex then $A\times v$ is nonbalanceable. However, $G(A\times v)$ is neither a three-path configuration nor a partial wheel, which is a contradiction. Therefore we may assume that v is a nonloop-vertex. Now G(A)-v-w is not a circuit; so, by Lemma 5.2, $A\times vw$ is nonbalanceable. However, $G(A\times vw)$ is neither a three-path configuration nor a partial wheel, which is a contradiction.

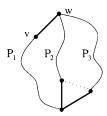
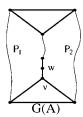
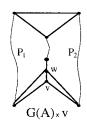


Fig. 4. Three path configuration, Type 1 or Type 2.

114





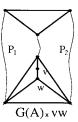


Fig. 5. Three path configuration, Type 3

Lemma 5.4. Let A be a nonbalanceable obstruction such that G(A) is a partial wheel, and let C be an induced circuit of G(A). Then, for every edge vw of G(A) that is not an edge of C, $|N_{G(A)}(\{v,w\}) \cap V(C)| \ge 2$; in particular G(A) contains no pair of adjacent vertices of degree 2.

Proof. Suppose there exists an edge vw of G(A) such that $N_{G(A)}(\{v,w\}) \cap V(C)| \leq 1$. Let x be the hub of the partial wheel; C must contain the vertex x and vw must be an edge of G(A)-x. Suppose that v and w are adjacent vertices of degree 2. By Lemma 5.2, neither v not w are loop-vertices. Now G(A)-v-w is not a circuit, so, by Lemma 5.2, $A\times vw$ is not balanceable. However, $G(A\times vw)$ contains an edge v'w' such that $G(A\times vw)-v'-w'$ is not connected, so $G(A\times vw)$ is neither a partial wheel nor a three-path configuration, contradicting Lemma 5.1. Thus, we may assume that at least one of v and w is adjacent to v. Then neither v nor v may be adjacent to any vertex of v other than v; this is depicted in Fig. 6. In this case v must have size at least 7.

Suppose that v is a loop-vertex. Then, by Lemma 5.2, $G(A \times v)$ is a three-path configuration or a partial wheel. However, $G(A \times v)$ has a pair of vertex disjoint circuits, so it is not a partial wheel. Therefore, $G(A \times v)$ is a three-path configuration, so, by Lemma 5.3, $G(A \times v)$ is isomorphic to $G(B_4)$, contradicting that A has size at least 7. Hence, we may assume that v (and, similarly, w) is not a loop-vertex.

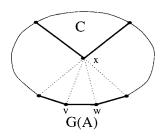


Fig. 6. Partial wheel.

By Lemma 5.2, $G(A \times vw)$ is a three-path configuration or a partial wheel. However, $G(A \times vw)$ has a pair of vertex disjoint circuits, so it is not a partial wheel. Therefore, $G(A \times vw)$ is a three-path configuration, so, by Lemma 5.3, $G(A \times vw)$ is isomorphic to $G(B_4)$, contradicting that A has size at least 7.

The proof is now reduced to case analysis. We hide much of it in the following lemma.

LEMMA 5.5. Let A be a nonbalanceable obstruction such that G(A) is isomorphic to one of the graphs depicted in Fig. 7. Then A reduces to B_2 , B_3 or B_4 .

Before beginning the case analysis for Lemma 5.5, we use it to prove the main result.

Proof of Theorem 1.1. Let A be an obstruction. We are required to prove that A is equivalent under binary pivoting to one of B_2 , ..., B_5 . By Lemma 4.7, we may assume that A is nonbalanceable. Then, by Lemma 5.1. G(A) is either a three-path configuration, or a partial wheel.

Suppose that G(A) is a three-path configuration. Then, by Lemma 5.3, G(A) isomorphic to $G(B_3)$. Let x_1, x_2, x_3 be vertices that induce a triangle of G(A); at least one x_i , say x_1 , must be a loop-vertex (otherwise A reduces to B_1). $G(A) - x_1$ is not a circuit, so $A \times x_1$ is nonbalanceable. However, $G(A \times x_1)$ is isomorphic to G_5 of Fig. 7, so, by Lemma 5.5, A is equivalent under binary pivoting to G_2 , G_3 , or G_4 .

Now suppose that G(A) is a partial wheel. By Lemmas 5.4 and 5.5 and Proposition 4.6, we may assume that A has size at least 7. Let C be a shortest circuit of G(A). By Lemma 5.5, C has length 3 or 4. If $|V_{G(A)}| \ge |V_C| + 4$ then there exists an edge vw of G that is not an edge of G, such that $|N_{G(A)}(\{v,w\}) \cap V_C| \le 1$ contradicting Lemma 5.4. Then G cannot have length 3, since otherwise G would have fewer than seven vertices. Hence G has length 4, and G has size exactly 7. $G(B_5)$ is the unique partial wheel, up to isomorphism, with seven vertices and no circuit of length 3. Therefore G(A) is isomorphic to $G(B_5)$. Let G0 be the hub of G(A)1. By Lemma 5.2, every vertex of G1 other than G2 is a nonloop-vertex. If G3 is also

Fig. 7. Awkward cases.

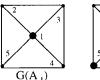


Fig. 8. Loop-vertices for G_2 .

a nonloop-vertex, then A is equivalent to B_5 ; otherwise if x is a loop-vertex, then $(A \times x) - x$ is equivalent to B_4 , a contradiction.

Proof of Lemma 5.5. Suppose that G(A) is isomorphic to G_2 . Note that A must be loop-balanceable. There are, up to isomorphism, five choices for the loop-vertices of A-1, and each choice uniquely determines whether or not 1 is a loop-vertex. The possibilities are depicted in Fig. 8. $G(A_i \times 1 \times 2 \times 3)$ is a path for i=1,2,3, so these matrices are not obstructions. $G(A_4)-1-3$ is not a circuit, but $G(A_4 \times \{1,3\})$ is neither a partial wheel nor a three-path configuration, so, by Lemma 5.2, A_4 is not an obstruction. A_5 is isomorphic to B_2 .

Suppose that G(A) is isomorphic to G_1 . By Lemma 5.2, 2 is not a loop-vertex of A. We may assume that neither 3 nor 5 are loop-vertices of A, since $G_1 \times 3$ and $G_1 \times 5$ are both isomorphic to G_2 . Therefore one of 1,4 must be a loop vertex; we assume by symmetry that 1 is a loop-vertex. However, $G(A \times 1 \times 5 \times 2)$ is a path, so A is not an obstruction.

Suppose that G(A) is isomorphic to G_4 . By Lemma 5.2, 3, 4 and 5 are all not loop-vertices. However, G_4-1 is an odd circuit, so either 2 or 6 must be a loop-vertex; we assume by symmetry that 2 is a loop-vertex. $G(A \times 2)$ and $G(A \times 2 \times 45)$ are depicted in Fig. 9. (The vertices indicated by squares may or may not be loop vertices.) By Lemma 5.2, 1 is a non-loop-vertex in $A \times 2$, and 6 is a nonloop-vertex of $A \times 2 \times 45$; hence, 1 and 6 are both loop vertices of A. Thus, the loop-vertices of A are 1, 2 and 6, so, $A \times 1$ is isomorphic to B_4 .

Suppose that G(A) is isomorphic to G_3 . By Lemma 5.2, 3, 4, and 5 are all not loop-vertices. However, $G_3 - 1$ is an odd circuit, so either 2 or 6

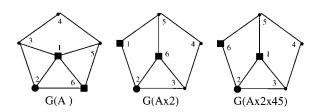


Fig. 9. Pivoting in G_4 .

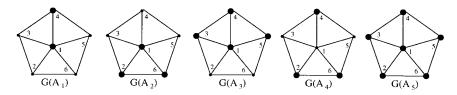


Fig. 10. Loop-vertices for G_5 .

must be a loop-vertex; we assume by symmetry that 2 is a loop-vertex. However $G(A \times 2)$ is isomorphic to G_4 , so A reduces to B_4 .

Finally, suppose that G(A) is isomorphic to G_5 . There are, up to isomorphism, five choices for the loop-vertices of A-1 so that A-1 does not reduce to B_1 . Each choice uniquely determines whether or not 1 is a loop-vertex; the possibilities are depicted in Fig. 10. $A_i \times 1-1$ reduces to B_1 for i=1,2,3,5, so these matrices are not obstructions. $A_4 \times 4$ is isomorphic to B_3 .

ACKNOWLEDGMENTS

I thank Kristina Vušković for suggesting Truemper's result as a means of simplifying the proof of Theorem 1.1. I also thank Bill Cunningham for numerous useful discussions.

REFERENCES

- A. Bouchet, Greedy algorithm and symmetric matroids, Math. Programming 38 (1987), 147–159.
- 2. A. Bouchet, Unimodularity and circle graphs, Discrete Math. 66 (1987), 203-208.
- 3. A. Bouchet, Representability of ∆-matroids, Collog. Soc. Janos Bolyia 52 (1988), 167–182.
- A. Bouchet, A characterization of unimodular orientations of simple graphs, J. Combin. Theory Ser. B 56 (1992), 45–54.
- 5. A. Bouchet, W. H. Cunningham, and J. F. Geelen, Unimodularity of principal submatrices of skew-symmetric matrices, in preparation.
- A. Bouchet and A. Duchamp, Representability of ∆-matroids over GF(2), Linear Algebra Appl. 146 (1991), 67–78.
- P. Camion, Caractérisation des matrices unimodulaires, Cahiers Centre Études Rech. Opér. 5 (1963), 181–190.
- 8. R. W. Cottle, J.-S. Pang, and R. E. Stone, "The Linear Complementarity Problem," Academic Press, San Diego, 1992.
- A. M. H. Gerards, A short proof of Tutte's characterization of totally unimodular matrices, *Linear Algebra Appl.* 114/115 (1989), 207–212.
- K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, J. Combin. Theory Ser. B 32 (1982), 112–139.
- W. T. Tutte, A homotopy theorem for matroids, I, II, Trans. Amer. Math. Soc. 88 (1958), 144–174.
- 12. W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Stand. Sect. B 69 (1965), 1-47.