Polynomial Convergence of an Infeasible-Interior-Point Method for Self-Scaled Conic Programming

Bharath Kumar Rangarajan and Michael J. Todd Cornell University, Ithaca, NY

http://www.orie.cornell.edu/~{bharath|miketodd}/

- Problem Definition
- Algorithm
- Outline of Analysis
- Indicators of Infeasibility
- Summary

Problem Definition

$$(P) \qquad \min\{\langle c, x \rangle : \quad Ax = b, \ x \in K\}.$$

(D)
$$\max\{\langle b, y \rangle : A^*y + s = c, \ s \in K^*\}.$$

E and Y are finite-dimensional real vector spaces, $b \in Y^*$ and $c \in E^*$.

- K is a regular closed convex cone in E.
- K^* is the dual cone in E^* .

Examples

Linear Programming

(P)
$$\min\{c^T x : Ax = b, x \ge 0\},\$$

(D)
$$\max\{b^T y: A^T y + s = c, s \ge 0\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Semidefinite Programming

(P)
$$\min \left\{ \operatorname{trace}(C^T X) : \mathcal{A}(X) = b, X \succeq 0 \right\},$$

(D)
$$\max\{b^T y: \sum_{i} A_i y_i + S = C, S \succeq 0\}$$

 $\mathcal{A}(X) = (\operatorname{trace}(A_i^T X))_{i=1}^m$, each A_i and C are $n \times n$ symmetric matrices, and $b \in \Re^m$.

Weak Duality: For x feasible in (P) and (y, s) feasible in (D)

 $\langle c, x \rangle - \langle b, y \rangle = \text{complementarity} := \langle s, x \rangle \ge 0.$

Assumptions: The problems (P) and (D) have strictly feasible solutions and A is surjective.

F and F_* are $\underline{\nu}$ -self-scaled barriers for K and K^* respectively.

Lemma 1 [NT] For any $(x,s) \in int \ K \times int \ K^*$, there exists a unique scaling point $w := w(x,s) \in int \ K$ such that F''(w)x = s.

- Problem Definition
- Algorithm
- Outline of Analysis
- Indicators of Infeasibility
- Summary

Central Path Equations

$$A^*y + s = c,$$

$$Ax = b,$$

$$\mu F'(x) + s = 0,$$

$$x \in \text{int } K,$$

$$s \in \text{int } K^*.$$

 $(x(\mu),y(\mu),s(\mu))$ - unique minimizer and maximizer of the barrier problems.

- $\underline{\text{central path}} := \{(x(\mu), y(\mu), s(\mu)) : \mu > 0\}.$
- $\langle s(\mu), x(\mu) \rangle = \mu \nu$.

Relevant Literature

- Linear Programming (infeasible-interior-point)
 - Kojima, Megiddo and Mizuno Global convergence
 - Zhang; Mizuno; Potra Polynomial convergence
- Semidefinite Programming (infeasible-interior-point)
 - Zhang; Potra and Sheng
- Self-Scaled Conic Programs (feasible-interior-point)
 - Nesterov and Todd; Schmieta and Alizadeh
- <u>Our Work</u>: Self-Scaled Conic Programs (infeasible-interior-point)

Outline of Interior-Point Methods

- Start with given initial point (x_0, y_0, s_0) .
- From (x_k, y_k, s_k) to $(x_{k+1}, y_{k+1}, s_{k+1})$:
 - Set $\mu_k = \frac{\langle s_k, x_k \rangle}{\nu}$.
 - Aim towards $(x(\beta_1\mu_k), y(\beta_1\mu_k), s(\beta_1\mu_k))$ for $\beta_1 \in (0, 1)$ by moving in a Newton direction.
 - Take a positive step α_k along that direction.
 - Set this point to be $(x_{k+1}, y_{k+1}, s_{k+1})$.
- Repeat until some termination criterion is met.

Newton Equations [NT]

$$A^* \triangle y + \triangle s = c - A^* y - s,$$

$$A \triangle x = b - Ax,$$

$$F''(w) \triangle x + \triangle s = h := -\beta_1 \mu F'(x) - s,$$

where $\mu = \frac{\langle s, x \rangle}{\nu}$ and $\beta_1 \in (0, 1)$ is a given parameter.

Note: If
$$x(\alpha) = x + \alpha \triangle x$$
, $(y(\alpha), s(\alpha)) = (y, s) + \alpha(\triangle y, \triangle s)$.

$$Ax(\alpha) - b = (1 - \alpha)(Ax - b);$$

$$A^*y(\alpha) + s(\alpha) - c = (1 - \alpha)(A^*y + s - c).$$

Step Length and Termination

- 1. Compute step length $0 < \alpha_k < 1$ such that for all $\alpha \in [0, \alpha_k]$
 - stay in the neighborhood
 - linear decrease in complementarity
 - "relative complementarity" \geq "relative infeasibility" (ϕ_k) .
- 2. If $\langle s_k, x_k \rangle < \epsilon_* \langle s_0, x_0 \rangle$, then STOP.
 - Linear decrease in complementarity:

for $1 > \beta_2 > \beta_1$,

$$\langle s(\alpha), x(\alpha) \rangle \le \langle s_k, x_k \rangle (1 - (1 - \beta_2)\alpha).$$

- "Relative complementarity" \geq "relative infeasibility" (ϕ_k) .

$$\frac{\langle s(\alpha), x(\alpha) \rangle}{\langle s_0, x_0 \rangle} \ge \phi_k (1 - \alpha) \text{ and}$$

$$\phi_k (1 - \alpha) = \frac{\|Ax(\alpha) - b\|}{\|Ax_0 - b\|} = \frac{\|A^*y(\alpha) + s(\alpha) - c\|^*}{\|A^*y_0 + s_0 - c\|^*}.$$

- Problem Definition
- Algorithm
- Outline of Analysis
- Indicators of Infeasibility
- Summary

Main Theorem Given (A, b, c, K, K^*) and $\beta_1, \theta_G, \epsilon_* > 0$, we can obtain a solution (x_*, y_*, s_*) such that $\langle s_*, x_* \rangle \leq \epsilon_* \langle s_0, x_0 \rangle$ and $\phi_* \leq \epsilon_*$ in $O(\nu^{2.5} \ln \left(\frac{1}{\epsilon_*}\right))$ iterations.

<u>Proof Outline</u>: If $\alpha_k \ge \alpha_* = \Omega(\nu^{-2.5})$ for every k, then for $k = \left\lceil \frac{1}{(1-\beta_2)\alpha_*} \ln\left(\frac{1}{\epsilon_*}\right) \right\rceil = O(\nu^{2.5} \ln\left(\frac{1}{\epsilon_*}\right))$,

$$\langle s_k, x_k \rangle \le \langle s_0, x_0 \rangle (1 - \alpha_* (1 - \beta_2))^k \le \epsilon_* \langle s_0, x_0 \rangle$$

$$\phi_k \le \frac{\langle s_k, x_k \rangle}{\langle s_0, x_0 \rangle} \le \epsilon_*.$$

$$||Ax_k - b|| \le \epsilon_* ||Ax_0 - b||$$
, and $||A^*y_k + s_k - c||^* \le \epsilon_* ||A^*y_0 + s_0 - c||^*$.

Bounding the Search Direction

Proposition 2 There exists ω independent of k such that,

$$\|\triangle x_k\|_w^2 + \|\triangle s_k\|_w^{*2} \leq \omega \langle s_k, x_k \rangle \text{ and }$$
$$|\langle \triangle s_k, \triangle x_k \rangle| \leq \frac{\omega}{2} \langle s_k, x_k \rangle.$$

Feasible-interior-point methods: $\langle \triangle s_k, \triangle x_k \rangle = 0$.

Lower bound on α_*

• Stay in the neighborhood $\mathcal{N}_G(\theta_G)$.

$$\mathcal{N}_G(\theta_G) := \{(x, y, s) \in \text{int } K \times Y \times \text{int } K^* : \gamma_G(x, s) \le \theta_G\},$$

where $\gamma_G(x,s) := \mu \langle F'(x), F'_*(s) \rangle - \nu$.

$$\gamma_G(x(\alpha), s(\alpha)) \leq \gamma_G - \alpha \beta_1 \frac{\gamma_G(\gamma_G + \nu)}{\nu} + \alpha^2 \tau$$

for all $\alpha \in [0, \bar{\alpha}_1]$, where $\bar{\alpha}_1 := \left(2\sqrt{(\theta_G + 2)\nu\omega}\right)^{-1}$.

$$\tau = O(\nu^{3/2}\omega).$$

For
$$\bar{\alpha}_2 := \frac{\beta_1 \theta_G}{\tau}$$
,

 $(x(\alpha), y(\alpha), s(\alpha)) \in \mathcal{N}_G \text{ for all } \alpha \in [0, \bar{\alpha}_2].$

• "Relative complementarity" ≥ "relative infeasibility"

For
$$\bar{\alpha}_3 := \frac{2\beta_1}{\omega}$$
,
$$\langle s(\alpha), x(\alpha) \rangle \ge \phi(1 - \alpha) \langle s_0, x_0 \rangle \text{ for all } \alpha \in [0, \bar{\alpha}_3].$$

• Linear decrease in complementarity

For
$$\bar{\alpha}_4 := \frac{2(\beta_2 - \beta_1)}{\omega}$$
,
$$\langle s(\alpha), x(\alpha) \rangle \leq \langle s, x \rangle (1 - \alpha(1 - \beta_2)) \text{ for all } \alpha \in [0, \bar{\alpha}_4].$$

Polynomial bound on ω

Let (u_0, r_0, v_0) be the least-squares solution to Au = b,

$$A^*r + v = c \text{ using } ||u|| + ||v||^*.$$

Let $x_0 := \rho_0 e \in \text{int } K$, $s_0 := -\rho_0 F'(e) \in \text{int } K^*$ for $\rho_0 > ||u_0|| + ||v_0||^*$.

$$\rho_* := \min\{\max(|x_*|_e, |s_*|_e^*) : (x_*, y_*, s_*) \text{ solves (P) and (D)}\}.$$

Assumption There exists a constant $\Psi > 0$ such that

$$\rho_0 \ge \frac{\rho_*}{\Psi}$$
.

- $\omega = O(\nu)$.
- $\tau = O(\omega \nu^{1.5}) = O(\nu^{2.5}).$
- $\alpha_* = \min(1, \bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3, \bar{\alpha}_4) = \Omega(\nu^{-2.5}).$

Recall Main Theorem Given (A, b, c, K, K^*) and $\beta_1, \theta_G, \epsilon_* > 0$, we can obtain a solution (x_*, y_*, s_*) such that $\langle s_*, x_* \rangle \leq \epsilon_* \langle s_0, x_0 \rangle$ and $\phi_* \leq \epsilon_*$ in $O(\nu^{2.5} \ln \left(\frac{1}{\epsilon_*}\right))$ iterations.

Proof Outline:
$$\alpha_* = \Omega(\nu^{-2.5})$$
. After $k = \left\lceil \frac{1}{(1-\beta_2)\alpha_*} \ln\left(\frac{1}{\epsilon_*}\right) \right\rceil = O(\nu^{2.5} \ln\left(\frac{1}{\epsilon_*}\right))$ iterations, $\langle s_k, x_k \rangle \leq \epsilon_* \langle s_0, x_0 \rangle$, and $\phi_k \leq \frac{\langle s_k, x_k \rangle}{\langle s_0, x_0 \rangle} \leq \epsilon_*$.

$$||Ax_k - b|| \le \epsilon_* ||Ax_0 - b||, \text{ and}$$

 $||A^*y_k + s_k - c||^* \le \epsilon_* ||A^*y_0 + s_0 - c||^*.$

- Problem Definition
- Algorithm
- Outline of Analysis
- Indicators of Infeasibility
- Summary

Indicators of Infeasibility

• Large optimal solutions

$$\rho := \max(|x_0 - u_0|_e, |s_0 - v_0|_e^*), \quad \underline{\phi} = \min(\phi_p, \phi_d).$$

* Stopping Rule 1. For some $\tilde{\rho}$, stop if

$$\frac{\phi_p \langle s, x_0 - u_0 \rangle + \phi_d \langle s_0 - v_0, x \rangle}{\langle s, x \rangle} \ge \left(1 + \frac{\rho(2\tilde{\rho} + \underline{\phi}\rho)}{\rho_0^2}\right).$$

Theorem 3 If stopping rule 1 applies, then there is no optimal solution pair x_* and (y_*, s_*) for (P) and (D) with $|x_*|_e \leq \tilde{\rho}$ and $|s_*|_e^* \leq \tilde{\rho}$.

- Large feasible solutions
- * Stopping Rule 2_p . Let $r = y \phi_d(y_0 r_0)$. Then, for some $\bar{\rho}_p > 0$, stop if

$$\langle b, r \rangle \ge ||c + \phi_d(s_0 - v_0)||^* \bar{\rho}_p.$$

* Stopping Rule 2_d . Let $u = x - \phi_p(x_0 - u_0)$. Then, for some $\bar{\rho}_d > 0$, stop if

$$\langle c, u \rangle \le -\max(\|b\|^*, \ \phi_p \|x_0 - u_0\|) \ \bar{\rho}_d.$$

Theorem 4 If stopping rule 2_p applies, then any feasible solution to (P) has norm at least $\bar{\rho}_p$; if stopping rule 2_d applies, then any feasible solution to (D) has $||y|| + ||s||^*$ at least $\bar{\rho}_d$.

• Large optimal solutions imply large feasible solutions

Theorem 5 If

$$\tilde{\rho} \ge \frac{1}{2\rho\bar{\phi}\nu} \left[\|c + \phi_d(s_0 - v_0)\|^* \ \bar{\rho}_p + \max(\|b\|^*, \ \phi_p \|x_0 - u_0\|) \ \bar{\rho}_d \right],$$

where $\bar{\phi} = \max(\phi_p, \phi_d)$, then if stopping rule 1 applies, so does either 2_p or 2_d .

- Problem Definition
- Algorithm
- Outline of Analysis
- Indicators of Infeasibility
- Summary

Summary

- $O(\nu^{2.5})$ convergence using the \mathcal{N}_G neighborhood.
- In practice, binary (or line) searches can be done to improve step-sizes.
- Can allow different (primal and dual) step sizes.
- Lower bounds on size of optimal as well as feasible solutions.
- Can obtain $O(\nu^4)$ convergence for a given \mathcal{N}_{∞} neighborhood.