Local Minima and Convergence in Low-Rank Semidefinite Programming

> Sam Burer (University of Iowa) Renato Monteiro (Georgia Tech)

Workshop on Large Scale Nonlinear and Semidefinite Programming University of Waterloo May 13, 2004

OUTLINE

- Description of problem
- Motivation of algorithm
- Low-rank algorithm #1 (without convergence proof)
- Low-rank algorithm #2 (with convergence proof)
- Computational results
- Conclusions

DESCRIPTION OF PROBLEM

(SDP) min { $C \bullet X : A_i \bullet X = b_i, i = 1, \dots, m, X \succeq 0$ }

- SDP is a convex optimization problem.
- Although polynomial, interior-point methods can be computationally inefficient when the data is dense, *n* is large, and / or *m* is large.
- Do other alternatives exist?
- First-order nonlinear programming methods for SDP have been successful in solving some key classes of large-scale SDPs.
 - Spectral bundle method of Helmberg and Rendl;
 parallel spectral bundle method of Nayakkankuppam and Tymofyeyev;
 bundle method of Fischer, Gruber, Rendl, Sotirov.

Simplex method for LP. From current extreme point, move along an improving edge to a new extreme point. If no improving edge exists, current extreme point is optimal.

Another perspective: optimizes over low-dimensional faces...

 $\min \left\{ c^T x : a_i^T x = b_i, \quad i = 1, \dots, m, \quad x \ge 0, \quad \mathsf{nz} \le m + 1 \right\}$

(LP')
$$\min\left\{c^T x : a_i^T x = b_i, i = 1, \dots, m, x \ge 0, \text{ nz } \le m+1\right\}$$

Theorem (Simplex Method). Let x be a local min of (LP'). If x is an extreme point, then x is optimal. Otherwise, x is in the relative interior of a face which is "flat" with respect to the objective function.

As an algorithm for (LP'), the simplex method:

- 1. keeps all iterates feasible;
- 2. avoids getting trapped in flat faces.

Simplex method for SDP? Research ongoing...Krishnan-Mitchell, Goldfarb, Krishnan-Pataki-Zhang

Even still, can we optimize over low-dimensional faces?

Let $ar{r}$ be the smallest integer such that $ar{r}(ar{r}+1)/2 \geq m+1...$

 $\min \{ C \bullet X : A_i \bullet X = b_i, \quad i = 1, \dots, m, \quad X \succeq 0, \quad \mathbf{r} \le \overline{\mathbf{r}} \}$

(SDP') min { $C \bullet X : A_i \bullet X = b_i, i = 1, \dots, m, X \succeq 0, r \leq \overline{r}$ }

Theorem (BM). Let X be a local min of (SDP'). If X is an extreme point, then X is optimal. Otherwise, X is in the relative interior of a face which is "flat" with respect to the objective function.

We propose an algorithm for (SDP') that:

- 1. is based on nonlinear programming (in particular, is an infeasible method);
- 2. avoids getting trapped in flat faces;
- 3. has certain computational advantages over interior-point methods.

Obs. Because $\bar{r} \approx \sqrt{2m}$, (nSDP') has fewer variables than (SDP'), especially when *m* is small.

LOW-RANK ALGORITHM #1 (CONT'D)

(nSDP')
$$\min\left\{C \bullet RR^T : A_i \bullet RR^T = b_i, i = 1, \dots, m, R \in \Re^{n \times \bar{r}}\right\}$$

We used a first-order augmented Lagrangian method to "solve" (nSDP')... Introducing Lagrange multipliers y_i and a penalty parameter σ , R^k is a stationary point of

$$\mathcal{L}_{k}(R) := C \bullet RR^{T} + \sum_{i=1}^{m} y_{i}^{k} (b_{i} - A_{i} \bullet RR^{T}) + \frac{\sigma_{k}}{2} \sum_{i=1}^{m} (A_{i} \bullet RR^{T} - b_{i})^{2}.$$

- In theory, $\{R^k\}$ converges to a stationary point of (nSDP').
- But we always observed convergence to a global minimum.
- Moreover, the speed was very competitive on certain classes of problems.
- We wondered: could convergence be proved?

LOW-RANK ALGORITHM #2

Problem. (SDP') may have many local minima corresponding to flat faces.

How can we guarantee that $X^k := R^k (R^k)^T$ does not converge to a flat face? **Key Idea.** For points $X = RR^T$ in an edge, $\det(R^T R)$ has no local minima except at the extreme points, for which $\det(R^T R) = 0$.

Algorithm. Choose positive $\mu_k \to 0$, and compute R^k as a local minimum of $\mathcal{L}_k(R) + \mu_k \det(R^T R)$.

LOW-RANK ALGORITHM #2 (CONT'D)

Theorem (BM). Suppose that each R^k is a local minimum of the *k*-th *perturbed* augmented Lagrangian subproblem. Suppose moreover that $\{R^k\}$ attains feasibility in the limit and that $\{R^k\}$ is bounded. Then

- (a) every accumulation point of $\{R^k(R^k)^T\}$ is an optimal solution of SDP;
- (b) the sequence $\{(y_1^k, \ldots, y_m^k)\}$ is bounded and any of its accumulation points is an optimal solution of the dual.

Remark. Feasibility can be guaranteed by taking σ_k sufficiently large.

Remark. In many problems, feasibility implies boundedness of $\{R^k\}$.

COMPUTATIONAL RESULTS

Note. We actually implement algorithm #1.

- Algorithm works well for sparse, large-scale SDPs, such as relaxations of combinatorial optimization problems (COPs).
- Since it is a "primal" algorithm, can it be used to bound COPs?
- Lagrange multipliers are optimal in the limit but infeasible along the way.
- However, for the special case of binary quadratic COPs, (y_1^k, \ldots, y_m^k) can be easily shifted to dual feasibility, which yields a bound.

COMPUTATIONAL RESULTS (CONT'D)

- We bound the quadratic assignment problem via the "gangster" SDP relaxation (Zhao-Karisch-Rendl-Wolkowicz).
- Test problems are a representative sample from QAPLIB of all problems having between 30 and 40 facilities and locations.
- To our knowledge, only problems up to size 32 have been reported in the SDP literature (Lin-Saigal, Zhao-Karisch-Rendl-Wolkowicz, Rendl-Sotirov).
- All experiments done on a Pentium 2.4 GHz.

Conclusion 1. In comparison with other SDP algorithms, we receive comparable bound quality in much less time.

Conclusion 2. We are able to solve much larger instances.

		I			
problem	feasible val	n	m	lower bd	time (s)
esc32a	130	960	30721	-144	480
esc32h	438	960	30721	225	527
kra30a	*88900	840	25201	78255	58359
kra30b	*91420	840	25201	79165	48846
kra32	*88700	960	30721	76669	58103
lipa30a	*13178	840	25201	12934	2294
lipa30b	*151426	840	25201	151357	14862
lipa40a	*31538	1520	60801	30560	8753
lipa40b	[*] 476581	1520	60801	476417	93621
nug30	*6124	840	25201	5629	2161
ste36a	*9526	1224	44065	7156	25703
ste36b	*15852	1224	44065	10350	552860
tai30a	1818146	840	25201	1577013	72911
tai35a	2422002	1155	40426	2029376	155143
tai40a	3139370	1520	60801	2592756	421348
tho30	*149936	840	25201	135535	81454
tho40	240516	1520	60801	214593	219336

COMPUTATIONAL RESULTS (CONT'D)

CONCLUSIONS

- We have given a convergence proof for the low-rank SDP algorithm.
- The proof uses the geometry of SDP and the idea of a "reverse barrier."
- Previous computational results have been extended:
 - dual bounds for combinatorial optimization problems;
 - application to large quadratic assignment problems.
- Extension to SDPs having lots of inequality constraints?
- More generally: extension to block SDPs?