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OUTLINE

• Description of problem

• Motivation of algorithm

• Low-rank algorithm #1 (without convergence proof)

• Low-rank algorithm #2 (with convergence proof)

• Computational results

• Conclusions
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DESCRIPTION OF PROBLEM

(SDP) min {C • X : Ai • X = bi, i = 1, . . . , m, X º 0}

• SDP is a convex optimization problem.

• Although polynomial, interior-point methods can be computationally inefficient

when the data is dense, n is large, and / or m is large.

• Do other alternatives exist?

• First-order nonlinear programming methods for SDP have been successful in

solving some key classes of large-scale SDPs.

– Spectral bundle method of Helmberg and Rendl;

parallel spectral bundle method of Nayakkankuppam and Tymofyeyev;

bundle method of Fischer, Gruber, Rendl, Sotirov.
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MOTIVATION OF ALGORITHM

(LP) min
{

c
T
x : a

T

i x = bi, i = 1, . . . , m, x ≥ 0
}

nz := # of nonzero entries of x

x extreme point =⇒ nz ≤ m

x edge point =⇒ nz ≤ m + 1

x interior point =⇒ nz = n

Interior-point methods for LP are well developed.
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MOTIVATION OF ALGORITHM (CONT’D)

(SDP) min {C • X : Ai • X = bi, i = 1, . . . , m, X º 0}

r := rank of X

X extreme point =⇒ r(r + 1)/2 ≤ m (Pataki)

X edge point =⇒ r(r + 1)/2 ≤ m + 1 (Pataki)

X interior point =⇒ r = n

Interior-point methods for SDP are well developed.
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MOTIVATION OF ALGORITHM (CONT’D)

Simplex method for LP. From current extreme point, move along an improving

edge to a new extreme point. If no improving edge exists, current extreme point is

optimal.

Another perspective: optimizes over low-dimensional faces. . .

min
{

cT x : aT

i
x = bi, i = 1, . . . , m, x ≥ 0, nz ≤ m + 1

}
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MOTIVATION OF ALGORITHM (CONT’D)

(LP′) min
{

c
T
x : a

T

i x = bi, i = 1, . . . , m, x ≥ 0, nz ≤ m + 1
}

Theorem (Simplex Method). Let x be a local min of (LP′). If x is an extreme

point, then x is optimal. Otherwise, x is in the relative interior of a face which is

“flat” with respect to the objective function.

As an algorithm for (LP′), the simplex method:

1. keeps all iterates feasible;

2. avoids getting trapped in flat faces.
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MOTIVATION OF ALGORITHM (CONT’D)

Simplex method for SDP? Research ongoing. . . Krishnan-Mitchell, Goldfarb,

Krishnan-Pataki-Zhang

Even still, can we optimize over low-dimensional faces?

Let r̄ be the smallest integer such that r̄(r̄ + 1)/2 ≥ m + 1. . .

min {C • X : Ai • X = bi, i = 1, . . . , m, X º 0, r ≤ r̄}
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MOTIVATION OF ALGORITHM (CONT’D)

(SDP′) min {C • X : Ai • X = bi, i = 1, . . . , m, X º 0, r ≤ r̄}

Theorem (BM). Let X be a local min of (SDP′). If X is an extreme point, then X

is optimal. Otherwise, X is in the relative interior of a face which is “flat” with

respect to the objective function.

We propose an algorithm for (SDP′) that:

1. is based on nonlinear programming (in particular, is an infeasible method);

2. avoids getting trapped in flat faces;

3. has certain computational advantages over interior-point methods.
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LOW-RANK ALGORITHM #1

(SDP′) min {C • X : Ai • X = bi, i = 1, . . . , m, X º 0, r ≤ r̄}

−→ X º 0, r ≤ r̄ ⇐⇒ X = RRT for some R ∈ ℜn×r̄ ←−

In 2001, we proposed the following nonlinear reformulation of (SDP′):

(nSDP′) min
{

C • RR
T : Ai • RR

T = bi, i = 1, . . . , m, R ∈ ℜn×r̄

}

Obs. Because r̄ ≈
√

2m, (nSDP′) has fewer variables than (SDP′), especially

when m is small.
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LOW-RANK ALGORITHM #1 (CONT’D)

(nSDP′) min
{

C • RR
T : Ai • RR

T = bi, i = 1, . . . , m, R ∈ ℜn×r̄

}

We used a first-order augmented Lagrangian method to “solve” (nSDP′). . .

Introducing Lagrange multipliers yi and a penalty parameter σ, Rk is a stationary

point of

Lk(R) := C • RR
T +

m
∑

i=1

y
k

i (bi − Ai • RR
T ) +

σk

2

m
∑

i=1

(Ai • RR
T − bi)

2
.

• In theory, {Rk} converges to a stationary point of (nSDP′).

• But we always observed convergence to a global minimum.

• Moreover, the speed was very competitive on certain classes of problems.

• We wondered: could convergence be proved?
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LOW-RANK ALGORITHM #2

Problem. (SDP′) may have many local minima corresponding to flat faces.

How can we guarantee that Xk := Rk(Rk)T does not converge to a flat face?

Key Idea. For points X = RRT in an edge, det(RT R) has no local minima

except at the extreme points, for which det(RT R) = 0.

Algorithm. Choose positive µk → 0, and compute Rk as a local minimum of

Lk(R) + µk det(RT R).
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LOW-RANK ALGORITHM #2 (CONT’D)

Theorem (BM). Suppose that each Rk is a local minimum of the k-th perturbed

augmented Lagrangian subproblem. Suppose moreover that {Rk} attains

feasibility in the limit and that {Rk} is bounded. Then

(a) every accumulation point of {Rk(Rk)T } is an optimal solution of SDP;

(b) the sequence {(yk
1
, . . . , yk

m
)} is bounded and any of its accumulation points

is an optimal solution of the dual.

Remark. Feasibility can be guaranteed by taking σk sufficiently large.

Remark. In many problems, feasibility implies boundedness of {Rk}.
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COMPUTATIONAL RESULTS

Note. We actually implement algorithm #1.

• Algorithm works well for sparse, large-scale SDPs, such as relaxations of

combinatorial optimization problems (COPs).

• Since it is a “primal” algorithm, can it be used to bound COPs?

• Lagrange multipliers are optimal in the limit but infeasible along the way.

• However, for the special case of binary quadratic COPs, (yk
1
, . . . , yk

m
) can

be easily shifted to dual feasibility, which yields a bound.
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COMPUTATIONAL RESULTS (CONT’D)

• We bound the quadratic assignment problem via the “gangster” SDP

relaxation (Zhao-Karisch-Rendl-Wolkowicz).

• Test problems are a representative sample from QAPLIB of all problems

having between 30 and 40 facilities and locations.

• To our knowledge, only problems up to size 32 have been reported in the

SDP literature (Lin-Saigal, Zhao-Karisch-Rendl-Wolkowicz, Rendl-Sotirov).

• All experiments done on a Pentium 2.4 GHz.

Conclusion 1. In comparison with other SDP algorithms, we receive comparable

bound quality in much less time.

Conclusion 2. We are able to solve much larger instances.
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COMPUTATIONAL RESULTS (CONT’D)

problem feasible val n m lower bd time (s)

esc32a 130 960 30721 −144 480

esc32h 438 960 30721 225 527

kra30a ∗88900 840 25201 78255 58359

kra30b ∗91420 840 25201 79165 48846

kra32 ∗88700 960 30721 76669 58103

lipa30a ∗13178 840 25201 12934 2294

lipa30b ∗151426 840 25201 151357 14862

lipa40a ∗31538 1520 60801 30560 8753

lipa40b ∗476581 1520 60801 476417 93621

nug30 ∗6124 840 25201 5629 2161

ste36a ∗9526 1224 44065 7156 25703

ste36b ∗15852 1224 44065 10350 552860

tai30a 1818146 840 25201 1577013 72911

tai35a 2422002 1155 40426 2029376 155143

tai40a 3139370 1520 60801 2592756 421348

tho30 ∗149936 840 25201 135535 81454

tho40 240516 1520 60801 214593 219336

15



CONCLUSIONS

• We have given a convergence proof for the low-rank SDP algorithm.

• The proof uses the geometry of SDP and the idea of a “reverse barrier.”

• Previous computational results have been extended:

– dual bounds for combinatorial optimization problems;

– application to large quadratic assignment problems.

• Extension to SDPs having lots of inequality constraints?

• More generally: extension to block SDPs?
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