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Practical Performance of Interior-Point Methods for SDP (1)

max{〈C, X〉 : A(X) = b, X � 0} = min{bTy : AT (y)− C = Z � 0}
Primal-Dual Path-following Methods:
At start of iteration:(X � 0, y, Z � 0)

Linearized system to be solved for(∆X, ∆y, ∆Z):

A(∆X) = rP := b− A(X) primal residue

AT (∆y)−∆Z = rD := Z + C − AT (y) dual residue

Z∆X + ∆ZX = µI − ZX path residue

The last equation can be reformulated in many ways, which all are derived from the complemen-
tarity conditionZX = 0

This is not a square linear system in(∆X, ∆y, ∆Z) because there are

2

n + 1

2

 + m

variables but the number of equations isn + 1

2

 + n2 + m.
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Practical Performance of Interior-Point Methods for SDP (2)

Direct approach with partial elimination:
Using the second and third equation to eliminate∆X and∆Z, and substituting into the first gives

∆Z = AT (∆y)− rD, ∆X = µZ−1 −X − Z−1∆ZX,

and the final system to be solved:

A(Z−1AT (∆y)X) = µA(Z−1)− b + A(Z−1rDX)

Computational effort:
• determine explicitelyZ−1 O(n3)

• several matrix multiplications O(n3)

• final system of orderm to compute∆y O(m3)

• forming the final system matrixO(mn3 + m2n2)

• line search to determineX+ := X + t∆X, Z+ := Z + t∆Z is at leastO(n3)

Effort to determine system matrix depends on structure ofA(.)
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Practical Performance of Interior-Point Methods for SDP (3)

Example 1: SDP Relaxation for Max-Cut:

max{〈C, X〉 : diag(X) = e,X � 0} = min{eTy : Diag(y)− C = Z � 0}

Here:m = n, A(X) = diag(X), AT (y) = Diag(y)

and the system matrix becomes

diag(Z−1Diag(∆y)X) = (Z−1 ◦X)∆y.

It can be computed inO(n2)

n seconds
400 8.92
600 24.10
800 51.45

1000 99.27
1500 314.99
2000 714.21

Computation times (seconds) to solve the SDP on a PC (Pentium 4, 1.7 Ghz).

see Helmberg, Rendl, Vanderbei, Wolkowicz: SIOPT (6) 1996, 342ff
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Practical Performance of Interior-Point Methods for SDP (4)

Example 2: Lovasz Theta function:

Given a graphG = (V, E) with |V | = n, |E| = m.

max{〈J, X〉 : tr(X) = 1, xij = 0 ∀(ij) ∈ E, X � 0}

Here the number of constraints depends on the edge set|E|.

If m >> n2/4 then system size impractical.

Use explicit representation ofX, i.e. expressX through main diag and non-edge variables

This gives final system of sizen2/2−m which is smaller thanm.

This allows to computeϑ(G) for very sparse and very dense graphs. The computationally difficult
class are graphs withm ≈ n2/4, i.e. about half the possible edges are present.

see: Dukanovic, Rendl, technical report, Klagenfurt 2004
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Practical Performance of Interior-Point Methods for SDP (5)

Iterative solution of linear system:

To avoid computingZ−1 explicitely, and forming the system matrix, one could use iterative meth-
ods to compute(∆X, ∆y, ∆Z).

Preconditioned Conjugate Gradient method
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Spectral Bundle Method for SDP (1)

Dual as eigenvalue optimization problem:

Assume thatA(X) = b implies that tr(X) = a > 0. (Holds for many combinatorially derived
SDP!)

Reformulate dual
min{bTy : AT (y)− C = Z � 0}

as follows. Adding (redundant) primal constraint tr(X) = a introduces new dual variable, sayλ,
and dual becomes

min{bTy + aλ : AT (y)− C + λI = Z � 0}
At optimality, Z is singular, henceλmin(Z) = 0.

compute dual variableλ explicitely:

λmax(−Z) = λmax(C − AT (y))− λ = 0,⇒ λ = λmax(C − AT (y))

Dual equivalent to
min aλmax(C − AT (y)) + bTy : y ∈ IRm

This is non-smooth unconstrained convex problem iny.
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Spectral Bundle Method for SDP (2)

Minimizing f (y) = λmax(C − AT (y)) + bTy:

Note: Evaluatingf (y) aty amounts to computing largest eigenvalue ofC − AT (y).

Can be done by iterative methods for very large (sparse) matrices.

If we have somey, how do we move to a better point?

λmax(X) = max{〈X, W 〉 : tr(W ) = 1, W � 0}
Define

L(W, y) := 〈C − AT (y), W 〉 + bTy.

Thenf (y) = max{L(W, y) : tr(W ) = 1, W � 0}.

Idea 1: Minorant forf (y)

Fix somem × k matrix P . k ≥ 1 can be chosen arbitrarily. The choice ofP will be explained
later.
ConsiderW of the formW = PV P T with newk × k matrix variableV .

f̂ (y) := max{L(W, y) : W = PV P T , V � 0} ≤ f (y)

8



Spectral Bundle Method for SDP (3)

Idea 2: Proximal point approach

The functionf̂ depends onP and will be a good approximation tof (y) only in some neighbour-
hood of the current iteratêy.
Instead of minimizingf (y) we minimize

f̂ (y) +
u

2
‖y − ŷ‖2.

This is a strictly convex function, ifu > 0 is fixed.
Substitution of definition of̂y gives

min
y

max
W

L(W, y) +
u

2
‖y − ŷ‖2 = . . .

= max
W, y=ŷ+ 1

u(A(W )−b)
L(W, y) +

u

2
‖y − ŷ‖2

= max
W
〈C − AT (ŷ), W 〉 + bT ŷ − 1

2u
〈A(W )− b, A(W )− b〉.

Note that this is a quadratic SDP in thek × k matrix V . OnceV is computed, we get with
W = PV P T thaty = ŷ + 1

u(A(W )− b)

see: Helmberg, Rendl: SIOPT 10, (2000), 673ff
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Spectral Bundle Method for SDP (4)

Update ofP :

Having new pointy, we evaluatef aty (sparse eigenvalue computation), which produces also an
eigenvectorv to λmax.
The vectorv is added as new column toP , andP is purged by removing unnecessary other
columns.

Convergence is slow, once close to optimum

Can approximately solve SDP with quite large matrices,n ≈ 5000.

see also DIMACS challenge for SDP - DIMACS web-page
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Bundle methods and SDP (1)

Dealing with SDP with too many inequality constraints

The numberm of equality constraints is clearly always less than
(n+1

2

)
, because this is the dimen-

sion of the space ofSn.

But there can be an arbitrary number of inequality constraints !

If we do not know whether a contraint is active or not, we introduce a nonnegative slack variable
and make the constraint an equality.

This increases also the dimension of the space (we added one more variable).

Many SDP from combinatorial optimization can be tightened by introducing combinatorial cut-
ting planes (=linear inequalities)

Example: Max-Cut SDP Relaxation with Triangle inequalities
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Triangle inequalities for Max-Cut:

A simple observation: ifx is an arbitrary cut-vector:

x ∈ {−1, 1}n, f =



1

1

1

0
...
0


⇒ |xTf | ≥ 1

Translated toX = xxT :

xTf fTx = 〈(xxT ), (ffT )〉 = 〈X, ffT 〉 ≥ 1

Can be applied to anytriangle i < j < k. Nonzero elements off can also be -1. This gives4
(n
3

)
linear inequalities.

Triangle Relaxation

xij + xik + xjk ≥ −1 xij − xik − xjk ≥ −1 ∀i < j < k

Deza, Laurent: Hypermetric Inequalities, Padberg: Quadric Boolean Polytope
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Dealing with the Triangle Relaxation

n
(n
2

)
4

(n
3

)
50 1.225 78.400

100 4.950 646.800
200 19.900 5.253.600
500 124.750 82.834.000

Triangle constraints asn increases

Only
(n
2

)
constraints determine off-diagonal part ofX. Good candidates for active constraints ??

Explicitely maintaining all these constraints is infeasible forn ≥ 25.

Computation times with only a limited number of triangle inequlities included.
Computation times for SDP withk triangles included

n = 100 n = 200 n = 300

k = 500 21 (19) 34 (20) 49 (19)
k = 1000 103 (21) 136 (22) 164 (21)
k = 1500 304 (24) 358 (24) 422 (24)
k = 2000 643 (25) 763 (26) 816 (24)
k = 2500 1090 (24) 1313 (26) 1360 (24)

Computation times (seconds) on a PC (Pentium 4, 1.7 GHz) to compute the semidefinite relax-
ation of Max-Cut for a graph withn nodes andk triangle inequalities. The number of interior
point iterations is given in parentheses.
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Bundle methods and SDP (2)

If there are too many inequality constraints, we can look at theirLagrangian Dual.
Maintain only part of constraints explicitely

X ∈ F := {X : diag(X) = e, X � 0}

Remaining constraints (A(X) ≤ b) are dualized through Lagrangian:

L(X, γ) = 〈C, X〉 + γT (b− A(X))

max
X∈F, A(X)≤b

〈C, X〉 = max
X∈F

min
γ≥0

L(X, γ)

Dual functional:
f (γ) := max

X∈F
L(X, γ)

Minimizing f is equivalent to original problem
f is convex, but non-smooth
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Bundle methods and SDP (3)

Bundle methods:
minimizef using function and subgradient evaluation only
Note: function evaluation means solving overX ∈ F .
Big graphs (from Helmberg).
The number of bundle iterations is 50 forn = 800, and 30 forn = 2000.

problem n |E| cut initial bd gap (%) final bd gap (%) m time
G1 800 19176 11612 12083.2 4.0612005.4 3.39 7372 51.76
G6 800 19176 2172 2656.2 22.29 2566.2 18.15 6983 43.11

G11 800 1600 564 629.2 11.56 572.7 1.54 15946 60.20
G14 800 4694 3054 3191.6 4.51 3140.7 2.84 8973 59.68
G18 800 4694 985 1166.0 18.38 1063.4 7.96 17635 69.19

G22 2000 19990 13293 14135.9 6.3414045.8 5.6618325 278.06
G27 2000 19990 3293 4141.7 25.77 4048.4 22.9415178 406.66
G39 2000 11779 2373 2877.7 21.27 2672.7 12.6326471 533.36

These are currently the best bounds for these problems, see Fischer et al., technical report,
Klagenfurt, 2004
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Approximation results using SDP

Goemans-Williamson hyperplane rounding technique for Max-Cut
Nesterov Analysis for Max-Cut
Karger-Motwani-Sudan technique for Graph Coloring
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