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Practical Performance of Interior-Point Methods for SDP (1)

max{(C, X): AX)=bX =0} = min{dt'y: A'(y) —C =72 =0}

Primal-Dual Path-following Methods:
At start of iteration:( X >~ 0,y, Z > 0)
Linearized system to be solved fak X, Ay, AZ):

A(AX) =rp:=b— A(X) primal residue
AN (Ay) = AZ =rp:=Z+C — Al(y) dual residue
ZAX +AZX =ul — ZX  pathresidue
The last equation can be reformulated in many ways, which all are derived from the complemen-
tarity conditionZ.X = 0
This is not a square linear system(in X, Ay, AZ) because there are

n—+1
2
( 9 )+m

variables but the number of equations is

(n+1> 5
9 +n” +m.



Practical Performance of Interior-Point Methods for SDP (2)

Direct approach with partial elimination:
Using the second and third equation to eliminat¥ andA~Z, and substituting into the first gives

ANZ=ANAy)—rp, AX=puZ ' - X - Z'AZX,

and the final system to be solved:

AZTAT(AYX) = pAZY — b+ A(Z7rpX)
Computational effort:

e determine explicitelyz ' O(n?)
e several matrix multiplications O(n?)
e final system of ordem to computeAy O(m?)
e forming the final system matrixO(mn> + m?n?)
e line search to determin&® ™ .= X +tAX, Z" = Z +tAZ s atleasO(n’)

Effort to determine system matrix depends on structuré(of



Practical Performance of Interior-Point Methods for SDP (3)

Example 1: SDP Relaxation for Max-Cut:
max{(C, X) : diag X) =e,X = 0} = min{e’y : Diagly) — C = Z = 0}

Here:m =n, A(X) = diag X), A’ (y) = Diag(y)
and the system matrix becomes

diag Z 'Diag(Ay)X) = (Z 7 o X)Ay.

It can be computed iV(n?)

n seconds
400 8.92
600 24.10
800 51.45

1000 99.27
1500 314.99
2000 714.21

Computation times (seconds) to solve the SDP on a PC (Pentium 4, 1.7 Ghz).

see Helmberg, Rendl, Vanderbei, Wolkowicz: SIOPT (6) 1996, 342ff
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Practical Performance of Interior-Point Methods for SDP (4)

Example 2: Lovasz Theta function:
Given a graplG = (V, E) with |V | =n, |E| = m.

max{(J, X) : tr(X) =12, =0V(ij) € E, X = 0}
Here the number of constraints depends on the eddé’set
If m >> n?/4 then system size impractical.

Use explicit representation df, i.e. express{ through main diag and non-edge variables
This gives final system of siz&* /2 — m which is smaller tham..

This allows to comput@(G) for very sparse and very dense graphs. The computationally difficult
class are graphs witlh ~ n?/4, i.e. about half the possible edges are present.

see: Dukanovic, Rendl, technical report, Klagenfurt 2004
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Practical Performance of Interior-Point Methods for SDP (5)

Iterative solution of linear system:
To avoid computingZ —! explicitely, and forming the system matrix, one could use iterative meth-
ods to computeA X, Ay, AZ).

Preconditioned Conjugate Gradient method



Spectral Bundle Method for SDP (1)

Dual as eigenvalue optimization problem:

Assume thatd(X) = b implies that t({X) = « > 0. (Holds for many combinatorially derived
SDP!)

Reformulate dual
min{b’y : AT(y) = C =2 >0}

as follows. Adding (redundant) primal constraintr) = « introduces new dual variable, say
and dual becomes
min{b’y +a\: AT(y) —C+ X[ =Z >0}
At optimality, Z is singular, hence;,(Z) = 0.
compute dual variablé explicitely:

Amax(—Z) = Amax(C — AT (y)) = A =0,= ) = \,..(C — A (y))

Dual equivalent to
min aA\pax(C — AT(y)) +bly:y e R™

This is non-smooth unconstrained convex problem.in



Spectral Bundle Method for SDP (2)

Minimizing f(y) = Auax(C — A* (y)) + by

Note: Evaluatingf(y) aty amounts to computing largest eigenvaluesof- A”(y).
Can be done by iterative methods for very large (sparse) matrices.

If we have somey, how do we move to a better point?

Amax(X) = max{(X, W) : tr(W) =1, W = 0}

Define
L(W,y) = (C = Al(y), W) +0'y.

Thenf(y) = max{L(W,y) : tr(W) =1, W = 0}.
ldea 1: Minorant forf (y)

Fix somem x k matrix P. kK > 1 can be chosen arbitrarily. The choice ®fwill be explained
later.
ConsidenV of the formV = PV P with newk x k& matrix variablel/.

fly) =max{L(W,y): W =PVPT, V =0} < f(y)



Spectral Bundle Method for SDP (3)

Idea 2: Proximal point approach

The functionf depends orP and will be a good approximation tf(y) only in some neighbour-
hood of the current iteratg
Instead of minimizingf(y) we minimize

~ U R
f@%+ﬂ@—m3

This is a strictly convex function, i& > 0 is fixed.
Substitution of definition of; gives

. U Lo
mjn e LOW.y) + 5y = 9l = ...

u A
= max LW, y)+ =|ly — 9lI°
W, y=j+3(AW)=b) 2

— max(C — AT(§), W) + 67§ 21U<A(W) b, A(W) — b).

Note that this is a quadratic SDP in tihex £ matrix V. OnceV is computed, we get with
W = PVPTthaty =y + L(A(W) —b)

see: Helmberg, Rendl: SIOPT 10, (2000), 67 3ff
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Spectral Bundle Method for SDP (4)

Update ofP:

Having new point;, we evaluatef aty (sparse eigenvalue computation), which produces also an

eigenvectow to \ ..
The vectorv is added as new column t8, and P is purged by removing unnecessary other

columns.

Convergence is slow, once close to optimum
Can approximately solve SDP with quite large matriees; 5000.

see also DIMACS challenge for SDP - DIMACS web-page
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Bundle methods and SDP (1)
Dealing with SDP with too many inequality constraints

The numbern of equality constraints is clearly always less tf@%ﬁ), because this is the dimen-
sion of the space af,,.

But there can be an arbitrary number of inequality constraints !

If we do not know whether a contraint is active or not, we introduce a nonnegative slack variable
and make the constraint an equality.

This increases also the dimension of the space (we added one more variable).

Many SDP from combinatorial optimization can be tightened by introducing combinatorial cut-
ting planes (=linear inequalities)

Example: Max-Cut SDP Relaxation with Triangle inequalities

11



Triangle inequalities for Max-Cut:

A simple observation: ik is an arbitrary cut-vector:

= \fo\ > 1

1
1
n 1
re{-1,1}", f= )

0
Translated toX = zz!:

o f fla=((a2h), (ff1) = (X ff1) =1

Can be applied to antyiangle i < j < k. Nonzero elements gf can also be -1. This gives.)
linear inequalities.

Triangle Relaxation

Tij+ T+ = =1 xyy—xy—xp > -1 Vi<jg<k

Deza, Laurent: Hypermetric Inequalities, Padberg: Quadric Boolean Polytope
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Dealing with the Triangle Relaxation

n () A(y)
50| 1.225  78.400
100, 4.950  646.800
200/ 19.900 5.253.600
500| 124.750 82.834.000

Triangle constraints as increases

Only (3) constraints determine off-diagonal part¥f Good candidates for active constraints ??
Explicitely maintaining all these constraints is infeasiblerior 25.

Computation times with only a limited number of triangle inequlities included.
Computation times for SDP with triangles included

n=100] n=200] n =300

k=500 21(19) 34(20) 49 (19)
k=1000| 103 (21) 136 (22) 164 (21)
k=1500| 304 (24) 358 (24) 422 (24)
k=2000| 643 (25) 763 (26) 816 (24)
k = 2500 | 1090 (24) 1313 (26) 1360 (24)

Computation times (seconds) on a PC (Pentium 4, 1.7 GHz) to compute the semidefinite relax-

ation of Max-Cut for a graph witlh nodes and: triangle inequalities. The number of interior
point iterations is given in parentheses.
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Bundle methods and SDP (2)

If there are too many inequality constraints, we can look at thegrangian Dual
Maintain only part of constraints explicitely

XeF ={X diagX)=e, X =0}

Remaining constraintsd( X' ) < b) are dualized through Lagrangian:
L(X,7) = {C, X) +~"(b— A(X))

max  (C; X) = maxmin L(X,7)
XeF, A(X)<b XeF v>0

Dual functional:
f(7) = max L(X, )

Minimizing f is equivalent to original problem
f 1s convex, but non-smooth
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Bundle methods:

Bundle methods and SDP (3)

minimize f using function and subgradient evaluation only
Note: function evaluation means solving overc F.

Big graphs (from Helmberg)
The number of bundle iterations is 50 for= 800, and 30 forn = 2000.

problem| n |E| cut| initial bd gap (%) final bd gap (%) m| time
G1| 800 1917611612 12083.2 4.0612005.4 3.39 7372| 51.76
G6| 800 19176 2172 2656.2 22.29 2566.2 18.15 6983 43.11
G11| 800 1600 564 629.2 1156 572.7 1.54 15946/ 60.20
G14| 800 4694 3054 3191.6 4.51 3140.7 2.84 8973 59.68
G18| 800 4694 985 1166.0 18.38 1063.4 7.96 17635/ 69.19
G22| 2000 1999013293 14135.9 6.3414045.8 5.6618325| 278.06
G27/2000 19990 3293 4141.7 25.77 4048.4  22.9415178| 406.66
G39|/ 2000 11779 2373 2877.7 21.27 2672.7 12.6326471|533.36

These are currently the best bounds for these problems, see Fischer et al., technical report

Klagenfurt, 2004
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Approximation results using SDP

Goemans-Williamson hyperplane rounding technique for Max-Cut
Nesterov Analysis for Max-Cut
Karger-Motwani-Sudan technique for Graph Coloring
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