the Minimum Sum-of-Squares Clustering 0-1 SDP Approach to

Jiming Peng, Franz Rendl, and Yu Xia

Large Scale Nonlinear and Semidefinite Programming University of Waterloo May 2004

Minimum Sum of Squares Clustering

Problem Definition

Given a set of entities, partition them into clusters, such centroid is minimum. that the sum of squared distances from each entity to the

Applications

- Facilities location
- Bioinformatics
- Pattern recognition
- Text retrieval, etc.

Mathematical Model

Given n points $\mathbf{a}_i \in \mathbb{R}^d$, find k centroids $\mathbf{c}_i \in \mathbb{R}^d$:

$$\min_{\mathbf{c}_1, \dots, \mathbf{c}_k} \sum_{i=1}^n \min \left\{ \|\mathbf{a}_i - \mathbf{c}_1\|_2^2, \dots, \|\mathbf{a}_i - \mathbf{c}_k\|_2^2 \right\}.$$

K-Means Algorithm

Reassign one entity at a time until stability is reached.

- 1. Place k entities as initial group centroids.
- 2. Assign each object to the group that has the closest centroid.
- 3. When all objects have been assigned, recalculate the centroids
- Repeat Steps 2 and 3 until the centroids no longer move

The 0-1 Nonlinear Programming Formulation

$$x_{ij} = \begin{cases} 1 & \mathbf{a}_i \text{ assigned to } \mathbf{c}_j; \\ 0 & \text{otherwise.} \end{cases}$$

$$\min_{x_{ij}} \sum_{j=1}^{k} \sum_{i=1}^{n} x_{ij} \left\| \mathbf{a}_i - \frac{\sum_{i=1}^{n} x_{ij} \mathbf{a}_i}{\sum_{i=1}^{n} x_{ij}} \right\|_{2}^{2}$$
s.t.
$$\sum_{j=1}^{k} x_{ij} = 1 \ (i = 1, ..., n)$$

 $x_{ij} \in \{0, 1\} \ (i = 1, \dots, n; j = 1, \dots, k)$

Difficulties:

- Nonlinear and nonconvex object.
- Discrete variables.
- Hard to design approximation method.

New Formulation Based on SDP

- Let $X=[x_{ij}]\in\mathbb{R}^{n\times k}$ be the assignment matrix. Let $Z=X(X^TX)^{-1}X^T$
- The objective function is

$$\operatorname{tr} A^T A - \operatorname{tr} (A^T A Z).$$

Z is a projection matrix, $Z^2 = Z$, $z_{ij} \ge 0$.

$$X\mathbf{e} = \mathbf{e} \Longrightarrow Z\mathbf{e} = \mathbf{e}.$$

 $\operatorname{tr} Z = k.$

The 0-1 SDP Model

(0-1 SDP)min

 $\operatorname{tr} AA^T(I-Z)$

Ze = e $\operatorname{tr} Z = k$

 $Z \ge 0$

 $Z^2 = Z$

Theorem The 0-1 SDP model gives the exact solution.

Difficulties for the SDP Model

Nonlinear SDP constraint:

$$Z^2 = Z$$
.

Solution

- K-Means-type algorithm can be viewed as a special heuristic method for it.
- Relax the SDP constraint.
- Approximate the feasible region by linear constraints.

The LP Approximation

Define

$$MET = \{z_{ij} \le z_{ii}, z_{ij} \le z_{jj}, z_{ij} + z_{il} \le z_{ii} + z_{jl}\}.$$

(LP-MET)

$$\min \operatorname{tr} AA^T(I-Z)$$

$$\operatorname{tr} Z = k$$

s.t.

Ze = e

$$Z \ge 0$$

$$Z \in MET$$

Numerical Examples based on the LP Model

enumerating all the vertices. This is the first time global optimum obtained without

The Algorithm

- 1. Solve the LP-MET model.
- Find the pattern of Z as $P^TDP: P$ permutation matrix, D $(n_i: \text{ the size of the block}).$ block diagonal matrix with each block has equal entries: $\frac{1}{n_i}$,
- 3. Use K-Means to reassign some fuzzy points.

Datasets

- The Soybean data from UCI. d = 35, n = 47.
- The Ruspini data. d = 2, n = 75.
- The Späth's postal zones data. d = 3, n = 89.

Results

The Ruspini's data.

೮٦	4	ಬ	2	k
10127	12881	510630	893380	Objective
9.47	7.22	66.58	27.81	CPU time(s)

The Soybean data.

1.68	205.9637	4
1.51	215.2593	သ
4.26	404.4593	2
CPU time(s)	Objective	k

The Spath's Postal Zone data.

18.04	$7.8044*10^{11}$	9
26.91	$1.3385 * 10^{11}$	∞
61.78	$2.1983 * 10^{11}$	7
52.55	$3.5908 * 10^{11}$	6
60.67	$5.9761 * 10^{11}$	රා
99.54	$1.0447 * 10^{11}$	4
418.07	$2.9451 * 10^{11}$	ಬ
283.26	$6.0255 * 10^{11}$	2
CPU time(s)	Objective	k

Challenges and Future Work

• Challenges

The LP-MET model can only solve small size problems.

• Future Work

apporximation model. Use Lagrangian Dual and Bundle method for the LP