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CoNnvEX QP PROBLEM

1
min{§||VTx||2+ch : Ax = b, XZO}

ATy +s—-VVTg =,

1
max { —=||[VT%||? + by :
2 s>0

where the data are V € R°xl, A € pmxn,
b € ™ and ¢ € R", and the decision variables
are x € ™ and (X,s,y) € R™ x R™* x R™.

Remark: Hessian of O.F. is Q = VVT,

Assumptions:

1) both problems have feasible solutions
such that x > 0 and s > 0.

2) A has full row rank.



OPTIMALITY CONDITIONS

x and (x,y,s) are optimal solutions of the
primal and dual problems, respectively, iff,
for some z € %!, the quadruple w = (x,s,y,z)

satisfies
Ax = b, x>0
Aty +s+Vz = ¢, s>0
Vix+z = 0
Xs = 0

where X = Diag(x). We let S denote the
set of all w satisfying the above equations.



P-D SEARCH DIRECTIONS

Given o € [0,1], Aw = (Ax,As, Ay, Az) is
determined by

AAx = -rp

ATAy +As+VAz = —r4
XAs+SAx = —Xs+oue

VIAX+ Az = —ry

p o= p(w) = xTs/n, (1)
r, = rp(w) := Ax—b, (2)
rq = rg(w) = ATy+s+Vz—c, (3)
rv = ry(w) := Vix+z, (4)

One classical way to compute Aw leads to
the usual normal equation

AVVT £t X7 18)"1ATAy =g,

for some vector g € {™.



AUGMENTED NORMAL EQUATION (ANE)

The ANE is
(A
AD2AT| Y | =n
Az

where D := X1/28-1/2 gnd

_ S—l _D2
I ¢ rv rq B I'p
0 'y
- A O ~ D O
A = , D =
vt 1 0 1

Next, we compute Ax and As as
As = —-rq—ATAy - VAz,
Ax = —-D?As—x+ouSte

Since D is diagonal, standard methods for
LP can be used to solve the ANE.



Goal: Exploit the use of iterative (linear)
solvers to obtain the solution of the ANE.

Difficulty: For degenerate CQP’s, the coef-
ficient matrix of the ANE becomes highly
ill-conditioned as the iterates approach the
solution set.

Remedy: Precondition the ANE to keep the
condition number of AD2AT under control.

No theoretically-good preconditioner is
known for the usual normal equation. But a
theoretically-good preconditioner is known
for the ANE, namely the maximum weight
basis preconditioner, due to Resende and
Veiga 1993 (network flow) and Oliveira and
Sorensen 1997 (general LP)

e A -
TADZATTT | ©Y | = Tn
Az



M.W.B. ALGORITHM

Start: Given A € R% and d = diag(D) € RE
1. Order the elements of d so that &1 > .. > &ﬁ;
order the columns of A accordingly.
2. Let B=0,j=1.
3. While |[B| < m do
o If Aj is linearly indep. of {A; : i € B}, do
B+ BU{j} and j <+ j+ 1.

4. Return to the original ordering of A and d;
determine the set B according to this ordering

and set N := {1,...,n}\B.
5. Set B = AB and f)lg = Diag(alg).

6. Let T:=Dz'B~1.

end



Define

PR = max{||]§_1A||F : B is a basis of A}

Theorem (Monteiro and O’Neal): Let T =
T(A,d) be the preconditioner determined
according to the M.W.B. Algorithm, and
define W := TAD2ATTT, Then, k(W) < p% -

We will assume that the iterative solver
generates a sequence {1} satisfying

. 1 7Y
v = Wl < () [ 1= o] v = Wal 3
where v := Th and ¢ and f are positive

non-decreasing functions of kK = k(W) > 0.

Solver | c(k) f(k)
SD vVE  (k+1)/2
CG 2vk (VE+1)/2




ANALYSIS OF INNER ITERATIONS

Proposition: For any u®, the # of iterations
to obtain W satisfying ||v — Wul|| < &, /i is

c(o%) lv — Waul
o(f(w%) 1og< 2l LL 7 ”)) (%)

It is possible to choose u® = u’(w) and ¢ so
that

lv=Wul| = O(npz) Vi
&= 0(Vn)
This choice of ¢ is good to ensure that the
number of outer iterations of the iterative

solver-based IP method remains the same
as its exact counterpart.

With the above choices, () reduces to

O (f(p%) [logele?) +1log(ne)])



COMPUTATION OF P-D DIRECTION

Let W be s.t. [Wu! — v|| < ¢,/u and define

Ay
Az

Next, we compute As and Ax, respectively,
from the equations:

ATAy + As+VAz = —r4
XAs+SAx = —Xs+oue—p

where p € R" is as explained below. Have:

(A o
D2AT | 7 | = ho TIF
Az

for some f s.t. ||f]| < & /p.
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Using this fact, we easily see that

AAx +rp B
VITAX + Az +1v
~ AX r ~ -~ ~ ~ S—1 -
+ P | =T 1'|f-TA P
Az 'y 0

A p € R™ which makes the above r.h.s. =0
may not exist. Instead, we introduce an
extra variable q € ®! and consider

L S—l o XS —1/2
0 = f-TA P ) _ffap | X P
q q

The above system has multiple solutions
(p,q). Any such solution (p,q) satisfies

AAX +rp _ i o)} [ O
VTAx + Az +ry q q
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Proposition: There exists (p,q) such that

Ipl IXs|*2| £
lall < |I£]

IA

and the corresponding search direction
Aw = (Ax, As, Ay, Az) satisfies

AAx = -rp
ATAy + As+VAz = -—rq4
XAs+SAx = —Xs+oue—p,
VIAxX+ Az = —ry+q,

Recall that f is the residual error for the
preconditioned system. We will require it
to satisfy ||f]| < &V = O(/p). This clearly
implies that p and q are O(x) and O(\/p),
respectively.
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THE NEIGHBORHOOD

Given an initial iterate w? € %21 x ™! and
scalars 6 > 0 and 7,v € (0,1), let Nyo(n,7,0)
denote the set of points w € R21% x RmH!
satisfying

Xs > (1 —7)pe, n < u/po,
(rp,ra) = n(rp,rq), |rz—nral <6/

All iterates of our algorithm lie in the

following neighborhood:
NWO(/Y79> — U Nwo(nafyve)'

n€l0,1]
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. Let w:=w

THE ALGORITHM

. Let ¢ >0, v€(0,1), 6 >0, w° € R2" x ™,
and 0 < 0 <7 <4/5 be given. Set k = 0.

A py = ,u(wk) < €, stop;

“ and u := ux; choose o € [0,7].

. Build the precond. T using the M.W.B.
Algorithm, and compute W, v, and u°.

o

. Using u~ as start point for the iterative

solver, find an approx. sol. u of Wu = v
such that |Wu — v|| <./, where

¢ = min{;—a\/ﬁ, [\/1+( —%)0—1] 9}

. Set (2’:) = TTu and compute (p,q) and then

(As, Ax) as explained above.

. Compute & := argmax{a € [0,1]:
w+ o' Aw € N,o0(7,0), Vo' € ]0,a]}.

. Compute @ := argmin{(x + aAx)" (s + aAs) :
a € [0,a]}.

. Let w*™! = w 4+ aAw, set k< k+ 1, and go
to step 2.
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OUTER-ITERATION ANALYSIS

Theorem: Assume that v, 0, ¢ and 0 are s.t.

and that the initial point w® € R27 x R+
satisfies (x?,s°) > (x*,s*) for some w* € S.
Then, an iterate w* € R3% x R™*! satisfying

pix < €fig

(g, I < €2[l(xD, rg)

IV |l < €2[|x% 1l + €6/kio

is generated within O (n?log(1/e)) itera-
tions.
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CONCLUDING REMARKS

The dual residual is usually defined as
Rg =Aly+s—-VVTx—c

In terms of the residuals defined earlier,

we have:

RdZI'd—VI‘V

Along the sequence of iterates of our
algorithm, we have rq = O(p) and ryv =
O(y/1), and hence

Ra = O(V1)

Conclusion: The primal and dual residuals
converge to 0 at different rates, namely O(u)
and O( /i), respectively.
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