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1 INTRODUCTION

1 Introduction

This part of the course is almost completely focused on
Interior-Point Methods

and a bit on

The Ellipsoid Method




1 INTRODUCTION

In the modern interior-point theory, all difficult constraints are pushed into
the convex set constraints and/or convex cone constraints. Then, each of
these are treated via a strictly convex barrier

function with very special properties.

We will present most of our results in the full generality of an arbitrary

convex set G in R? or an arbitrary convex cone K in R, However,

special attention will be paid to Semidefinite Programming (SDP).

Recall,

e S denotes the convex cone of n X 1 symmetric, positive

semidefinite matrices over the reals.

e S isthe interior of S; i.e., the convex cone of n X n symmetric,

positive definite matrices over the reals.
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® Second-order cone;

€T
socm = | 7V | er g > el

i

SDP stands for semidefinite programming where K is made up from direct

sums of various .mm@. (possibly under some linear isomorphisms).

SOCP stands for second-order cone programming where K is made up
from direct sums of various SOC™: (possibly under some linear

Isomorphisms).
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We consider the semidefinite programming (SDP) problems in the

following primal (P) and dual (D) forms.

(P) inf (C,X)

C,
~ 0,

where A is a linear operator from S™ to R, so that b € R and A*

denotes the adjoint of \A.




1 INTRODUCTION

Without loss of generality, we assume that A is surjective. If not, we can
consider the representation (A;, X) = b;,7 € {1,..., m}, where

A; € 8™ for every i. A being surjective is equivalentto A1, Ag, ..., Am
being linearly independent. The latter can be assumed without loss of

generality, since if they are linearly dependent, then either the system

(A;, X) = b;,i € {1,...,m} has no solution, or there are some

redundant equations which can be eliminated. In the first case, (P) is
infeasible. In the second case, all redundant equations, and corresponding
A;, b; can be eliminated, to arrive at an equivalent problem satisfying the

assumption.
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Under this assumption, for any solution, (¥, Z), of the equation

m

> yiA; + Z = C, the Z part of the solution uniquely identifies the
1=1

corresponding y. Sometimes, in interior-point algorithms, it is convenient

to refer only to Z when one mentions a feasible solution of (D). The
above setting of the primal-dual SDP pair can be embedded in the

following more general setting of conic convex optimization problems:

(CP) inf

r € K,

where A is a surjective linear map and K is a pointed, closed, convex

cone with non-empty interior.
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We define the dual of (C'P) as

(CD) sup (b,y)p
A*(y) + z = ¢,

z € KT,

where K is the dual of cone K with respect to {-, -}, i.e.

Kt = Awm%g“ (z,z) > 0, <&m~mw.

We will refer to this setting as the conic convex optimization setting.
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SDP problem fits into this general setting by letting

o RY := S" (thatis, d := n(n +1)/2),

o K =87,

o (r,2):=(X,Z).




1 INTRODUCTION

Under these definitions we have KT = K. I.e., the cone of symmetric
positive semidefinite matrices is self-dual under the trace inner product. In
addition to being self-dual, the cone 8% enjoys another symmetry

property, in that it is homogeneous. That is, the set of nonsingular linear

transformations keeping S’ the same (the automorphism group of S%') is

rich enough to contain linear transformations which map any fixed interior
point to any other fixed interior point of %.3? Convex cones with both

properties, i.e. homogeneous self-dual cones, are also called symmetric.

10
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e K is self-dual if there exists an inner-product under which K* = K.

e K is homogeneous if Aut( K') acts transitively on int(K).

e K is symmetric if K is homogeneous and self-dual.
So, we have the underlying optimization problems:
e Symmetric Cone Programming (SymCP)

e Homogeneous Cone Programming (HomCP)

11



1 INTRODUCTION

e A homogeneous polynomial p : R% — R is hyperbolic in the direction

h € RY, if the univariate polynomial (in £ € R)

p(x + th)

has only real roots for every x & RY.

e A convex cone K is hyperbolic if it is

Tm%ﬁ@@i;vﬁov ﬁm%L

for a polynomial p which is hyperbolic in the direction i € RY.
e Homogeneous cones make up a proper subset of hyperbolic cones.

Hyperbolic Cone Programming (HypCP)

12
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Strictly speaking we have,

LP C SOCPC SDP C SymCP C HomCP C HypCP C CP.

However, in some sense,

LP C SOCPCSDP = 5ymCP = HomCP C HypCP C CP.

Yet in an another sense,

LP =5SOCP CSDP =5ymCP = HomCP C HypCP C CP.

13
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Recall the weak duality relation:

Proposition 1.1 Let X be feasible in (P), and (7, Z) be feasible in (D).
Then

(C, Xy =blyg = (X,Z) > 0.

Similarly for the conic convex optimization setting... Therefore, if we start

with X (9 and Z(9) both feasible in their respective problems, then

decreasing (X, Z) will get us closer to optimality!

14
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Since the linear operator A is surjective, we can always find X € S"

such that
A(X) = b.

For the dual, because of the form we chose, we can always find y € R,

Z € 8" such that

Denoting

L= {deS8": A(d) =0},

we claim that (P) and (D) are equivalent to the following pair.

15
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here, £ denotes the orthogonal complement of L.

16
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INTRODUCTION

We have

€ (LYr+2)nKT.

in the general conic convex optimization setting. To establish the

equivalence, first note that the feasible regions are preserved (in (C' D)

we only refer to 2).

17
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Recall the proof of the weak duality relation (Proposition 1.1). For every

r € RY satisfying A(x) = b, and for every (y, z) satisfying

A*(y) + z = ¢ we have

Amu .&v | A? @vb A.&JNV

If we fix (7, Z) such that
A" (g)+z=c
then for all z € R? satisfying A(z) = b we have

(c,z) = (x,Z)+ constant,

where the constant is (b, /) p. Therefore, minimizing (¢, ) subject to any
set of constraints, containing the constraint A(x) = b is equivalent to

minimizing (z, Z) subject to the same set of constraints.

18
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Similarly, we can establish the equivalence of the dual problems. We fix &

such that A(Z) = b then for all (y, z) satisfying A*(y) + z = ¢, we have

—(b,y)p = (&, z) + constant,

where the constant is —(c, Z). Therefore, maximizing (b, y) p subject to

any set of constraints containing the constraint A*(y) + z = cis

equivalent to minimizing (Z, z) subject to the same set of constraints.

19
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2 Ellipsoid Method

E C R%is an ellipsoid if there exist ¢ & R4 (determining the center) and

A € %mr (determining the size and the shape) such that

E:=FE(Ac):= Tw ceRY: (z—c)f A (z—0¢) < HW.

We can alternatively express the ellipsoid as the image of the unit ball in

RY (denoted by By(0, 1)) under an affine mapping as follows:
E(A,c) = AY2By(0,1) + ¢.

The volume of the ellipsoid is proportional to the square-root of the

determinant of the positive definite matrix determining its shape:

vol(E(A, c)) = +/det(A)vol(B4(0,1)).

20
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The volume of the d-dimensional unit ball is

d/2

ﬁ
L(g+1)

vol(B,(0,1)) =

where I'(z) := [~ e~ "t*1dt, for z > 0.

We first study the ellipsoid method as an algorithm which computes a point
in an implicitly described convex set. In this basic setting, it is easy to see
that the ellipsoid method is a beautiful and theoretically very powerful

generalization of the bisection method from R to R, for an arbitrary d.

21



2 ELLIPSOID METHOD 2.1 Ingredients: Separation Oracles, Inscribed anc

2.1 Ingredients: Separation Oracles, Inscribed and

Circumscribed Ellipsoids

To appreciate the full theoretical power of the Ellipsoid Method, we will
move away from the explicit description of the convex optimization problem
at hand. Instead, we will assume that we are given access to a separation
oracle. Let G C R? be the convex set we are interested in optimizing over
or less ambitiously just finding a point inside it (the set (). We define

d-relaxation of (G as follows:

relax(G, §) = A\g c R : ||lu — z||, < 6 for some z € QW .

22



2 ELLIPSOID METHOD 2.1 Ingredients: Separation Oracles, Inscribed anc

A weak separation oracle for G takes as input Z € Q%, 6 € Q4. It

either outputs “Z € relax(G, 6)" or a € Q% such that ||al|s = 1 and

(a,T) > (a,x) — 0, Vx € relax(G,J).

Theorem 2.1 For every compact, convex set in R% with nonempty interior,
there exists a unique minimal volume ellipsoid containing that set.
Moreover, shrinking that ellipsoid (around its center) by a factor of at most

d gives an ellipsoid contained in the convex set.

The unique ellipsoid described in the above theorem is usually called the
Léwner-John ellipsoid. The factor d in the above theorem is the best

possible. (The d-dimensional simplex proves the claim for every d.)

23
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E = T\om%g (z—c)tA ™ (z—-¢) < HWV

@“H?\amm“@ﬂ&mg%&u

for some a € R% \ {0}. We will assume d > 2. We would like to
construct the smallest volume ellipsoid £ containing the half-ellipsoid E.

Letc, € R%and A, € %mm 4 denote the center and the positive definite

matrix determining /4. Then

1
Cy =¢C— Aa,
(d+1)Val Aa

2
A— Aaal A
(d+ 1)al Aa o

24
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We can explicitly compute the volume of /. in terms of the volume of F,

since A is a rank-1 update of A. When we take the image of R% under

the mapping \»L\w_ our ellipsoid £ becomes the unit ball. Under this

mapping our update formula becomes
d? 2

I, =—— |-
T2 (d+1)aTa

where @ := A'2a. The eigenvalues of T 1

and 1 (with multiplicity (d — 1)). Therefore,

d d+1 d d—1 &w

det(l+) = 557 d—1

25
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Hence the volume of F/ 1 can be related to the volume of I as follows:

d =1 g
Va2 — 1 d+1

vol(Ey) = vol(F).

Theorem 2.2 We have

. vol(F/ )
ECE dl
= o e vol( )

26



2 ELLIPSOID METHOD 2.2 Complexity Analys;

2.2 Complexity Analysis for the Ellipsoid Method

Suppose vol( Fy) = R and we want F;, such that vol(F) < €. Then by

the last theorem,

<O_Amwv < |W

| _~
"\ Vl(Ey) ) = 24

and O Am:b vav iterations suffice. Similarly, if /2 is the radius of the

initial ball (whose image under the mapping x \»mim& contains the

set) and we want the stopping criterion to be that the radius of the current
: : —1/2 : :
ball (whose image under the mapping xrﬂ / x contains (&) is at

most €, then using

<O_Amwv

27



2 ELLIPSOID METHOD 2.2 Complexity Analys;

we find that O A&m In vav iterations suffice.

Theorem 2.3 Let G C R? be a convex set such that G C By (0, R).
Suppose we are also given € € Q4 . If we have access to a weak
separation oracle for (z, then in polynomial time (polynomial in

(d,In(R/€))), we can compute Z € relax(G, €) or prove that
vol(G) < e.

These results can be extended to optimizing a convex function over G. We
need one more ingredient to deal with the objective function. Let

f : R% — R be a convex function.

28



2 ELLIPSOID METHOD 2.2 Complexity Analys;

Definition 2.1 A subgradient oracle for f takes as input € R? and
returns in polynomial time (polynomial in d and for a proper definition,

size(z)) f(Z) and h € R? such that

f(z) > f(z) +hl(x —7), VoeR

Suppose we are interested in solving the convex optimization problem
inf{f(x):z € G},

where f : R? — R is a convex function.

29



2 ELLIPSOID METHOD 2.2 Complexity Analys;

Theorem 2.4 Let G C R? be a convex setand r, R € R, be given

such that
By(%,7) C G C B4(0,R), forsome z € R?

(here, T is not given). Let € € R, 1 be also given. Suppose that a
subgradient oracle for f and a weak separation oracle for (G are available.

Then after

O d? |ln m +_5A§v

(A €

iterations, the ellipsoid method returns a feasible solution £ € G such that
f(z) <inf{f(z):z € G} + e

In the above, (g := € + supecp 1 f(2)} — infrep,{ f(2)}.

30



2 ELLIPSOID METHOD

2.3 Bibliographical Notes

Until 1979 very few mathematicians in the West knew about the ellipsoid
method. Khachiyan, in 1979 proved that the Ellipsoid Method can be
adapted to solve linear programming problems in polynomial time (hence
settling a long outstanding problem). This announcement caused an

unprecedented reaction from the media.

The Ellipsoid Method was originally proposed by ludin and Nemirovski in
1976 also some related work is due to Shor in 1977. This original method
was designed to deal with essentially any convex optimization problem
that can be posed in a finite dimensional space by the potential usage of
oracles (an important point which should be emphasized is that the

functions involved in defining the feasible solution set, the objective

31
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function need not be differentiable). For a nice exposure to Ellipsoid

Method for linear programming problems, see the survey paper by Bland,

Goldfarb and Todd, Operations Research 29 (1981) 1039-1091.

Shortly after Khachiyan’s result, it was established that this method is a
very powerful tool in determining the computational complexity status
(hence the degree of difficulty) of various combinatorial optimization
problems. A good reference is Geometric algorithms and combinatorial

optimization by M. Groétschel, L. Lovasz and A. Schrijver.

32



2 ELLIPSOID METHOD

In the late 1980’s, Ellipsoid Method was applied to some problems in
System and Control Theory (see the book Linear Matrix Inequalities in
System and Control Theory by Boyd et al.). These problems were small

but relatively difficult convex optimization problems. Since late 1980's and

early 1990’s interior-point methods consistently took over the solution

process. These are the methods we discuss and analyze next.

33
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3 Central Path

One of the most important concepts in interior-point methods is the central

path. We arrive at this concept via another cental concept:

the barrier for the difficult constraints.

Let F' : R% — R be a logarithmically homogeneous self-concordant

barrier for K .

34
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Definition 3.1 (LHSCB) Let F' : int(K) — R be a C3-smooth convex
function such that F' is a barrier for K (i.e. F'(x) — oo asz € int(K)

approaches 0 K) and there exists ©¥ > 1 such that for each t > 0,

F(tr) = F(x)—9In(t),

D3F(z)[h, h k]| < 2(D2F(z)[h,h))*”

forall € int(K) and forall h € E. Then F'is called a 9J-LHSC barrier
for K.

35
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inf ?N x) + F(x)} Legendre-Fenchel Conjugate
zeint(K
F, also has the above mentioned properties for KT for the same barrier

parameter .

9 is a very important parameter of these barriers. Currently, one of the
best iteration bounds for interior-point methods for conic convex

optimization is

Q/\%Ew

€

to compute an e-optimal solution.

36
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Let 1 > 0. Consider

(CP,) inf (c,z)
Alz)
(x

37
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It is well-known that

Theorem 3.1 Suppose (29, 2(9) € int(K) @ int( K T) feasible in
(CPp) and (CDy) exists. Then (C'P,) and (C'D,,) have a unique
optimal solution pair (), (y(u), z(w)), for each g > 0.

Definition 3.2 {(x(u),y(), z(1)) : u > 0} is called the primal-dual
central path for the pair (C'Py), (C'Dy).

Sometimes we refer only to (z(u), z(1)).

38
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3.1 Central Path for SDP

Let's focus on SDP first. Here,

F(X) := —In(det(X)),

39
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The central path is equivalently characterized as the unique solution (via

necessary and sufficient conditions for optimality) of the convex

optimization problem (P,,):

AX)=b X =0,

1
|.\>V_AA@V — NIH + NQ = 0.

Let's do the substitutions ¢ := uy and Z := uX —'. We obtain the

system

A(X)
A*(y) + Z
Z

40
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For each p > 0, the unique solution of the above system

(X (), y(p), Z(1)) defines the primal-dual central path.

Path-Following algorithms “closely” or “loosely” follow this path to the set of
optimal solutions. (Note that under the assumption of the existence of
strictly feasible points for both primal and the dual, both problems do have

optimal solutions and there is no duality gap.)

Potential-Reduction algorithms reduce the problem to that of minimizing

(or driving to —00) a combination of the objective function:

* (¢, z)

° @%@

e (X,7)

and a barrier (e.g., — In(det (X)) or a measure of centrality.

41



3 CENTRAL PATH 3.2 Neighbour

3.2 Neighbourhoods of the Central Path

Again, we first focus on SDP. To follow the central path, or to understand
the potential-reduction algorithms in a unifying way, it is worth studying the
neighbourhoods of the central path. In the primal-dual setting, this is quite

elegant and effective.

Given strictly feasible points X and Z, define

(X, Z)

= —7.
n

Let F denote the set of all strictly feasible solution pairs (X, Z) (X

satisfies all the primal constraints and is positive definite, Z satisfies all the
dual constraints and is positive definite). Then we can express many

neighbourhoods.

42
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3.3 Neighbourhoods Based on the Algebraic Description of
the Central Path

Let 5 € (0, 1) be an absolute constant. We define

(i) so-called wide neighborhoods
Nz(B) = {(X.2) € Fo: Aain(X?ZX1%) > (1= B)u,

(i) infinity-norm neighborhoods

No(B) = Tuﬁ Z) e Foy: :\/CAH\MNNH\MV B tm:oo < Q.:Wu

(i) or equivalently,

x1/27x1/2
(X,2) € Fy : | <0

43
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(iif) so-called tight (or narrow) neighborhoods

x1/27x1/2
(X,2) € Fo : )
L

Note that (as is well-known),

Central Path C Na(8) C Noo(B) C N (B) C Fo.

44
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3.4 Neighbourhoods Based on the Analytic Descriptions of

the Central Path

We define a measure of centrality based on the barrier values:

(X, %)

PY(X,Z) :=nln -

~In(det(X)) — In(det(Z)).

Theorem 3.2 Forevery (X,7) € ST, @ ST,

W(X,Z) > 0.
Moreover, the equality holds above iff Z = X ~! for some p > 0.

This theorem generalizes the Arithmetic-Geometric Mean Inequality and

the corresponding characterization for equality.
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We can also define a proximity measure based on the gradients of the
barrier — In(det(X)), — In(det(7)): Let

(X177
—.

fi=
We have

Theorem 3.3 Forevery X = 0, Z = 0,

Equality holds above iff Z = X 1.

The above theorem generalizes the Arithmetic-Harmonic Mean Inequality

and the corresponding characterization for equality.
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In the general, conic convex optimization setting, the central path equation
z = —pF'(z)

replaces Z = —u X ~ L. The first proximity measure is generalized to:

Y(x,2z) (= J1n A.ﬁ% + F(x) + Fu(2) + 9.

The next theorem shows that for every pair of interior solutions (z, 2), the
proximity measure is honnegative and it is equal to zero if and only if the

point (x, z) lies on the central path.
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Theorem 3.4 Let F' be a LHSCB for K with parameter ?J. Then
Y(x,2) >0, forallz € int(K), 2z € int(KT).

Moreover, the inequality above holds as equality iff

2 = —tF (z), for some t > 0.

48
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For convenience, we write & := —F.(z) and Z := —F' (z). One can
think of Z and Z as the shadow iterates, as Z € int(K ) and Z € int(K ™)
and if (x, z) is a feasible pair, then uZ = x iff uz = z iff (x, ) lies on

the central path. We also denote [i := (Z, Z) /1.

Theorem 3.5 For every (z, z) € int(K) @ int(K ™),

Equality holds above iff 2z = Itﬁkmv (and hence z = I.;maA ).

49
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3.5 Path-Following

While most elegant potential-reduction algorithms might not make any

reference to the central path (even including the theoretical analysis),
path-following and potential-reduction algorithms are very closely

connected.

Currently, most of the practical implementations of IPMs both for LP and

SymCP are based on modifications of path-following algorithms.

50



3 CENTRAL PATH

There are many strategies available to us for following the central path.

Our algorithms generate search directions
Dx and D~

and step sizes

ax and oz

and update

X+~ X+axDyx,

Z — Z+azDy.
In theory, it is very convenient to take

=0y — O0yz.

51
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However, there are possible advantages in practise to allow them to take

different values.
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What properties do we ask for in the search directions?

e Improve the current duality gap (X, Z)

e Get closer to the central path without increasing (X, Z) (very much)
® A suitable combination of the first two above!

We can also mix these properties “externally” in a predictor-corrector

methods.

53



3 CENTRAL PATH

Let's define

X(a) ==X + aDy,

NAQV =/ + QNUN.

Given v € |0, 1] (a centrality parameter defining some of the properties of

the search direction), there are many search directions achieving

(X(a), Z(a)) < [1 = a1 = 7)[(X, Z),

and for o large enough (e.g., 2(1), Q(1/n), 2(1/+/n), ...),
(X (), Z(«)) stays in a suitable neighbourhood of the central path.

More on search directions for SDP at the end of this lecture and at the

beginning of the next...
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4 PRIMAL-DUAL POTENTIAL FUNCTION

4 Primal-Dual Potential Function

Given (X, Z) and (X, Z) a pair of primal-dual feasible and interior pairs,

we would like to have a simple way of comparing them. We have two

criteria:
e smaller the duality gap (X, Z) is the better,

e smaller the distance to the central path (that is, the value of (X, 7))

IS the better.
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4 PRIMAL-DUAL POTENTIAL FUNCTION

The next function, called the primal-dual potential function, serves such a
purpose and allows us to design and perform the complexity analysis

directly on it.

%@ANV Nv = Q_SAANV va + ﬁANu Nvu

where ¢ > 0 (we will take ¢ := /7 in our analysis).

56



4 PRIMAL-DUAL POTENTIAL FUNCTION

Theorem 4.1 Suppose we have ANASu NASV feasible for (P) and (D)

such that

w(X9, 20) < /nln ! , for some € € (0, 1).

€

if we generate (X (%), Z(¥)) feasible in (P) and (D) such that

%/\MANEVNASV < %/\MANQTCUNA\TCV — 0, forevery k > 1,

for some 0 > 0 an absolute constant, then for some

k= O(y/nIn(1/€)), we have

(X 2By < (X0 Z2ON for every k > k.
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5 Algorithm and Computational Complexity

Analysis

Based on the last theorem, our problem of producing an approximately

optimal solution pair is reduced to decreasing the potential function value

by a constant, in every iteration. We want to update ANQ&“ N?J to

(X (k1) Z(E+1)) sych that A(X) = b, A*(y) + Z =C, X > 0,
Z > 0 are all maintained; moreover, (X, Z) is decreased and (X, Z)
IS not increased a lot (in comparison to the duality gap). We can express
the update from (X (%), Z(%)) to (X (k+1) Z(k+1)) by a pair of search
directions Dx, Dz € S™ respectively and a step size v € Ry . We

drop the iterate numbers for this part of our study and define

X(a):=X+aDx, and Z(«a) := Z 4+ aDy.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

To maintain the feasibility of the iterates, the search directions must satisfy

A(Dx) =0and A*(dy) + Dz = 0,

for some d,, € R™; i.e., Dx must be in the null space of A(-) and Dz

must be in the range of A*(-).

We will derive an algorithm that is symmetric between the primal and the
dual (primal-dual symmetry), we would also like to have our algorithm
invariant under the symmetries of the cone constrains (scale-invariance).
To be more specific, instead of formalizing these vague goals, we will

describe an approach which attains these goals.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Forevery (X, Z) € ST ® S we would like to have a self-adjoint,

positive definite linear transformation 1" : S™ +— S™ such that
o T c Aut(S?),

o T(Z)=T"Y(X) =V,

e (X V) =T"Y(Z )=V~

If we can find such transformation I°, then we can map our primal-space
with the mapping T~ and the dual-space with I". This modification does
not change anything significantly, except that our current primal-dual

iterate is mapped onto (V, V). Let’s elaborate:
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Since T (and therefore T~ 1; because, T is self-adjoint) is an
automorphism of the cone of positive semidefinite matrices, the most
important part of the problem (for the current interior-point method

approach) is unchanged. We define
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Now, (P) and (D) become

(P) inf (C,X)

A*(y) + Z
Z € T(SY)=S8".

In these scaled spaces, the search directions are still orthogonal: D X

must lie in the null space of A(+) and D must lie in the range of A*(-).

62



5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Let’'s analyze the duality gap. We have
(X,Z)+ a{V,(Dy + Dx)).

Therefore, if we take as UN and UN the orthogonal projection of —V

onto the null space of A(-) and range of A*(-) respectively, then we will

have the best search direction to reduce the duality gap in this setting.

Now, let’s turn to the centrality part of the potential function. What kind of
search direction would improve the barrier function values in this setting?
We utilize the following technical lemma which summarizes many of the

nice properties of the barrier function F'.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Lemma5.1 Let X € S . Suppose D € S™ satisfies

ID||x := (D, X 'DX1)/?2 < 1.

F(X)+ (F(X),D) < F(X + D),
F(X + D)< F(X)+ (F (X),D) + % 55%.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Remark 5.1 The condition || D||x < 1(< 1) implies (X + D) > 0
(> 0). This is clear from the statement of the lemma. But it can also be

directly observed as follows:

1> |Dlx = | X~/2DX /2.

Therefore, || X /2D X~1/2||, < 1. But this is equivalent to
I+ X 12px—1/2 > 0. If we apply the automorphism X2, x1/2 of
¥ to both sides, we obtain equivalently X 4+ D > 0.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Let’s focus on the first order upper estimate on F'(X («)) + F(Z(«))

given by the above lemma. We obtain

(F'(X),Dx) +(F'(2),Dz)| = —(V7',Dx + Dy).

Thus, as in our analysis of the duality gap, if we take as UN and Um the
orthogonal projection of V ~1 onto the null space of sz and range of
A*(-) respectively, then we will have the best search direction to reduce

the first order term in the upper bound on the value of the barrier terms
F(X) 4+ F(Z), in this setting.

Therefore, to reduce the value of the potential function, it seems desirable
to choose a matrix which is a nonnegative linear combination of — V" and
V ~! and then define UX and UN as the orthogonal projections of this

matrix onto the null space of A(-) and the range of A*(-) respectively.
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

This is precisely what we do next. Let

-~ (n++/n) —1
U:=— (X 2) V+V—.

Note that [|U]| = 0iff V! = %: But the latter leads to a

contradiction (that n = n + /\mv upon taking the inner product with V' of

both sides. Therefore, ||U||» > 0 and we define

~

U
q = —=.
U

In fact, |U|| F is connected to a measure of centrality. Recall

- xhzeh (vhvh
o= n B n .
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Note that (pji — 1) is % times the squared norm of the error in the

equation Z = uX ~1, where the norm is with respect to the local metric

induced by T'?. We have

Corollary 5.1 Forevery X, Z € SY, we have

~ 1
Ull% > =(> 0).
|U||% :A )

The equality holds above iff Z = tumlﬁ
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Then UX. &@_ UN make up the unique solution of the system:
A(Dx)
A*(dy) + Dy
Dx + Dy
By definition,
IDx[[7 + |1 Dz|l7 = U|F = 1.

Therefore, we immediately conclude that
|Dx|lr < 1and|[Dg|lp < 1.

Now, we analyze || Dx || x and ||Dz||z. We have

IDx|lx = (Dx,X 'DxX~")
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

(WDxW, X 'WDxWX™1)
(Dx, WX 'W)Dx(WX~'W))
V= v, IDx %

:a\L . a\L:m

(An(V))*

Note that in the above derivation, we encountered the linear operator
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Similarly,

V= v, 1Dz]%

[v=r-v,
1

(An(V))?
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

We have,

#(a) — ¢(0)

(n+ V) In AQ Amw mv@vv — (U, VY

Y G S S
2(1 - allDx[[x)? " 2(1 - a[Dz]2)?

MU (U, V) — (U, V1)

(X, Z)
(1/ 2 (V))? v

e A% (L (V)2

IQ:Q:»Jl_‘Qw AA
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V3 1 1
“ 16 T 64(7/8)

V3 1

16 49

1

12
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

ALGORITHM

Given (X0, Z(9)) feasible in (P) and (D) such that X(?) - 0,
Z() 0. Also given is € € (0, 1) such that
Y(XO, 200 < Jrin(1/e)

while (X*®), Z(®)y > ¢(x(0), Z(0)y,

W= (z0) 7'/ TNE

A() = AW - W) [4; := W A
v

+vn —1
B ANQNSNQNSV V+V

U
1011
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

Solve the system

A*(dy) + Dy
Dx + Dy

Compute ¢ :=

min ?v«mﬁ%v + aWDxW, Z®) + aW='D,W=1) : a > &.

Let X(k+1) .= X (K) 4 W D W,
Zk+1) .— 7(k) L W 1D, W1,

k:=k+ 1.

end{While }
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5 ALGORITHM AND COMPUTATIONAL COMPLEXITY ANALYSIS

The above is what is typically called a potential reduction algorithm.

We proved the following theorem.

Theorem 5.1 The above algorithm terminates in at most

24/nIn(1/e)

iterations with feasible NASu Zk) such that

ANQ&V“ NASV < mANAS“ NASV.

Even though the algorithm requires the iterates to lie in the interior of the
underlying cone constraints, we can relax the initial feasibility assumption

by using auxiliary optimization problems.
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6 INFEASIBLE-START ALGORITHMS

6 Infeasible-Start Algorithms

Another approach is to work in the framework of the algorithm that we
discussed (or some other primal-dual interior-point algorithm) but modify
the search directions so that the search directions also try eliminate the
error in the linear equations defining the primal and dual feasible regions.
Instead of having our search directions D x and D 7 lying in the nullspace
of A(-) and range of A*(+), we ask that they satisfy the following system

of equations:

A(Dx) =b— AX"®)and A*(dy) + Dy = C — A*(y¥)) — Z*),
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6 INFEASIBLE-START ALGORITHMS

The analysis becomes more complicated, however, this is one of the
popular ways to solve SDP problems in practise. The algorithms need to
carefully monitor the progress in attaining feasibility, reducing Cﬁ Nv as
well as the proximity to the “central surface.” (Since we allow infeasible
iterates, we will be concerned with the distance to the “central surface”

rather than the central path.)

For instance, the algorithm should not allow the fast reduction of ( X, Z)

unless the iterates are getting to be near feasible at least as fast.
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7 Other Interior-Point Algorithms, General Remarks

The search directions that we discussed are known as the NT direction (for
Nesterov-Todd). These algorithms have been generalized to convex

optimization problems over arbitrary convex cones.

Other primal-dual algorithms that are useful and popular rely on search
directions proposed
Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro
(HKM direction) and Alizadeh-Haeberly-Overton (AHO direction). All these
directions can be defined and treated in a unified way (due to Y. Zhang,

some other related work is due to Monteiro-Y. Zhang):
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7/ OTHER INTERIOR-POINT ALGORITHMS, GENERAL REMARKS

Let M € R™"*"™ Define Hp : R"*" +— S™ as follows
Hp(M):=PMP '+ P T M P

This Hp(-) is called the symmetrized similarity transformation. To

compute the search direction, we solve the system

A*(dy) + Dy C — A*(yF)y — ZzF),

Hp Akéum + uxmév oyl — Hp AN@NA@V |

where 7y € |0, 1] a parameter fixed by the user/algorithm and
p= (XK ZK) /n as before.
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Choosing P := I gives the AHO direction, P := ANEVH\M yields the
HKM direction, choosing any PP € R™*" such that

PP = (xk)y-1/2 Q X612 7(8) NEVSVH\ ! (x(0)=172

1/4

(for instance, P := AANQAJH\MNQ& ANASVH\MV (X (&)Y =1/2y gives

the NT direction.
The next lecture starts with a discussion of the computational issues

related to the search directions for SDP which ties in nicely with the bundle

methods.
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We can also design a wide range of primal-dual algorithms without the

conic structure or logarithmic homogeneity:

WITH OR WITHOUT
the Conic Structure and Logarithmically Homogeneous
Barriers!

(From a recent paper by Nemirovski and T.)
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We are given

e a1-SCB ® with a domain G and the Legendre-Fenchel conjugate P,
(with a slight difference from the previous defn.) of ®; the domain of

®., is denoted Gt. G is a cone:

@m®+Hv3\mmw+ V1T >0

e alinear embedding = — A(x) with the null space A = {0} and the

image intersecting Q“

e avector c # 0.
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e the optimization problem

~

wwwinu&v“& cG}, G={xz:Alx) € G},

we are interested in solving;

e the function F'(x) = ®(A(x)) which is a 1-SCB for cl(G).
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7/ OTHER INTERIOR-POINT ALGORITHMS, GENERAL REMARKS

A shifted central path

Lemma 7.1 Fort > 0, the “primal-dual pair” (x,y) = (x4(%), y«(t)) is
uniquely defined by the relations
yeGt, zeqG
A*(y) = —tc
A(z) [& y=2'(Az))].

Moreover,

Y @v — m:.@:.__:@ﬁ@*@v A A@v — Iwmw.
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7.1 Proximity measure

Let us define the proximity measure as the function
U(z,y) = (A(z)) + ®u(y) — (v, A(z)) : GO GY - R

(Legendre-Fenchel gap between @ and ®..). Notice that for every x € GG

and every y € G, we have U(z,y) > 0 and for such a pair (, ) we
have ¥ (x,y) = 0iffy = ®'(A(x)).

Using this set up many path-following and potential-reduction algorithms

can be derived and analyzed.
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