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1
In

tro
d

u
ctio

n

T
his

partofthe
course

is
alm

ostcom
pletely

focused
on

Interior-P
ointM

ethods

and
a

biton

T
he

E
llipsoid

M
ethod
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In
the

m
odern

interior-pointtheory,alldifficult
constraints

are
pushed

into

the
convex

setconstraints
and/or

convex
cone

constraints.
T

hen,each
of

these
convex

inclusion
constraints

are
treated

via
a

strictly
convex

barrier

function
w

ith
very

specialproperties.

W
e

w
illpresentm

ostofour
results

in
the

fullgenerality
ofan

arbitrary

convex
set�

in���

or
an

arbitrary
convex

cone�

in� �

.
H

ow
ever,

specialattention
w

illbe
paid

to
S

em
idefinite

P
rogram

m
ing

(S
D

P
).

R
ecall,

����	

denotes
the

convex
cone

of
 �



sym
m

etric,positive

sem
idefinite

m
atrices

over
the

reals.

����		

is
the

interior
of� �	

;i.e.,the
convex

cone
of
 �




sym
m

etric,

positive
definite

m
atrices

over
the

reals.
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�

S
econd-order

cone:

��
� �
���

���

	
	

� � �
	 �

�	


� 	� �

���
�

S
D

P
stands

for
sem

idefinite
program

m
ing

w
here �

is
m

ade
up

from
direct

sum
s

ofvarious� �
�	

(possibly
under

som
e

linear
isom

orphism
s).

S
O

C
P

stands
for

second-order
cone

program
m

ing
w

here �

is
m

ade
up

from
directsum

s
ofvarious

��
� �

�

(possibly
under

som
e

linear

isom
orphism

s).
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W
e

consider
the

sem
idefinite

program
m

ing
(S

D
P

)
problem

s
in

the

follow
ing

prim
al� �

�

and
dual���

�

form
s.

� �
�

inf

� ����
	



� �
�

�

��

�

�
�

���
�

sup
���
�


��
� ����
�
�

��

�
�
�

w
here


is
a

linear
operator

from

� �

to ���

,so
that�

� � �

and
 �

denotes
the

adjointof


.
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W
ithoutloss

ofgenerality,w
e

assum
e

that


is
surjective.

Ifnot,w
e

can

consider
the

representation� �
����
	

�
�����
�
���
� ������
� ,w

here

�
� � � �

for
every�

.


being
surjective

is
equivalentto

��
� ��
� ���� ��

being
linearly

independent.
T

he
latter

can
be

assum
ed

w
ithoutloss

of

generality,since
ifthey

are
linearly

dependent,then
either

the
system

� �
����
	 �
�����
�
���
� ���� �
�

has
no

solution,or
there

are
som

e

redundantequations
w

hich
can

be
elim

inated.
In

the
firstcase,� �

�

is

infeasible.
In

the
second

case,allredundantequations,and
corresponding

�
�� ��

can
be

elim
inated,to

arrive
atan

equivalentproblem
satisfying

the

assum
ption.

6
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U
nder

this
assum

ption,for
any

solution,� � � �� ,ofthe
equation

�� ��
� � �
� �
�
�

�

,the �

partofthe
solution

uniquely
identifies

the

corresponding�
.

S
om

etim
es,in

interior-pointalgorithm
s,itis

convenient

to
refer

only
to �

w
hen

one
m

entions
a

feasible
solution

of���
� .

T
he

above
setting

ofthe
prim

al-dualS
D

P
pair

can
be

em
bedded

in
the

follow
ing

m
ore

generalsetting
ofconic

convex
optim

ization
problem

s:

� � �
�

inf
���
� 		



� 	�

�

��

	
�
�
�

w
here


is
a

surjective
linear

m
ap

and�

is
a

pointed,closed,convex

cone
w

ith
non-em

pty
interior.
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W
e

define
the

dualof� � �
�

as

� � �
�

sup

� ���	 �


 �
� ��
�

�
�

�
�

�
�
�
	�

w
here �

	

is
the

dualofcone �
w

ith
respectto���� �	 ,i.e.

�
	

� �

�
�
� �
�
� �� 		

���
	
�
�
�

W
e

w
illrefer

to
this

setting
as

the
conic

convex
optim

ization
setting.
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S
D

P
problem

fits
into

this
generalsetting

by
letting

�
� �
� �
� �

(thatis,
�
� �

� 
�
�
����

),

�
�
� �
� �	

,

�
� 	� �	

� �
� �
� �	 .
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U
nder

these
definitions

w
e

have�
	�
�

.
I.e.,the

cone
ofsym

m
etric

positive
sem

idefinite
m

atrices
is

self-dual
under

the
trace

inner
product.

In

addition
to

being
self-dual,the

cone� �	

enjoys
another

sym
m

etry

property,in
thatitis

hom
ogeneous.

T
hatis,the

setofnonsingular
linear

transform
ations

keeping� �	
the

sam
e

(the
autom

orphism
group

of� �	

)
is

rich
enough

to
contain

linear
transform

ations
w

hich
m

ap
any

fixed
interior

pointto
any

other
fixed

interior
pointof� �	

.
C

onvex
cones

w
ith

both

properties,i.e.
hom

ogeneous
self-dualcones,are

also
called

sym
m

etric.

10
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�
�

is
self-dualifthere

exists
an

inner-productunder
w

hich� �
�
�

.

�
�

is
hom

ogeneous
ifA

ut� �
�

acts
transitively

on
int� �

� .

�
�

is
sym

m
etric

if �
is

hom
ogeneous

and
self-dual.

S
o,w

e
have

the
underlying

optim
ization

problem
s:

�

S
ym

m
etric

C
one

P
rogram

m
ing

(S
ym

C
P

)

�

H
om

ogeneous
C

one
P

rogram
m

ing
(H

om
C

P
)
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�
A

hom
ogeneous

polynom
ial�

�� �
��
�

is
hyperbolic

in
the

direction
�
�
� �

,ifthe
univariate

polynom
ial(in�

�
�

)

�� 	�
���

has
only

realroots
for

every	
�
� �

.

�

A
convex

cone�

is
hyperbolic

ifitis

	
�
� �
��� 	�

��� � �
���
�
�
�	

for
a

polynom
ial�

w
hich

is
hyperbolic

in
the

direction�
�
� �

.

�

H
om

ogeneous
cones

m
ake

up
a

proper
subsetofhyperbolic

cones.

H
yperbolic

C
one

P
rogram

m
ing

(H
ypC

P
)
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S
trictly

speaking
w

e
have,

��
�
��
� �

�
� �
�

�
�� �
� �

�
�

��
� �

�
�
� � � �

�
� �
�

H
ow

ever,in
som

e
sense,

��
�
��
� �

�
� �
�
�

�� �
� �
�

�
��
� �

�
�
� � � �

�
� �
�

Yetin
an

another
sense,

��
�

��
� �

�
� �
�
�

�� �
� �
�

�
��
� �

�
�
� � � �

�
� �
�
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R
ecallthe

w
eak

duality
relation:

P
ro

p
o

sitio
n

1.1
Let

�
�

be
feasible

in� �
� ,and�

�� �
���

be
feasible

in� �
� .

T
hen

� ��
�

�
	

�

� �
��

�
�

�
�
�

��	

 �

S
im

ilarly
for

the
conic

convex
optim

ization
setting...

T
herefore,ifw

e
start

w
ith �

� 

�

and �
� 

�

both
feasible

in
their

respective
problem

s,then

decreasing� �
� �	

w
illgetus

closer
to

optim
ality!14
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S
ince

the
linear

operator


is
surjective,w

e
can

alw
ays

find

�
�
� � �

such
that



�

�
�
� �
� �

F
or

the
dual,because

ofthe
form

w
e

chose,w
e

can
alw

ays
find

��
�
� �

,

��
� � �

such
that


 �
�

�����
��

�
�
�

D
enoting

�

���
� �
� � �
�


� �� �
� �

w
e

claim
that� �

�

and���
�

are
equivalentto

the
follow

ing
pair.
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�
�

�
�

inf

�
�����

	
�

�
�

��
�

�
� �

�

�
�

�
�

�
�

inf
�

�
�
� �	�

�
�

�
��

��� �

�
�
�

here,

�
�

denotes
the

orthogonalcom
plem

entof
�

.16
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W
e

have

� �
�

�
�

inf

�
��� 		

	

�

�
��

�	�
�

�
�

and

� �
�

�
�

inf
� ��

�		

�

�

�
�

��
���

�

�
	

�

in
the

generalconic
convex

optim
ization

setting.
To

establish
the

equivalence,firstnote
thatthe

feasible
regions

are
preserved

(in� �
�

�
�

w
e

only
refer

to

� ).
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R
ecallthe

proofofthe
w

eak
duality

relation
(P

roposition
1.1).

F
or

every
	
�
� �

satisfying

� 	� �
� ,and

for
every� � � ��

satisfying


��
� ����
� �
�

w
e

have

� �
� 		

�

� ���	 �
�

� 	� �	 �

Ifw
e

fix�
�� �
���

such
that


 �
�

�����
�� �

�

then
for

all	
�
� �

satisfying

� 	� �
�

w
e

have

� �
� 		

�
� 	�

��	��
�
�

���

��

w
here

the
constantis� ��

��	 �

.
T

herefore,m
inim

izing

� �
� 		

subjectto
any

setofconstraints,containing
the

constraint

� 	� �
�

is
equivalentto

m
inim

izing

� 	�
��	

subjectto
the

sam
e

setofconstraints.

18
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S
im

ilarly,w
e

can
establish

the
equivalence

ofthe
dualproblem

s.
W

e
fix

�	

such
that


�
�	� �

�
then

for
all� � � ��

satisfying
 �
� �� �
� �
�

,w
e

have
�� ���	 �
�

�
�	� �	��

�
�

���

��

w
here

the
constantis

����
�

�		 .
T

herefore,m
axim

izing� ���	 �

subjectto

any
setofconstraints

containing
the

constraint
 �
� �� �
� �
�

is

equivalentto
m

inim
izing�

�	� �	

subjectto
the

sam
e

setofconstraints.
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2
E

llip
so

id
M

eth
o

d
�

�
� �

is
an

ellipsoid
ifthere

exist�
� � �

(determ
ining

the
center)

and

�
� � �		

(determ
ining

the
size

and
the

shape)
such

that

�
���
�
� �
� �� � �

	
�
� �
�� 	

�
�� �
���

�
� 	

�
�� �
�

�

W
e

can
alternatively

express
the

ellipsoid
as

the
im

age
ofthe

unitballin

� �

(denoted
by��

� � �
� )

under
an

affine
m

apping
as

follow
s:

�
� �
� �� �
� �
� �
��
� � �
� �
�
�

T
he

volum
e

ofthe
ellipsoid

is
proportionalto

the
square-rootofthe

determ
inantofthe

positive
definite

m
atrix

determ
ining

its
shape:

vol� �
� �
� ��� �

��
�� �� vol� ��
� � �
�� �

20
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T
he

volum
e

ofthe

�

-dim
ensionalunitballis

vol� ��
� � �
�� �

� �
� �

�
� �� �
�
� �

w
here

�� 	�
���
� �

� �
��	� �
�

�� ,for	


 .

W
e

firststudy
the

ellipsoid
m

ethod
as

an
algorithm

w
hich

com
putes

a
point

in
an

im
plicitly

described
convex

set.
In

this
basic

setting,itis
easy

to
see

thatthe
ellipsoid

m
ethod

is
a

beautifuland
theoretically

very
pow

erful

generalization
ofthe

bisection
m

ethod
from

�
to� �

,for
an

arbitrary

�

.
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2.1
Ingredients:

S
eparation

O
racles,Inscribed

and
C

ircum
scribed

E
llipsoids

2.1
In

g
red

ien
ts:

S
ep

aratio
n

O
racles,In

scrib
ed

an
d

C
ircu

m
scrib

ed
E

llip
so

id
s

To
appreciate

the
fulltheoreticalpow

er
ofthe

E
llipsoid

M
ethod,w

e
w

ill

m
ove

aw
ay

from
the

explicit
description

ofthe
convex

optim
ization

problem

athand.
Instead,w

e
w

illassum
e

thatw
e

are
given

access
to

a
separation

oracle.
Let�

�
� �

be
the

convex
setw

e
are

interested
in

optim
izing

over

or
less

am
bitiously

justfinding
a

pointinside
it(the

set�

).
W

e
define

� -relaxation
of�

as
follow

s:

relax� �
�

��
���

�

�
� �
��

�

�

	�� �
�

for
som

e

	
�
�
�

22



2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.1
Ingredients:

S
eparation

O
racles,Inscribed

and
C

ircum
scribed

E
llipsoids

A
w

eak
separation

oracle
for�

takes
as

input

�	
�

� �

,

�

�
�		

.
It

either
outputs

“

�	
�

relax� �
�

�� ”
or�

�
� �

such
that� �

� �
�
�

and

� �

�
�		


� �

� 		
�

�� �
	
�

relax� �
�

�� �

T
h

eo
rem

2.1
F

or
every

com
pact,convex

setin���

w
ith

nonem
pty

interior,

there
exists

a
unique

m
inim

alvolum
e

ellipsoid
containing

thatset.

M
oreover,shrinking

thatellipsoid
(around

its
center)

by
a

factor
ofatm

ost

�

gives
an

ellipsoid
contained

in
the

convex
set.

T
he

unique
ellipsoid

described
in

the
above

theorem
is

usually
called

the

Löw
ner-John

ellipsoid
.

T
he

factor

�

in
the

above
theorem

is
the

best

possible.
(T

he

�

-dim
ensionalsim

plex
proves

the
claim

for
every

�

.)
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LLIP
S

O
ID

M
E

T
H

O
D

2.1
Ingredients:

S
eparation

O
racles,Inscribed

and
C

ircum
scribed

E
llipsoids

Let

�
���

	
�
� �
�� 	

�
�� �
� �

�
� 	

�
�� �
�

�

and

�
�
���

� 	
�
�
�� �
	�
� �
�

� �

for
som

e�

� � �
�

� � .
W

e
w

illassum
e

�

�

.
W

e
w

ould
like

to

constructthe
sm

allestvolum
e

ellipsoid �	

containing
the

half-ellipsoid

�
�

.

Let�	
� � �

and

�	
� � �		

denote
the

center
and

the
positive

definite

m
atrix

determ
ining�	

.
T

hen

�	
�
�

�

�

� ��
�
�

� �
�

�

�
�

�

�	 �

� �
� �

��
� �

�

�

� ��
�
� � �
�

�

�
�
� �
�

�

�
24
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2.1
Ingredients:

S
eparation

O
racles,Inscribed

and
C

ircum
scribed

E
llipsoids

W
e

can
explicitly

com
pute

the
volum

e
of�	

in
term

s
ofthe

volum
e

of�

,

since
�	

is
a

rank-1
update

of�

.
W

hen
w

e
take

the
im

age
of���

under

the
m

apping
� �

�
� �

,our
ellipsoid�

becom
es

the
unitball.

U
nder

this

m
apping

our
update

form
ula

becom
es

�	
�

� �
� �

��
� �

�

�

� ��
�
�

�
� �

�
�

�
�

�
� �

� �

w
here

�
�

� �
� �
� �

�

.
T

he
eigenvalues

of

� �
�

�
�
�
	 �

������
��

�
�

�
� �

�

are � �
�

�
	 �

and�

(w
ith

m
ultiplicity� �

��
� ).

T
herefore,

��
�� �	� �

�
��
�

�
	 �

�
�

��
� �
�

�

� �
� �

��
� �
�

� �
� ��
�
� �

�
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LLIP
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2.1
Ingredients:

S
eparation

O
racles,Inscribed

and
C

ircum
scribed

E
llipsoids

H
ence

the
volum

e
of �	

can
be

related
to

the
volum

e
of �

as
follow

s:

vol� �	� �

�
� �

��
� �
�

�
��
�

vol� �
� �

T
h

eo
rem

2.2
W

e
have

�
�

�
�	

and
��

vol� �	�

vol� �
�
�

�
��

� �
26
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E

LLIP
S

O
ID

M
E

T
H

O
D

2.2
C

om
plexity

A
nalysis

for
the

E
llipsoid

M
ethod

2.2
C

o
m

p
lexity

A
n

alysis
fo

r
th

e
E

llip
so

id
M

eth
o

d

S
uppose

vol� �

� �

�

and
w

e
w

ant �
�

such
thatvol� �

�� �
� .

T
hen

by

the
lasttheorem

,

��

vol� �
��

vol� �

�
�

�

�
�
� �

and�

� �
��

� �
� ��

iterations
suffice.

S
im

ilarly,if�

is
the

radius
ofthe

initialball(w
hose

im
age

under
the

m
apping

	
��
� �

�
� �




	

contains
the

set)
and

w
e

w
antthe

stopping
criterion

to
be

thatthe
radius

ofthe
current

ball(w
hose

im
age

under
the

m
apping

	
��
� �

�
� �

�

	

contains�

)
is

at

m
ost� ,then

using

vol� �
��

vol� �

�

�
�

��

��

�27



2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.2
C

om
plexity

A
nalysis

for
the

E
llipsoid

M
ethod

w
e

find
that�

� � �
��

� �
� ��

iterations
suffice.

T
h

eo
rem

2.3
Let�

�
� �

be
a

convex
setsuch

that�
�
��
� � �
� .

S
uppose

w
e

are
also

given

�
�

�		

.
Ifw

e
have

access
to

a
w

eak

separation
oracle

for�
,then

in
polynom

ialtim
e

(polynom
ialin

� ��
��

� �
� ��� ),w

e
can

com
pute

�	
�

relax� �
� ��

or
prove

that

vol� �� �
� .

T
hese

results
can

be
extended

to
optim

izing
a

convex
function

over�

.
W

e

need
one

m
ore

ingredientto
dealw

ith
the

objective
function.

Let

�

�� �
��
�

be
a

convex
function.
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2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.2
C

om
plexity

A
nalysis

for
the

E
llipsoid

M
ethod

D
efi

n
itio

n
2.1

A
subgradientoracle

for

�

takes
as

input

�	
�
� �

and

returns
in

polynom
ialtim

e
(polynom

ialin

�

and
for

a
proper

definition,

size�
�	� )

��
�	�

and�
�
� �

such
that

�� 	�


��
�	���

� �
� 	

�

�	� � �
	
� � �
�

S
uppose

w
e

are
interested

in
solving

the
convex

optim
ization

problem

��

�

�
�� 	�
�	
�
�

� �
w

here

�

�� �
��
�

is
a

convex
function.
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2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.2
C

om
plexity

A
nalysis

for
the

E
llipsoid

M
ethod

T
h

eo
rem

2.4
Let�

�
� �

be
a

convex
setand

�� �
� �		

be
given

such
that

��
�

�	� ��
�
�

�
��
� � �
� �

for
som

e

�	
�
� �

(here,

�	

is
n

o
t

given).
Let�

�
�		

be
also

given.
S

uppose
thata

subgradientoracle
for

�
and

a
w

eak
separation

oracle
for�

are
available.

T
hen

after

�

� �
�

��

��
�

��

�
� 
�

�
�

iterations,the
ellipsoid

m
ethod

returns
a

feasible
solution

�	
�
�

such
that

��
�	� �

��

�

�
�� 	�
�	
�
�

� �
� �

In
the

above,� 

���

��
��

��
� �

	 �
�� 	��

�

��

��
� �

	 �
�� 	�� .
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2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.3
B

ibliographicalN
otes

2.3
B

ib
lio

g
rap

h
icalN

o
tes

U
ntil1979

very
few

m
athem

aticians
in

the
W

estknew
aboutthe

ellipsoid

m
ethod.

K
hachiyan,in

1979
proved

thatthe
E

llipsoid
M

ethod
can

be

adapted
to

solve
linear

program
m

ing
problem

s
in

polynom
ialtim

e
(hence

settling
a

long
outstanding

problem
).

T
his

announcem
entcaused

an

unprecedented
reaction

from
the

m
edia.

T
he

E
llipsoid

M
ethod

w
as

originally
proposed

by
Iudin

and
N

em
irovskiin

1976
also

som
e

related
w

ork
is

due
to

S
hor

in
1977.

T
his

originalm
ethod

w
as

designed
to

dealw
ith

essentially
any

convex
optim

ization
problem

thatcan
be

posed
in

a
finite

dim
ensionalspace

by
the

potentialusage
of

oracles
(an

im
portantpointw

hich
should

be
em

phasized
is

thatthe

functions
involved

in
defining

the
feasible

solution
set,the

objective
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2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.3
B

ibliographicalN
otes

function
need

n
o

t
be

differentiable).
F

or
a

nice
exposure

to
E

llipsoid

M
ethod

for
linear

program
m

ing
problem

s,see
the

survey
paper

by
B

land,

G
oldfarb

and
Todd,O

perations
R

esearch
29

(1981)
1039–1091.

S
hortly

after
K

hachiyan’s
result,itw

as
established

thatthis
m

ethod
is

a

very
pow

erfultoolin
determ

ining
the

com
putationalcom

plexity
status

(hence
the

degree
ofdifficulty)

ofvarious
com

binatorialoptim
ization

problem
s.

A
good

reference
is

G
eom

etric
algorithm

s
and

com
binatorial

optim
ization

by
M

.G
rötschel,L.Lovász

and
A

.S
chrijver.
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2
E

LLIP
S

O
ID

M
E

T
H

O
D

2.3
B

ibliographicalN
otes

In
the

late
1980’s,E

llipsoid
M

ethod
w

as
applied

to
som

e
problem

s
in

S
ystem

and
C

ontrolT
heory

(see
the

book
Linear

M
atrix

Inequalities
in

S
ystem

and
C

ontrolT
heory

by
B

oyd
etal.).

T
hese

problem
s

w
ere

sm
all

butrelatively
difficultconvex

optim
ization

problem
s.

S
ince

late
1980’s

and

early
1990’s

interior-pointm
ethods

consistently
took

over
the

solution

process.
T

hese
are

the
m

ethods
w

e
discuss

and
analyze

next.
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3
C

E
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T
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A
L

PAT
H

3
C

en
tralP

ath

O
ne

ofthe
m

ostim
portantconcepts

in
interior-pointm

ethods
is

the
central

path.
W

e
arrive

atthis
conceptvia

another
centalconcept:

the
barrier

for
the

difficultconstraints.

Let

�

�� �
��
�

be
a

logarithm
ically

hom
ogeneous

self-concordant

barrier
for�

.
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3
C

E
N

T
R

A
L

PAT
H

D
efi

n
itio

n
3.1

(LH
S

C
B

)
Let

�

�int� �
� �
�

be
a���

-sm
ooth

convex

function
such

that

�

is
a

barrier
for �

(i.e.

�
� 	� �
�

as	
�

int� �
�

approaches� �
)

and
there

exists�
 �

such
thatfor

each�


 ,

�
� �	�

�
�
� 	�

�

�
��

� �� �

and

� �
�
� 	�� �� �� ���
�
�

� �
�

�
� 	�� �� ��� �
� �

for
all	

�

int� �
�

and
for

all�
�
�

.
T

hen
�

is
called

a�

-LH
S

C
barrier

for�

.
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3
C

E
N

T
R

A
L

PAT
H

��
� ��

� �
�

��

�

�
� int� �

� � � �� 		 �
�
� 	��

Legendre-F
enchelC

onjugate

��

also
has

the
above

m
entioned

properties
for�

	

for
the

sam
e

barrier

param
eter�

.

�

is
a

very
im

portantparam
eter

ofthese
barriers.

C
urrently,one

ofthe

bestiteration
bounds

for
interior-pointm

ethods
for

conic
convex

optim
ization

is

�

�
��

��

to
com

pute
an

� -optim
alsolution.
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3
C

E
N

T
R

A
L

PAT
H

Let�


 .

C
onsider

� � �
� �

inf

� �
� 		 �

�
�
� 	�



� 	�

�

��

� 	

�
�
� �

and

� � �
� �

inf

�� ���	 �
�

�
��
� ��


��
� ��
�

�

�
�
�

� �

�
�
	� �
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3
C

E
N

T
R

A
L

PAT
H

Itis
w

ell-know
n

that

T
h

eo
rem

3.1
S

uppose� 	
� 

�� �
� 

��

�

int� �
�

�

int� �
	�

feasible
in

� � �
�

and� � �

�

exists.
T

hen� � �
� �

and� � �
� �

have
a

unique

optim
alsolution

pair	� �� ,� �� �� � �� ��� ,for
each

�


 .

D
efi

n
itio

n
3.2

� � 	� �� ��� �� � �� ��� �
�


�

is
called

the
prim

al-dual

centralpath
for

the
pair� � �
� �� � �


� .

S
om

etim
es

w
e

refer
only

to� 	� �� � �� ��� .
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3
C

E
N

T
R

A
L

PAT
H

3.1
C

entralP
ath

for
S

D
P

3.1
C

en
tralP

ath
fo

r
S

D
P

Let’s
focus

on
S

D
P

first.
H

ere,
�
� �
�

���
�

��

� ��
�� �
�� �

��
� �� �

�

��

� ��
�� ���

�


 �
�
� ��

�


 �
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3
C

E
N

T
R

A
L

PAT
H

3.1
C

entralP
ath

for
S

D
P

T
he

centralpath
is

equivalently
characterized

as
the

unique
solution

(via

necessary
and

sufficientconditions
for

optim
ality)

ofthe
convex

optim
ization

problem

� �
� � :



� �
� �
��
�

�

�

�
 �
� ��

�� �
��
��

�
�
 �

Let’s
do

the
substitutions�

� �
��

and �
���

� � �
�

.
W

e
obtain

the

system



� �
�

�

�� �
�

�


 �
� ����
�
�

��

�
�

� � �
�

�
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3
C

E
N

T
R

A
L

PAT
H

3.1
C

entralP
ath

for
S

D
P

F
or

each

�


 ,the

unique
solution

ofthe
above

system
� �
� �� ��� �� � �
� ���

defines
the

prim
al-dualcentralpath.

P
ath-F

ollow
ing

algorithm
s

“closely”
or

“loosely”
follow

this
path

to
the

setof

optim
alsolutions.

(N
ote

thatunder
the

assum
ption

ofthe
existence

of

strictly
feasible

points
for

both
prim

aland
the

dual,both
problem

s
do

have

optim
alsolutions

and
there

is
no

duality
gap.)

P
otential-R

eduction
algorithm

s
reduce

the
problem

to
thatofm

inim
izing

(or
driving

to

�
�

)
a

com
bination

ofthe
objective

function:

�
���
� 		

�
� �
�

�
� �
� �	

and
a

barrier
(e.g.,

�

��

� ��
�� �
��

or
a

m
easure

ofcentrality.
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3
C

E
N

T
R

A
L

PAT
H

3.2
N

eighbourhoods
ofthe

C
entralP

ath

3.2
N

eig
h

b
o

u
rh

o
o

d
s

o
f

th
e

C
en

tralP
ath

A
gain,w

e
firstfocus

on
S

D
P.To

follow
the

centralpath,or
to

understand

the
potential-reduction

algorithm
s

in
a

unifying
w

ay,itis
w

orth
studying

the

neighbourhoods
ofthe

centralpath.
In

the
prim

al-dualsetting,this
is

quite

elegantand
effective.

G
iven

strictly
feasible

points�
and�

,define
�
� �
� �
� �	



�

Let

�



denote
the

setofallstrictly
feasible

solution
pairs� �

� ��

( �

satisfies
allthe

prim
alconstraints

and
is

positive
definite,�

satisfies
allthe

dualconstraints
and

is
positive

definite).
T

hen
w

e
can

express
m

any

neighbourhoods.
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3
C

E
N

T
R

A
L

PAT
H

3.3
N

eighbourhoods
B

ased
on

the
A

lgebraic
D

escription
ofthe

C
entralP

ath

3.3
N

eig
h

b
o

u
rh

o
o

d
s

B
ased

o
n

th
e

A
lg

eb
raic

D
escrip

tio
n

o
f

th
e

C
en

tralP
ath

Let�
�
� � �
�

be
an

absolute
constant.

W
e

define

(i)
so-called

w
ide

neighborhoods

��
� ��

� �

� �
� ��
�

�


�
���
�� � �
� �
��

�
� �

�

� �

�

�� �
�

(ii)
infinity-norm

neighborhoods

�
� ��

���

� �
� ��
�

�


�

��� �� � �
� �
��

�
� �

�
�

���
����

�
�

�

�

(ii) �or
equivalently,

�
� ��
� �

� �
� ��
�

�


�

����� �
�
� �
��

�
� �

�

�

� ������ �
�

�
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3
C

E
N

T
R

A
L

PAT
H

3.3
N

eighbourhoods
B

ased
on

the
A

lgebraic
D

escription
ofthe

C
entralP

ath

(iii)
so-called

tight(or
narrow

)
neighborhoods

�
� ��

���

� �
� ��
�

�


�

����� �
�
� �
��

�
� �

�

�

� �����
� �

�

�

N
ote

that(as
is

w
ell-know

n),

C
entralP

ath

�

�
� ��

�

�
� ��

�

��
� ��

�
�


 �
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3
C

E
N

T
R

A
L

PAT
H

3.4
N

eighbourhoods
B

ased
on

the
A

nalytic
D

escriptions
ofthe

C
entralP

ath

3.4
N

eig
h

b
o

u
rh

o
o

d
s

B
ased

o
n

th
e

A
n

alytic
D

escrip
tio

n
s

o
f

th
e

C
en

tralP
ath

W
e

define
a

m
easure

ofcentrality
based

on
the

barrier
values:

�� �
� ��
� �



��

� �
� �	




�

��

� ��
�� �
��

�

��

� ��
�� ��� �

T
h

eo
rem

3.2
F

or
every� �

� ��
� � �		

�

� �		

,
�� �
� ��

 �

M
oreover,the

equality
holds

above
iff �

�
� � �

�

for
som

e

�


 .

T
his

theorem
generalizes

the
A

rithm
etic-G

eom
etric

M
ean

Inequality
and

the
corresponding

characterization
for

equality.
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3
C

E
N

T
R

A
L

PAT
H

3.4
N

eighbourhoods
B

ased
on

the
A

nalytic
D

escriptions
ofthe

C
entralP

ath

W
e

can
also

define
a

proxim
ity

m
easure

based
on

the
gradients

ofthe

barrier
�

��

� ��
�� �
�� ,

�

��

� ��
�� ��� :

Let

��
���
� � �

�
� � �

�
	




�

W
e

have

T
h

eo
rem

3.3
F

or
every�

�

 ,�
�

 ,
�

��

�
�

E
quality

holds
above

iff �
�

� � �
�

.

T
he

above
theorem

generalizes
the

A
rithm

etic-H
arm

onic
M

ean
Inequality

and
the

corresponding
characterization

for
equality.46



3
C

E
N

T
R

A
L

PAT
H

3.4
N

eighbourhoods
B

ased
on

the
A

nalytic
D

escriptions
ofthe

C
entralP

ath

In
the

general,conic
convex

optim
ization

setting,the
centralpath

equation

� �
�

�
�

�� 	�

replaces�
�

�
� � �

�
.

T
he

firstproxim
ity

m
easure

is
generalized

to:

�� 	� ��
� �
�

��

� 	� �	
�

�
�
� 	� �

��
� �� �
� �

T
he

nexttheorem
show

s
thatfor

every
pair

ofinterior
solutions� 	� �� ,the

proxim
ity

m
easure

is
nonnegative

and
itis

equalto
zero

ifand
only

ifthe

point� 	� ��

lies
on

the
centralpath.
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3
C

E
N

T
R

A
L

PAT
H

3.4
N

eighbourhoods
B

ased
on

the
A

nalytic
D

escriptions
ofthe

C
entralP

ath

T
h

eo
rem

3.4
Let

�

be
a

LH
S

C
B

for �

w
ith

param
eter�

.
T

hen
�� 	� ��

�

for
all	

�

int� �
� �
�
�

int� �
	� �

M
oreover,the

inequality
above

holds
as

equality
iff

� �
��

�
�� 	� �

for
som

e�


 �
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3
C

E
N

T
R

A
L

PAT
H

3.4
N

eighbourhoods
B

ased
on

the
A

nalytic
D

escriptions
ofthe

C
entralP

ath

F
or

convenience,w
e

w
rite

�	
���

�
�

�

�
� ��

and

��
���

�
�

�� 	� .
O

ne
can

think
of

�	

and
��

as
the

shadow
iterates,as

�	
�

int� �
�

and

��
�

int� �
	�

and
if� 	� ��

is
a

feasible
pair,then

�
�	 �

	

iff�
�� �

�

iff� 	� ��

lies
on

the
centralpath.

W
e

also
denote

��
� �
�

�	�
��	� � �

T
h

eo
rem

3.5
F

or
every� 	� ��

�
int� �

�
�

int� �
	� ,

�
��


�
�

E
quality

holds
above

iff	 �
�

�
�

�

�
� ��

(and
hence

� �
�

�
�

�� 	� ).
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3
C

E
N

T
R

A
L

PAT
H

3.5
P

ath-F
ollow

ing

3.5
P

ath
-F

o
llo

w
in

g

W
hile

m
ostelegantpotential-reduction

algorithm
s

m
ightnotm

ake
any

reference
to

the
centralpath

(even
including

the
theoreticalanalysis),

path-follow
ing

and
potential-reduction

algorithm
s

are
very

closely

connected.

C
urrently,m

ostofthe
practicalim

plem
entations

ofIP
M

s
both

for
LP

and

S
ym

C
P

are
based

on
m

odifications
ofpath-follow

ing
algorithm

s.
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3
C

E
N

T
R

A
L

PAT
H

3.5
P

ath-F
ollow

ing

T
here

are
m

any
strategies

available
to

us
for

follow
ing

the
centralpath.

O
ur

algorithm
s

generate
search

directions

�
�

and �
�

and
step

sizes

�
�

and

�
�

and
update

�
�
�
�

�
� �
�
�

and

�
�

��
�

� �
� �

In
theory,itis

very
convenientto

take

�
� �

�
�

�
�

� �
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3
C

E
N

T
R

A
L

PAT
H

3.5
P

ath-F
ollow

ing

H
ow

ever,there
are

possible
advantages

in
practise

to
allow

them
to

take

differentvalues.
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3
C

E
N

T
R

A
L

PAT
H

3.5
P

ath-F
ollow

ing

W
hatproperties

do
w

e
ask

for
in

the
search

directions?

�

Im
prove

the
currentduality

gap� �
� �	

�

G
etcloser

to
the

centralpath
w

ithoutincreasing� �
� �	

(very
m

uch)

�

A
suitable

com
bination

ofthe
firsttw

o
above!

W
e

can
also

m
ix

these
properties

“externally”
in

a
predictor-corrector

m
ethods.
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3
C

E
N

T
R

A
L

PAT
H

3.5
P

ath-F
ollow

ing

Let’s
define

�
� ��

� �
�
�

� �
�
�

and

�
� ��

���
��

� �
� �

G
iven

�

�
� � �
�

(a
centrality

param
eter

defining
som

e
ofthe

properties
of

the
search

direction),there
are

m
any

search
directions

achieving

� �
� �� � �
� ��	 �
� �

�

�� �
�

��� � �
� �	 �

and
for

�

large
enough

(e.g.,

�� �
� ,

�� �
� 
� ,

�� �
�


� ,...),

� �
� �� � �
� ���

stays
in

a
suitable

neighbourhood
ofthe

centralpath.

M
ore

on
search

directions
for

S
D

P
atthe

end
ofthis

lecture
and

atthe

beginning
ofthe

next...
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4
P

R
IM

A
L-D

U
A

L
P

O
T

E
N

T
IA

L
F

U
N

C
T

IO
N

4
P

rim
al-D

u
alP

o
ten

tialF
u

n
ctio

n

G
iven�

�

�
�

���
and�

�
�
�

���

a
pair

ofprim
al-dualfeasible

and
interior

pairs,

w
e

w
ould

like
to

have
a

sim
ple

w
ay

ofcom
paring

them
.

W
e

have
tw

o

criteria:

�

sm
aller

the
duality

gap� �
� �	

is
the

better,

�

sm
aller

the
distance

to
the

centralpath
(thatis,the

value
of

�� �
� �� )

is
the

better.
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4
P

R
IM

A
L-D

U
A

L
P

O
T

E
N

T
IA

L
F

U
N

C
T

IO
N

T
he

nextfunction,called
the

prim
al-dualpotentialfunction,serves

such
a

purpose
and

allow
s

us
to

design
and

perform
the

com
plexity

analysis

directly
on

it.

�
� � �
� ��
� �

�
��

�� �
� �	� �

�� �
� �� �

w
here

�





(w
e

w
illtake

�

���



in

our
analysis).
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4
P

R
IM

A
L-D

U
A

L
P

O
T

E
N

T
IA

L
F

U
N

C
T

IO
N

T
h

eo
rem

4.1
S

uppose
w

e
have

� �
� 

�� �
� 

��

feasible
for� �

�

and���
�

such
that

�� �
� 

�� �
� 

�� �



��

��

�

for
som

e

�
�
� � �
� �

Ifw
e

generate� �
� �
�� �
� �
��

feasible
in� �

�

and���
�

such
that

�
� �
� �

� �
�� �
� �
�� �

�
� �
� �

� � ��
�� �
� � ��
��
�

��

for
every

�
 �
�

for
som

e

�





an
absolute

constant,then
for

som
e

�� ��
�



��

� �
� ��� ,w

e
have

� �
� �
�� �
� �
�	 �

�� �
� 

�� �
� 

�	 �

for
every

�


�� �
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5
A

lg
o

rith
m

an
d

C
o

m
p

u
tatio

n
alC

o
m

p
lexity

A
n

alysis

B
ased

on
the

lasttheorem
,our

problem
ofproducing

an
approxim

ately

optim
alsolution

pair
is

reduced
to

decreasing
the

potentialfunction
value

by
a

constant,in
every

iteration.
W

e
w

antto
update� �

� �
�� �
� �
��

to

� �
� �	 �
�� �
� �	 �
��

such
that

� �
� �
� ,
 �
� ����
�
�

�

, �
�

 ,

�
�



are
allm

aintained;m
oreover,� �

� �	

is
decreased

and

�� �
� ��

is
notincreased

a
lot(in

com
parison

to
the

duality
gap).

W
e

can
express

the
update

from

� �
� �
�� �
� �
��

to� �
� �	 �
�� �
� �	 �
��

by
a

pair
ofsearch

directions �
�

, �
�
� � �

respectively
and

a
step

size

�
� �		

.
W

e

drop
the

iterate
num

bers
for

this
partofour

study
and

define

�
� ��
� �
�
�

� �
�
�

and �
� ��
� �
��

� �
� �
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To
m

aintain
the

feasibility
ofthe

iterates,the
search

directions
m

ustsatisfy



���

�� �


and
 �
� �

� ���
�

� �
�

for
som

e

�
�

�
���

;i.e., �
�

m
ustbe

in
the

nullspace
of


����

and �
�

m
ustbe

in
the

range
of
 �

���� .

W
e

w
illderive

an
algorithm

thatis
sym

m
etric

betw
een

the
prim

aland
the

dual(prim
al-dualsym

m
etry

),w
e

w
ould

also
like

to
have

our
algorithm

invariantunder
the

sym
m

etries
ofthe

cone
constrains

(scale-invariance
).

To
be

m
ore

specific,instead
ofform

alizing
these

vague
goals,w

e
w

ill

describe
an

approach
w

hich
attains

these
goals.
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F
or

every� �
� ��
� � �		

�

� �		

w
e

w
ould

like
to

have
a

self-adjoint,

positive
definite

linear
transform

ation

�

�� �
��
� �

such
that

�
�

�

A
ut� � �	 � �

�
�
� �� �

� �
�

� �
� �

�
��

�
�
� � �

�
� �

� �
�

� � �
�

� �
� �

�

.

Ifw
e

can
find

such
transform

ation
�

,then
w

e
can

m
ap

our
prim

al-space

w
ith

the
m

apping

� �
�

and
the

dual-space
w

ith

�

.
T

his
m

odification
does

notchange
anything

significantly,exceptthatour
currentprim

al-dual

iterate
is

m
apped

onto� ��
�
� .

Let’s
elaborate:
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S
ince

�
(and

therefore

� �
�

;because,

�

is
self-adjoint)

is
an

autom
orphism

ofthe
cone

ofpositive
sem

idefinite
m

atrices,the
m

ost

im
portantpartofthe

problem
(for

the
currentinterior-pointm

ethod

approach)
is

unchanged.
W

e
define

�


����

���


� �
�����

��
� �
�
� ��

�
�

�
���
� �

�
���

�� �

�
�

�
� �
�
���

�� �

61



5
A

LG
O

R
IT

H
M

A
N

D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

N
ow

,� �
�

and���
�

becom
e

�
��

�
inf

�
��

���
	

�


� �
�

�

��

�

�
� �

�
� � �	 � �
� �	 �

�
�

�
�

sup
� �
�

�

��
� �� �
�
�

��
�

�
�

�
� � �	 � �
� �	
�

In
these

scaled
spaces,the

search
directions

are
stillorthogonal:

�
�

�

m
ustlie

in
the

nullspace
of

�


����

and

�
�

�

m
ustlie

in
the

range
of

�

 �
���� .
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Let’s
analyze

the
duality

gap.
W

e
have

� �
� �� � �
� ��	

�

� �
� �	 �

�� ���
�

�
� �

�
�

��	 �

T
herefore,ifw

e
take

as

�
�

�

and

�
�

�

the
orthogonalprojection

of

�

�

onto
the

nullspace
of

�


����
and

range
of

�

 �
����

respectively,then
w

e
w

ill

have
the

bestsearch
direction

to
reduce

the
duality

gap
in

this
setting.

N
ow

,let’s
turn

to
the

centrality
part

ofthe
potentialfunction.

W
hatkind

of

search
direction

w
ould

im
prove

the
barrier

function
values

in
this

setting?

W
e

utilize
the

follow
ing

technicallem
m

a
w

hich
sum

m
arizes

m
any

ofthe

nice
properties

ofthe
barrier

function

�

.
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L
em

m
a

5.1
Let�

� � �		

.
S

uppose�
� � �

satisfies

� �
� �
� �
���
��� �

��
� �

�
	 �
� ��

�
�

T
hen

�
� �
� �
� �

�� �
� � �
	 �

�
� �
�
�
� �

�
� �
�
�
� �

�
� �
� �
� �

�� �
� � �
	 �

� �
� ��

�
� �

�

� �
� �� �

�

64



5
A

LG
O

R
IT

H
M

A
N

D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

R
em

ark
5.1

T
he

condition

� �
� ��
�

(� �

)
im

plies� �
�
�
� �


(

�

 ).
T

his
is

clear
from

the
statem

entofthe
lem

m
a.

B
utitcan

also
be

directly
observed

as
follow

s:

�

� �
� �

�
� � �

�
� ��
� �

�
� �

�
�

�

T
herefore,� � �

�
� ��
� �

�
� �

� ��
�

.
B

utthis
is

equivalentto

� �
� �

�
� ��
� �

�
� �

�
 .

Ifw
e

apply
the

autom
orphism�

�
� �
��
�
� �

of

� �	

to
both

sides,w
e

obtain
equivalently �

�
�
�
 .
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Let’s
focus

on
the

firstorder
upper

estim
ate

on

�
� �
� �����

�
� �
� ���

given
by

the
above

lem
m

a.
W

e
obtain

� � �
�� �

� � �
�	 �
� �

�� �� � �
�	�

�

�� � �
�

�
�

�
� �

�
�

�	 �

T
hus,as

in
our

analysis
ofthe

duality
gap,ifw

e
take

as

�
�

�

and

�
�

�

the

orthogonalprojection
of

� �
�

onto
the

nullspace
of

�


����

and
range

of

�

��
����

respectively,then
w

e
w

illhave
the

bestsearch
direction

to
reduce

the
firstorder

term
in

the
upper

bound
on

the
value

ofthe
barrier

term
s

�
� �
� �

�
� �� ,in

this
setting.

T
herefore,to

reduce
the

value
ofthe

potentialfunction,itseem
s

desirable

to
choose

a
m

atrix
w

hich
is

a
nonnegative

linear
com

bination
of

�
�

and

� �
�

and
then

define

�
�

�

and

�
�

�

as
the

orthogonalprojections
ofthis

m
atrix

onto
the

nullspace
of

�


� ��

and
the

range
of

�

 �
����

respectively.
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T
his

is
precisely

w
hatw

e
do

next.
Let

��

� �
�

� 
�


�

� �
� �	

��
� �

�
�

N
ote

that�
��

�
�

�


iff

� �
�

�
�
�
	

� �
�

� �
� �

�
�

.
B

utthe
latter

leads
to

a

contradiction
(that
 �


�




)
upon

taking
the

inner
productw

ith

�

of

both
sides.

T
herefore,�

��
�

�





and
w

e
define

�

� �

��
�

��
�

�

�
In

fact,�
��

�
�

is
connected

to
a

m
easure

ofcentrality.
R

ecall

��
� �
� � �

�
� � �

�
	




�
� � �

�
�

� �
�

	




�
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T
hen

�
�

� �
�

�

� 
�


� �

� 

�� �



�

��
� 
�


�
�

�



��

�
��

� 
� �
��

��
���
�
� �

N
ote

that� �
��

��
�

is ��
�

tim
es

the
squared

norm
ofthe

error
in

the

equation�
�

� � �
�

,w
here

the
norm

is
w

ith
respectto

the
localm

etric

induced
by

� �

.
W

e
have

C
o

ro
llary

5.1
F

or
every�

� �
� � �		

,w
e

have

�
��

� �
�


�� � 


� �

T
he

equality
holds

above
iff�

�
� � �

�

.

68



5
A

LG
O

R
IT

H
M

A
N

D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

T
hen

�
�

�

,

�
� ,

�
�

�

m
ake

up
the

unique
solution

ofthe
system

:

�


�

�
�

��
�



�

 �
� �

� ���
�

�
�

�



�
�

� �
�

�
�

�

�
�

B
y

definition,

�
�

�
�
� �
� �
�

�
�

�
� �
�

�
�

�
� �
�

�
�
�

T
herefore,w

e
im

m
ediately

conclude
that

�
�

�
�
�

��
�

and
�

�
�

�
�

��
�
�

N
ow

,w
e

analyze

� �
�
� �

and

� �
�
� �

.
W

e
have

� �
�
� ��

�

���
�
��� �

��
� � �

�
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�

� �

�
�

�
�
��� �

�
�

�
�

�
� � �

�
	

�

�
�

�
�
�� � � �

�
�
�

�
�

�
� � � �

�
�
�	

�

��
� �

�
�

� �
�
���

�
�

�
�
� �
�

�

��
� �

�
�

� �
�
���

�

�
� ��
� �
�� �

�

N
ote

thatin
the

above
derivation,w

e
encountered

the
linear

operator
�
� �

�

�� �
��

�
����

w
hich

happens
to

coincide
(in

this
case)

w
ith

the
linear

operator

�
�
� �

�� �
�� �

�
� �

�� �
���
�70
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S
im

ilarly,
� �

�
� ��
�

��
� �

�
�

� �
�
���

�
�

�
�
� �

�

�

��
� �

�
�

� �
�
���

�

�
� ��
� �
�� �

�
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W
e

have,
�� ��

�

�� � �

� 
�


�
��

� �
� �� � �
� ��	

� �
� �	

�

��
��
� �

�
	

�
� �

� �
�
� ��

�
� �

�

�
� �

�
� �� � �

� �
�
� ��

�
� �

�

�
� �

�
� �� �

�

�
� 
�


�

� �
� �	

�
��
�
	

�

��
��
� �

�
	

�
�

� �

� �
� ��
� �
�� �

�
� �

�

�� �
� ��
� �
��� �

�

�
�

�
��

�
� �

� �

� �
� ��
� �
�� �

� �
�

�� �
� ��
� �
��� �

�

�

�

�
��
� �
�

��
� �

� �
� ��
� �
�� �

� �
�

�� �
� ��
� �
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� �
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N

D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

A
LG

O
R

IT
H

M

G
iven� �

� 

�� �
� 

��

feasible
in� �

�

and���
�

such
that�

� 

�

�

 ,
�

� 

�

�

 .
A

lso
given

is

�
�
� � �
�

such
that

�� �
� 

�� �
� 

�� �



��

� �
� �� .

�
���
 .

W
hile� �

� �
�� �
� �
�	



�� �
� 

�� �
� 

�	 �

� �
� �
� �

� �
�� �

�
� �

� � �
� �
�� �
� ��

� �
�

� �
� �
�� �
� �

� �
� �

� �
� �
�� �

�
� �

�


����

���


� �
�

�
�

�
�

�
� � �

�
�
� �

�

�

� �
�
�

� �
��

��

���
�

�
	

� �
� �

� ��� �
� ���

��
� �

�

�

���

��
�

��
� �
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D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

S
olve

the
system

�


�

�
�

��
�



�

 �
� �

� ���
�

�
�

�



�
�

� �
�

�
�

�

�
�

C
om

pute

��
���

�
��

�
� �
� �

� �
��

�
�

�
�

�
�
� �

� �
��

�
� �

�
�

�
�

� �
�

�
�

�




.

Let�
� �	 �
�� �
�

� �
��

��
�

�
�

�
�
�

�
� �	 �
�� �
�

� �
��

��
� �

�
�

�
�

� �
�

�

�
���

��
�

.

end� W
hile�
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A

LG
O

R
IT

H
M

A
N

D
C

O
M

P
U

TAT
IO

N
A

L
C

O
M

P
LE

X
IT

Y
A

N
A

LY
S

IS

T
he

above
is

w
hatis

typically
called

a
potentialreduction

algorithm
.

W
e

proved
the

follow
ing

theorem
.

T
h

eo
rem

5.1
T

he
above

algorithm
term

inates
in

atm
ost

�
�



��

� �
� ��

iterations
w

ith
feasible �

� �
�� �
� �
�

such
that

� �
� �
�� �
� �
�	 �

�� �
� 

�� �
� 

�	 �

E
ven

though
the

algorithm
requires

the
iterates

to
lie

in
the

interior
ofthe

underlying
cone

constraints,w
e

can
relax

the
initialfeasibility

assum
ption

by
using

auxiliary
optim

ization
problem

s.
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6
IN

F
E

A
S

IB
LE

-S
TA

R
T

A
LG

O
R

IT
H

M
S

6
In

feasib
le-S

tartA
lg

o
rith

m
s

A
nother

approach
is

to
w

ork
in

the
fram

ew
ork

ofthe
algorithm

thatw
e

discussed
(or

som
e

other
prim

al-dualinterior-pointalgorithm
)

butm
odify

the
search

directions
so

thatthe
search

directions
also

try
elim

inate
the

error
in

the
linear

equations
defining

the
prim

aland
dualfeasible

regions.

Instead
ofhaving

our
search

directions�
�

and�
�

lying
in

the
nullspace

of

����

and
range

of
 �
���� ,w

e
ask

thatthey
satisfy

the
follow

ing
system

ofequations:



���

�� �
�

�



� �

� �
��

and
 �
� �

� � �
�

� �
�

�


 �
� �

� �
��

�

�
� �
��
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6
IN

F
E

A
S

IB
LE

-S
TA

R
T

A
LG

O
R

IT
H

M
S

T
he

analysis
becom

es
m

ore
com

plicated,how
ever,this

is
one

ofthe

popular
w

ays
to

solve
S

D
P

problem
s

in
practise.

T
he

algorithm
s

need
to

carefully
m

onitor
the

progress
in

attaining
feasibility,reducing� �

� �	

as

w
ellas

the
proxim

ity
to

the
“centralsurface.”

(S
ince

w
e

allow
infeasible

iterates,w
e

w
illbe

concerned
w

ith
the

distance
to

the
“centralsurface”

rather
than

the
centralpath.)

F
or

instance,the
algorithm

should
notallow

the
fastreduction

of� �
� �	

unless
the

iterates
are

getting
to

be
near

feasible
atleastas

fast.
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T
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E
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E
R

IO
R
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O

IN
T

A
LG

O
R

IT
H

M
S

,G
E

N
E

R
A

L
R

E
M

A
R

K
S

7
O

th
er

In
terio

r-P
o

in
t

A
lg

o
rith

m
s,G

en
eralR

em
arks

T
he

search
directions

thatw
e

discussed
are

know
n

as
the

N
T

direction
(for

N
esterov-Todd).

T
hese

algorithm
s

have
been

generalized
to

convex

optim
ization

problem
s

over
arbitrary

convex
cones.

O
ther

prim
al-dualalgorithm

s
thatare

usefuland
popular

rely
on

search

directions
proposed

H
elm

berg-R
endl-V

anderbei-W
olkow

icz/K
ojim

a-S
hindoh-H

ara/M
onteiro

(H
K

M
direction)

and
A

lizadeh-H
aeberly-O

verton
(A

H
O

direction).
A

llthese

directions
can

be
defined

and
treated

in
a

unified
w

ay
(due

to
Y.Z

hang,

som
e

other
related

w
ork

is
due

to
M

onteiro-Y.Z
hang):
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7
O
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E
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IN
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E
R

IO
R

-P
O

IN
T

A
LG

O
R

IT
H

M
S

,G
E

N
E

R
A

L
R

E
M

A
R

K
S

Let�
� � ��
�

.
D

efine

��
�� ��
�

��
� �

as
follow

s

��� �
�

� �
��
� �

��
� �
�� �

� �
�

T
his

������
is

called
the

sym
m

etrized
sim

ilarity
transform

ation.
To

com
pute

the
search

direction,w
e

solve
the

system



� �

��
�

�
�



� �

� �
�� �


 �
� �

� � �
�

�

�

�
�


 �
� �

� �
��

�

�
� �
��

��
� �

� �
��

� �
�

� �
� �
��

�
�

�
�
�

�

��
� �

� �
��
� �
��

�

w
here

�

�
� � �
�

a
param

eter
fixed

by
the

user/algorithm
and

� �
� �

� �
�� �
� �
�	� 


as
before.
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R

-P
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IN
T

A
LG

O
R

IT
H

M
S

,G
E

N
E

R
A

L
R

E
M

A
R

K
S

C
hoosing�

� �
�

gives
the

A
H

O
direction,�

���
� �

� �
�� �
� �

yields
the

H
K

M
direction,choosing

any �
� � ��
�

such
that

� �
�
�

� �
� �
�� �
�
� �

� � �
� �
�� �
� �
�

� �
�� �
� �
�� �
� �

� �
� �

� �
� �
�� �
�
� �

(for
instance,�

� �
� � �

� �
�� �
� �
�

� �
�� �
� �
�� �
� �

� �
�

�� �
� �
�� ��
� �

)
gives

the
N

T
direction.

T
he

nextlecture
starts

w
ith

a
discussion

ofthe
com

putationalissues

related
to

the
search

directions
for

S
D

P
w

hich
ties

in
nicely

w
ith

the
bundle

m
ethods .
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R
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IN
T

A
LG

O
R
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H

M
S

,G
E

N
E

R
A

L
R

E
M

A
R

K
S

W
e

can
also

design
a

w
ide

range
ofprim

al-dualalgorithm
s

w
ithoutthe

conic
structure

or
logarithm

ic
hom

ogeneity:

P
olynom

ialtim
e

IP
M

s

W
IT

H
O

R
W

IT
H

O
U

T

the
C

onic
S

tructure
and

Logarithm
ically

H
om

ogeneous

B
arriers!

(From
a

recentpaper
by

N
em

irovskiand
T.)
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7
O

T
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E
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IN
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E
R

IO
R

-P
O

IN
T

A
LG

O
R

IT
H

M
S

,G
E

N
E

R
A

L
R

E
M

A
R

K
S

W
e

are
given

�

a�

-S
C

B
�

w
ith

a
dom

ain

�
�

and
the

Legendre-F
enchelconjugate

��

(w
ith

a
slightdifference

from
the

previous
defn.)

of

�

;the
dom

ain
of

��

is
denoted

�
� 	

.
�

� 	
is

a
cone:

�
�

�
� 	

�

��
�

�
� 	
�
�




�

a
linear

em
bedding

	
��


� 	�

w
ith

the
nullspace


�
� �

and
the

im
age

intersecting

�
�

;

�

a
vector�� �
 .
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O
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M
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,G
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N
E

R
A

L
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E
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A
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K
S

�

the
optim

ization
problem

��

�

�
� ���
� 		
�	
�
�

� �
�
�

� 	
�

� 	�
�

��
� �

w
e

are
interested

in
solving;

�

the
function

�
� 	� �

�� 

� 	��

w
hich

is
a�

-S
C

B
for

cl� �� .
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LG

O
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IT
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S

,G
E

N
E

R
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L
R

E
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A
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K
S

A
shifted

centralpath

L
em

m
a

7.1
F

or�


 ,the

“prim
al-dualpair”� 	��� �

� 	�
� �� �� �
� ���

is

uniquely
defined

by
the

relations
� �
�

�
�

�
� 	�
	
�
�

� ��


 �
� �� �

���

� ��
�

�
�
� �� �


� 	�
� �

� �
�

�� 

� 	��� �

M
oreover,

� �
� �� �

argm
in

� �
��
� ��

�
 �
� �� �

���
� �
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K
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7.1
P

roxim
ity

m
easure

7.1
P

roxim
ity

m
easu

re

Letus
define

the
proxim

ity
m

easure
as

the
function

�
� 	��� �

�� 

� 	�� �

��
� ��

�

� � � 

� 	�	

��
�

�� 	
�
�

(Legendre-F
enchelgap

betw
een

�

and

��

).
N

otice
thatfor

every	
�
�

and
every�

�
�� 	

,w
e

have
�
� 	���



and
for

such
a

pair� 	���

w
e

have

�
� 	��� �


iff� �
�

�� 

� 	�� .

U
sing

this
setup

m
any

path-follow
ing

and
potential-reduction

algorithm
s

can
be

derived
and

analyzed.
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