
How Far Can We Go With Primal–Dual

Interior Point Methods for SDP?

Brian Borchers
Department of Mathematics
New Mexico Tech
Socorro, NM 87801
borchers@nmt.edu

Joseph Young
Department of Mathematics
New Mexico Tech



The HKM Method

• Primal–Dual interior point methods, and in particular the
HKM method, have been widely used in codes for semidefinite
programming.

• CSDP, SDPA, SDPT3, and SeDuMi are all implementations of
the HKM method.

• The following slides show the results of benchmarks conducted
by Hans Mittelmann on a 3.2 GHz Pentium 4 with 4 gigabytes
of RAM. CPU times are given in seconds. The numbers in
parentheses are the number of digits of accuracy in the solution,
as measured by the maximum of the DIMACS error measures.



Benchmarks

problem PENNON SeDuMi SDPT3 CSDP DSDP SDPA

================================================================

buck-3 30(1) 1414(5) 31(5) 84(6) 294(7) 24(5)

buck-4 174(2) 14544(7) 176(5) 428(7) fail 248(6)

buck-5 2445(1) m 2096(5) 4049(6) fail 4960(5)

mater-3 5(5) 17(10) 25(5) 10(9) 11(8) 1044(8)

mater-4 23(4) 50(9) 204(5) 281(9) 59(8) 138452(8)

mater-5 60(4) 137(9) 988(5) 2505(9) 173(8) m

mater-6 178 281 m m fail m

shmup3 301(3) 10280(4) 307(5) 1005(8) 6559(8) 419(6)

shmup4 1655(2) 109670(8) 1712(6) 3257(7) fail 1988(6)

shmup5 10994(2) m 15917(5) 50575(7) fail m

trto-3 14(1) 1171(9) 14(4) 34(7) 12(7) 12(6)

trto-4 83(2) 11260(5) 97(3) 232(6) 96(5) 125(5)

trto-5 1149(1) m 1076(4) 2611(5) 1516(5) 1963(4)



Benchmarks

problem PENNON SeDuMi SDPT3 CSDP DSDP SDPA

================================================================

vibra-3 27(0) 1641(8) 33(4) 69(6) fail 28(5)

vibra-4 148(1) 16199(6) 200(4) 609(6) fail 269(6)

vibra-5 2107(1) 2959(3) 5249(6) >86400 4740(5)

neosfbr20 4858(2) 8569(10) 2645(9) 1608(9) 15950(9) 1663(8)

biggs 828(1) 193(9) fail 76(9) fail fail

cnhil8 876(2) 103(8) 14(4) 22(8) 37(0) 31(4)

cnhil10 fail 2323(8) 146(4) 388(8) 478(0) 505(3)

cphil10 660(5) 725(13) 68(9) 91(10) fail 337(8)

cphil12 7468(6) m 539(10) 1052(10) fail 3825(8)

G40_mb 915(3) 66430(8) 1806(9) 2117(8) 4835(0) 1074(4)

G40mc 997(3) 12994(9) 717(7) 443(9) 343(8) 686(9)

G48mc fail 16398(11) 1040(9) 1006(9) 225(9) 2077(8)

G55mc 10299(2) m 8869(7) 6532(9) 3648(8) m

G59mc 12184(3) m 11041(6) 8321(9) 5674(8) m



Benchmarks

problem PENNON SeDuMi SDPT3 CSDP DSDP SDPA

================================================================

neu1 1683(1) 795(6) fail 663(7) fail 341(1)

neu1g 712(4) 781(9) 480(7) 829(8) fail 279(4)

neu2 fail 1024(7) fail 455(8) fail fail

neu2g 1981(4) 946(7) 428(4) 226(2) 12210(5) fail

neu2c 2722(1) 1415(6) fail 1748(4) fail 1082(3)

neu3 fail 8993(7) fail 5202(3) fail 13938(6)

neu3g 44451(4) 12572(8) 7646(3) 9117(8) fail 7070(6)

r1_6_0 46(1) fail 60(7) 63(7) 93(3) 30(0)

rose13 140(3) 420(8) 78(5) 158(7) fail 72(6)

rose15 fail 1800(6) fail 675(4) fail 293(4)

sdmint3 na 3764(4) 3647(4) na na na

taha1a 2810(3) 838(9) fail 1185(3) fail fail

taha1b 9520(4) 13646(8) 4143(7) 3192(9) fail 10886(8)

yalsdp 1971(5) 2613(8) 855(8) 1015(9) 1487(8) 1108(8)



Benchmarks

problem PENNON SeDuMi SDPT3 CSDP DSDP SDPA

================================================================

cancer 19349(2) m 5639 2371(7) 27140(6) 1686(4)

checker 1529(5) m 4888(6) 8574(9) 4413(8) m

foot 1706(1) m 3374(4) 2861(7) 6431(1) 2156(5)

hand 278(3) fail 496(5) 404(8) 1272(0) 253(5)

ice_2.0 9060(3) m m m 52700(8) m

p_auss2 8635 m m m 10090(8) m



Benchmarks

• Overall, these benchmark results have improved considerably
since the DIMACS challenge in 2000.

• These benchmark results show quite clearly that the HKM
method is more robust and accurate than the augmented
Lagrangian method used by PENNON and the dual interior
point method used by DSDP.

• SeDuMi is the most accurate of the HKM codes, but is
generally slower than the other codes.

• Most of these problems can be solved in two hours or less.

• However, the HKM based codes cannot solve some of the larger
problems because they run out of memory.



Computational Complexity

• Multiplying matrices of size n takes O(n3) time.

• Factoring matrices of size n takes O(n3) time.

• For dense constraint matrices, constructing O takes
O(mn3 + m2n2) time.

• For sparse constraint matrices with O(1) entries, constructing
the Schur complement matrix takes O(mn2 + m2) time.

• Overall, for problems with sparse constraint matrices,
iterations of the HKM method take O(m3 + n3) time.



Storage Requirements

• Consider an SDP problem with m constraints, and block
diagonal matrix variables X and Z with blocks of size n1, n2,
. . ., nk.

• The algorithm requires storage for an m by m Schur
complement matrix. This matrix is (with very few exceptions)
fully dense.

• The algorithm requires storage for several block diagonal
matrices with blocks of size n1, n2, . . ., nk.

• Blocks of X and related matrices are typically fully dense,
while blocks of Z and related matrices may be sparse.



Storage Requirements

• In practice, the constraint matrices A1, A2, . . ., Am are
typically quite sparse.

• Assuming that the storage required for each constraint matrix
Ai is O(1), the storage required by the HKM method is
O(m2 + n2).

• For example, the storage required by CSDP is approximately
8(m2 + 13(n2

1 + n2
2 + . . . + n2

k)) bytes.



Some Particular Problems.

Problem m n Storage

trto-5 3280 1761 0.4 GB

buck-5 3280 1760; 1761 0.8 GB

vibra-5 3280 1760; 1761 0.8 GB

checker 3970 3970 2 GB

G59mc 5000 5000 3 GB

torusg3-15 3375 3375 3 GB

toruspm3-15-50 3375 3375 3 GB

hamming 8 3 4 16129 256 3 GB

mater-6 20463 4968x11 5 GB

ice 2.0 8113 8113 10 GB

p auss2 3.0 9115 9115 12 GB



Looking Ahead to 2010

• In 1965, Intel’s Gordon Moore pointed out that the number of
transistors on an integrated circuit was doubling about every
18 months. For the last forty years, this exponential growth
has continued.

• This trend has also resulted in an approximate doubling of the
capacity of RAM memory and a doubling of the speed of
microprocessors every 18 months.

• My current desktop computer has a 3.0 GHz Pentium 4
processor and 2 gigabytes of RAM.

• If Moore’s law holds, then I expect that if I buy a new machine
in 2010, it will have 16 to 32 gigabytes of RAM, and a processor
that is about 16 times faster than my 3.0 GHz Pentium 4.



64 Bit Computing

• The current generation of Intel Pentium 4 and AMD Athlon
processors are 32 bit processors. This means that programs can
directly address only up to 232 bytes of storage (4 gigabytes.)

• In practice, operating system software further limits this to 2
gigabytes for Windows, and 3 gigabytes for Linux.

• AMD’s new Opteron processors, as well as G5 processors in
Macintosh computers are 64 bit processors. This means that
programs on these processors can address far more than 4
gigabytes of storage.

• Intel has announced that their next generation of Pentium
processors will be 64 bit processors.

• Most workstation vendors (HP, IBM, SGI, etc.) have long had
64 bit processors.



64 Bit Computing

• The programming model for 64 bit processors is commonly
I32LP64. That is, integers are stored as 32 bit numbers, while
long integers and pointers are 64 bits.

• Well written codes should work on 64 bit processors with very
few changes. In practice, many codes have to be “cleaned up”
to run in 64 bit mode.

• The current version of MATLAB does not support 64 bit
processing. However, MATLAB 7 (to be released this summer)
is expected to do so.

• Another important issue is the availability of 64 bit versions of
the BLAS and LAPACK libraries.



Multiprocessing

• Many manufacturers are already producing multiprocessor
systems.

• As the density of transistors on integrated circuits has
increased, manufacturers have found it increasing difficult to
make effective use of the available transistors.

• One simple approach is to put multiple (typically 2 or 4)
microprocessors on a single chip.

• Intel, AMD, and Sun have all announced plans to produce such
chips in the next few years.

• This means that we will have to develop parallel algorithms for
SDP to make effective use of these processors.



A 64-bit Parallel Version of CSDP

• We ported CSDP 4.7 to an IBM p690 computer at the
National Center for Supercomputer Applications (NCSA).

• The p690 is a cluster of nodes. Each node is itself a shared
memory multiprocessor.

• NCSA has several nodes, with each node having up to 32
processors and 256 gigabytes of RAM.

• The p690 uses 1.3 GHz Power 4 processors.

• IBM’s Extended Scientific Subroutine Library (ESSL) provides
parallel versions of the BLAS and LAPACK routines used by
CSDP.



A 64-bit Parallel Version of CSDP

• For our initial experiments, we simply compiled CSDP 4.7 and
linked it with the multiprocessor version of ESSL.

• No changes were made to the source code!

• Using four processors, the code typically runs about twice as
fast as on a single processor.

• Although the BLAS/LAPACK operations are automatically
parallelized, building the Schur complement matrix can become
a scalar bottleneck on some problems.

• Efforts to improve the parallel speedup are ongoing.



Benchmarks

Problem m n O Factor Other 1 2 4

hamming98 2305 512 5% 75% 20% 0:59 0:38 0:27

copo14 1275 560 3% 90% 7% 0:07 0:04 0:03

torusg3-8 512 512 1% 6% 93% 0:23 0:16 0:11

control11 1596 165 79% 20% 1% 4:30 4:04 3:43

theta6 4375 300 2% 95% 3% 4:04 2:23 1:45

equalG11 801 801 12% 4% 84% 2:13 1:26 0:58

maxG11 800 800 <1% 7% 93% 0:38 0:27 0:21

qpG11 800 1600 <1% 1% 98% 4:50 3:16 2:24



Benchmarks

Problem m n Memory Error Time

torusg3-15 3375 3375 3GB 1.3e-09 22:29

toruspm3-15-50 3375 3375 3GB 5.4e-09 22:26

hamming 8 3 4 16129 256 3GB 2.0e-09 54:42

mater-6 20463 4968x11 5GB 2.4e-09 3:07:05

ice 2.0 8113 8113 10GB 9.9e-09 15:21:38

p auss2 3.0 9115 9115 12GB 7.1e-09 13:51:16



Getting CSDP

The current version of CSDP is version 4.7. The package includes a
stand–alone solver, a subroutine interface to the solver, and a
MATLAB interface to the solver. CSDP is an open source project,
available under the Common Public License (CPL). You can
download the source code, some binary versions, and a user’s guide
from

http://www.nmt.edu/~borchers/csdp.html

Hans Mittelmann’s benchmarks can be found at

ftp://plato.la.asu.edu/pub/sparse_sdp.txt


