The Q Method for Symmetric Cone Programming

~

The Q Method for

Symmetric Cone Programmii

FARID ALIZADEH AND YU XIA

alizadehQ@rutcor.rutgers.edu, xiayQoptlab.mcm:

Large Scale Nonlinear and Semidefinite Progra

University of Waterloo, Canada
May 2004

\_




The Q Method for Symmetric Cone Programming

~

Basics of Jordan Algebras . . . . ..
The Symmetric Cone Programs

The QQ Method for SDP . . . . . ..
Polar Decomposition for V.. . . . . .

Optimal Conditions for Symmetric Con

OTAMS . . o v e e e
An Interior Point Algorithm . . . . .
A Newton-type Method . . . . . ..




§1 Basics of Jordan Algebras

/ Basics of Jordan Algebras
e Euclidean Jordan Algebra.

1) A finite dimensional vector space V over R with
mapping (product) from V' x V into V:
Xy = yX
x(x%y) = x"(xy).

2) There exists an associative, positive definite sym:
bilinear form on V.

e Jordan Frame. {; is non-zero and cannot be writt
sum of two (necessarily orthogonal) non-zero idemp

£2 = f,

fz'fj:O (7/7&])
f1+---+1f, =e.
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§1 Basics of Jordan Algebras
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e Spectral theorem. For x € V', there exist a Jorda

fi,...,f. and real numbers Aq,..., A\, such that

r r
X = Z A;f;. (For symmetric matrix X = Z A
j=1 j=1

e Symmetric cone. Open, convex, homogeneous, se
cone. There are one-to-one correspondences betweer
cones and Euclidean Jordan algebras.

Sq def

{x*:x €V}, intSqisa symmetric ¢

x e Sqge A\ > 0.
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The Symmetric Cone Programs

Primal Dual

miny (c,x) max, y (b,y)

s.t. Ax=Db s.t. Ay 4+ 2z = c
X 254 0 z >5¢ 0

Notations
e xclV yeY.

e A: linear mapping from V to Y*.

o ()= tr(zy) = X0, Mi(xy).
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§3 The Q Method for SDP

/ The Q Method for SDP

We extend the QQ method for SDP {AL1ZADEH, HAEBERL®
OVERTON: SIAM J. Optim. 8 (1998) } to symmetric cone

e Semidefinite Programming (SDP)

Primal Dual

min x CeX maxy,.z b’y

s.t. AieX =b(i=1,...,m) s.t. >
X =0 Z =

e Interior Point Method
AZOX:bZ (2:1,,m)

zm:yz'Az"i‘Z:C

=1

k XZ = ul.
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e Facts

— XZ = ul iff: 4Q real orthogonal, A and {2 diagonal.
X =QAQ", Z =Q0Q", AQ = ul.

— Surjections from skew-symmetric to real orth

matrices:
1. Exponential Function: Q = exp(S) =1+ S+ 55
2. Cayley Transform: Q@ = (I + 3S)(I — 15)™"
Linear approximation of both: I + S.
e Basic Ideas of the Q Method
— Replace (X, Z) by (Q, A\, w).
— Replace ) by either of the above mappings and app.
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e The Newton System

AQ+SQ— QS+ ) AyBi=rq
=1

Bie (AA+SA—AS)=(r,); (i=1,...
AAQ + QAA = ul — AQ.

Notation: B; = A;Q.

e Properties
1. No eigenvalue factorization;

2. the Schur complement is symmetric positive definite

calculated by Cholesky factorization;
3. the Jacobian is nonsingular = stable and highly acc

4. Storage space is small.
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Polar Decomposition for V

Notation
def

G(Sq) = 19 € GL(V): g(Sq) = Sq}-
(G: connected component of the identity in G(Sq).

K< GnoW), K=Aut(V).

Polar Decomposition
For any Jordan frames f;,...,f. and d;,...,d,, dA € I

A € Aut(V') = Af; is a Jordan frame.

Fix a Jordan frame f;,...,f., Vx € V can be decompos

=1




§5 Optimal Conditions for Symmetric Cone Programs

/ Optimal Conditions for Symmetric C
Programs

e Assume Slater conditions for Primal and Dual = (1) so
(x,z) = 0.

e Assume X, z in Sq. Then

(x,2z) = 0 < xz = 0 <, x and z share a same Jordan fr

X = Z::1 )\z'di, Z — Z::1 widi, )\iwi = 0.

e Fix a Jordan frame fi,...,f.. At optimum, replace x ar

decomposition (2):

A0 <Z )\Z-fz-) ~ b
A*y + Q <i wzf,L) =cC

=1

)\iwi =
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An Interior Point Algorithm

e Perturbed system on the central path:

Ax=Db
A'y+z=c
(x,2) = .

e x cintSq, p € Rxz = pe =

x and z share a same Jordan frame.
Hence 3IQ e K : x=Q> _fi,z=Q> ;_, fi, iwi =

e Replace x and z by their decomposition (2).
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e Stepsize Update

X:QZ)\ZfL eSqg, i+AXN >0, AQ K
=1

= QAQY (Mi+A.
i=1
e Linearly Update Q
— Notations
Lie algebra of K: ¢ =m @ [.
WE{a=Y"_ A M eR}, mE {Set:Vae
— Exponential Map
exp:t— K.
V is power associative = exp& =) E—:

- AQ=>7, f—,z (for S € ) = linearization of A @ is
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§6 An Interior Point Algorithm

Ka The Newton System

BkSi \egk 4+ B Z A NS =1}

1=1 =1
(BY)" Ay +8) wifi+ > Awfi=r;
1=1 1=1

AFAw+ QAN =17,

Notations

— B* = AQ",

— r’; = b — Ax",

— 15 = (Q%)" (c — 2" — A™y"),

— (re)i = " = Nwy.

Properties

— \i # \; = unique solution for each iteration.

— Further assume strict complementarity and primal-d

K nondegeneracy =- unique solution at optimum.
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The Algorithm

Based on an infeasible interior point method {KOJIMA,
MizuNo: Math. Programming 61 (1993) }

Stop when [[[75]] < €, [all < ea, ATw < ] or [|(Aa

Restrict each iterate in the set

N(’Vc,’)/p,’)/d> déf {()‘7W7Y7Q): A>0,w>0, \iw; >+

ATw > 7,/ Ax — b or A% — b|| < ¢,
ANw>4l|Ay +z—cf or [A"y + 2 -
Update each iterate:
At aAXN— A w+LAw — w

y+0Ay —y Qexp(vS) — Q

Reduce u at each iteration.
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e Convergence Results.
If 39 > 0 such that VN > 0, dn > N so that
Vw| =1, ||F"w| > g, where F" is the linear mapping

the Newton system at the nth iteration. Then the algor
after finite steps.
¢ Boundedness of Iterates.

— Based on {FREUND, JARRE, MI1ZUNO: Math. Oper.
(1999)}.

— Assume an interior feasible solution exists such that
Ws Z 5d-

— Restrict each iterate in the set

N =Nn{|Ax = b[| <G, ATy +2z —cf <

_ 1 dp _ 1
where (, = 3 TAF] Ca = §6d.

— Then the iterates are bounded.
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A Newton-type Method

e Replace the complementarity conditions by some compl

function . Choice of ¢:

min(A;,w;), /A7 +w? — X\ —w;.

¢ Optimum Conditions

AQ Z \if; = b
=1

A*y—|— inzfz =cC
1=1

go()\z-,wq;) =0 (’L: 1,...,7“).




§7 A Newton-type Method

K e Newton Direction

1=1 =1

B* Ay—|— Siwzf@ -+ iszfz =Ty
=1 1=1

pZA)\Z —|—in¢0¢ =

e Split the index set at optimum into
LA:{Z'I)\i:O,wi#O}, Lw:{itAi#O,wii

Assume A ¢ satisfy

P ?é (’L'ELA), b

¢ =0 ¢ # 0

Then the mapping is one-to-one = Pure Newton’s metk

K Q-quadratic convergence rate.
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Numerical Examples (SOCP)

The Steiner Minimal Tree Problem
{XUE & YE: SIAM J. Optim., 7 (1997) }

e Xue & Ye: 23 iterations, feasible initial point, gap redi

e Interior Point Method:

Starting point: x; = (2;1;0); z; = (2;—1;0), y = 0.

34 iterations, total network cost at 28th is better. Accu:
el s lvally s lell, < 5.0 — 12.

Modified Q Method: 29 iterations, total network cost at
better.

Pure Newton’s Method:
Perturb each coordinate by a scalar in (—0.1,0.1): 4 ite
Set point 9 from (2.328223,9.139549) to (2.5,9.0): 2 ite




