
Towards an SDP-based Algorithm for the Satisfiability Problem

Miguel F. Anjos

Operational Research Group, School of Mathematics, University of Southampton, U.K.

The Satisfiability Problem (SAT)

The satisfiability (SAT) problem is a central problem in mathematical logic, computing

theory, and artificial intelligence. We consider instances of SAT specified by a set of boolean

variables x1, . . . , xn and a propositional formula Φ =
m
∧

j=1

Cj, with each clause Cj having

the form Cj =
∨

k∈Ij

xk ∨
∨

k∈Īj

x̄k where Ij, Īj ⊆ {1, . . . , n}, Ij ∩ Īj = ∅, and x̄i denotes the

negation of xi. Given such an instance, the SAT problem asks whether there is a truth

assignment to the variables such that the formula is satisfied.

Semidefinite Programming (SDP)

Semidefinite programming (SDP) refers to the class of optimization problems where a linear

function of a symmatric matrix variable X is optimized subject to linear constraints on

the elements of X and the additional constraint that X must be positive semidefinite. A

primal-dual pair for SDP has the form:

max C ·X min bTy

s.t. Ai ·X = bi, i = 1, . . . , m s.t. Z =
m
∑

i=1

yiAi − C

X º 0 Z º 0

where A · B =
∑

i,j Ai,jBi,j = trace (BTA), and X º 0 denotes that X is symmetric

positive semidefinite.

Solving SAT Using SDP – The Gap Relaxation

We study the application of SDP to the basic SAT problem, particularly for proving

unsatisfiability.

In [5, 6], de Klerk, van Maaren, and Warners introduced an SDP relaxation for SAT, the

Gap relaxation. This SDP relaxation is based on the elliptic approximations of clauses

introduced in [9] and characterizes unsatisfiability for several interesting classes of SAT

problems, such as mutilated chessboard and pigeonhole instances. However, it cannot

detect unsatisfiability when all the clauses have length three or higher.

We now introduce some notation. Let 1 denote TRUE and −1 denote FALSE, and for

clause Cj and k ∈ Ij ∪ Īj, let sj,k = 1 if k ∈ Ij and sj,k = 1 if k ∈ Īj. Then

clause Cj is satisfied ⇔ sj,kxk = 1 for some k ∈ Ij ∪ Īj ⇔
∏

k∈Ij∪Īj

(1− sj,kxk) = 0.

Consider the simple example

(x1 ∨ x2) ∧ (x2 ∨ x̄3 ∨ x4)

For the first clause, the satisfiability condition is x1 + x2 − x1x2 = 1 which

involves the terms x1, x2, and x1x2. Similarly, for the second clause, we have

x2 − x3 + x4 + x2x3 − x2x4 + x3x4 − x2x3x4 = 1.

The Gap relaxation for this example is

find X º 0
s.t.

X1,2 −X0,1 −X0,2 + 1 = 0
X2,4 −X3,4 −X2,3 −X0,2 + X0,3 −X0,4 ≤ 0

X =













1 X0,1 X0,2 X0,3 X0,4

X0,1 1 X1,2 X1,3 X1,4

X0,2 X1,2 1 X2,3 X2,4

X0,3 X1,3 X2,3 1 X3,4

X0,4 X1,4 X2,4 X3,4 1













where the entry X0,i represents xi and the entry Xi,j represents xixj.

Note that for the Gap relaxation, the satisfiability condition for clauses involving more

than two variables must be relaxed to a quadratic inequality since there are no entries in X

to represent terms such as x2x3x4. Hence the Gap relaxation is always feasible when the

SAT instance has no clauses of length less than three, and is unable to detect unsatisfiability

for such instances.

The Higher Liftings Paradigm

Note that the rows and columns of the matrix variable in the Gap relaxation are indexed by

the binary variables themselves:

X =







1 X0,1 · · · X0,n

1
. . . Xi,j

1







We consider semidefinite relaxations with the rows and columns of the matrix variable

indexed by subsets of the set of variables. These higher liftings

- have strong theoretical properties (see [4, 7, 8]). In particular, using all 2n subsets means

that we are optimizing over the convex hull of the ±1 feasible solutions;

- but the size of the liftings grows very rapidly with the number of binary variables. As a

consequence, only second liftings for max-cut problems with only up to 27 binary variables

were successfully solved in [1].

Goals of This Research

• Find “partial” liftings which are more amenable to practical computation than the

complete higher liftings, while preserving (some of) their theoretical strength.

• Hence develop improved SDP relaxations for SAT, and employ them to obtain a practical

SDP-based algorithm for solving the general satisfiability problem.

An Improved SDP Relaxation for SAT

Let P denote the set of all nonempty sets I ⊆ {1, . . . , n} such that the term
∏

i∈I

xi appears

in the instance’s satisfiability conditions. Then we introduce new variables xI :=
∏

i∈I

xi

for each I ∈ P, define the vector v := (1, xI1
, . . . , xI|P|

)T , and define the rank-one matrix

Y := vvT whose rows and columns are indexed by ∅ ∪ P. By construction, Y∅,I = xI for

all I ∈ P. Furthermore, YI1,I2
= YI3,I4

whenever I1∆I2 = I3∆I4, where Ii∆Ij denotes the

symmetric difference of Ii and Ij. The tradeoff involved in adding such constraints to the

SDP is that as the number of constraints increases, the semidefinite relaxations become

computationally more expensive to solve. We use the smaller set of constraints:

Y∅,I1
= YI2,I3

, Y∅,I2
= YI1,I3

, and Y∅,I3
= YI1,I2

. (1)

for all the triples {I1, I2, I3} ⊆ P such that (I1 ∪ I2 ∪ I3) ⊆ (Ij ∪ Īj) for some clause j and

satisfying the symmetric difference condition above. For our example, the improved SDP

relaxation is

find Y º 0
s.t.

Y∅,x1
+ Y∅,x2

− Y∅,x12
= 1

Y∅,x2
− Y∅,x3

+ Y∅,x4
+ Y∅,x23

− Y∅,x24
+ Y∅,x34

− Y∅,x234
= 1

∅ {1} {2} {1, 2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

Y =

































1 x1 x2 x12 x3 x4 x23 x24 x34 x234

1 x12 x2 ∗ ∗ ∗ ∗ ∗ ∗
1 x1 x23 x24 x3 x4 x234 x34

1 ∗ ∗ ∗ ∗ ∗ ∗
1 x34 x2 x234 x4 x24

1 x234 x2 x3 x23

1 x34 x24 x4

1 x23 x3

1 x2

1

































The asterisk elements are not involved in any of the linear equality constraints (but they

are constrained by positive semidefiniteness). The motivation for the particular choice of

constraints in (1) is that they suffice to prove:

Theorem 1. Given any propositional formula in CNF, consider the SDP relaxation

constructed as presented. Then

• If the SDP relaxation is infeasible, then the formula is unsatisfiable.

• If the SDP relaxation is feasible, and Y is a feasible matrix such that rankY ≤ 3, then a

truth assignment satisfying the formula can be obtained from Y .

Thus we can use the SDP relaxation to prove either satisfiability or unsatisfiability of

the given SAT instance. But due to the CPU time required to solve the improved SDP

relaxations, we can tackle only small SAT instances, so...

Is the SDP-based Approach Competitive?

We solved the improved SDP relaxation on a 2.4GHz Pentium IV with 1.5Gb of RAM for

3 unsatisfiable instances of SAT that were unsolved during the SAT2003 competition. The

SDP relaxation is infeasible for all 3 instances, and in particular it was able to prove in less

than two hours (the time limit used in the competition) the unsatisfiability of the smallest

unsatisfiable instance that remained unsolved during the competition.

Problem # of variables Improved SDP Total CPU

Name and clauses proved UNSAT seconds

hgen8-n260-01∗ 260 / 391 Yes 6922

hgen8-n260-02 260 / 404 Yes 7438

hgen8-n260-03 260 / 399 Yes 7662
∗the smallest UNSAT instance unsolved at SAT 2003 (7200 sec. timeout)

These results show the potential of our relaxation for complementing existing techniques

for SAT. Since the computational time required is dominated by the effort required to solve

the SDPs, future research will consider how the structure of the SDP relaxations could be

specifically exploited.

References

[1] M.F. Anjos. New Convex Relaxations for the Maximum Cut and VLSI Layout Problems. PhD thesis,
University of Waterloo, 2001.

[2] M.F. Anjos. An improved semidefinite programming relaxation for the satisfiability problem. Math.

Program., (Ser. A), to appear.

[3] M.F. Anjos. On Semidefinite Programming Relaxations for the Satisfiability Problem. Math. Meth. Oper.

Res., to appear.

[4] M.F. Anjos and H. Wolkowicz. Strengthened semidefinite relaxations via a second lifting for the max-cut
problem. Discrete Appl. Math., 119(1–2):79–106, 2002.

[5] E. de Klerk and H. van Maaren. On semidefinite programming relaxations of (2 + p)-SAT. Ann. Math.

Artif. Intell., 37(3):285–305, 2003.

[6] E. de Klerk, H. van Maaren, and J.P. Warners. Relaxations of the satisfiability problem using semidefinite
programming. J. Automat. Reason., 24(1-2):37–65, 2000.

[7] J.B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J.

Optim., 12(3):756–769 (electronic), 2002.

[8] M. Laurent. Semidefinite relaxations for max-cut. In M. Grötschel, editor, The Sharpest Cut, Festschrift

in Honor of M. Padberg’s 60th Birthday. SIAM, to appear.

[9] H. van Maaren. Elliptic approximations of propositional formulae. Discrete Appl. Math., 96/97:223–244,
1999.

