
Lectures on Semidefinite Programming
Etienne de Klerk

†Delft University of Technology, The Netherlands

Lectures on Semidefinite Programming – p.1/46



Topics for this talk
• Convex conic optimization and semidefinite

programming (SDP);

Lectures on Semidefinite Programming – p.2/46



Topics for this talk
• Convex conic optimization and semidefinite

programming (SDP);
• The conic duality theorem;

Lectures on Semidefinite Programming – p.2/46



Topics for this talk
• Convex conic optimization and semidefinite

programming (SDP);
• The conic duality theorem;
• Positive semidefinite matrices: a short review;

Lectures on Semidefinite Programming – p.2/46



Topics for this talk
• Convex conic optimization and semidefinite

programming (SDP);
• The conic duality theorem;
• Positive semidefinite matrices: a short review;
• Special cases/examples of SDP;

Lectures on Semidefinite Programming – p.2/46



Topics for this talk
• Convex conic optimization and semidefinite

programming (SDP);
• The conic duality theorem;
• Positive semidefinite matrices: a short review;
• Special cases/examples of SDP;
• Primal–dual interior point algorithms.
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Conic Linear Optimization
A conic linear optimization problem (conic LP) takes
the form:

min
{

cTx
∣

∣ Ax = b, x ∈ K
}

,

where the data isc ∈ IRn, b ∈ IRn andK ⊂ IRn is a
convex cone.
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Conic Linear Optimization
A conic linear optimization problem (conic LP) takes
the form:

min
{

cTx
∣

∣ Ax = b, x ∈ K
}

,

where the data isc ∈ IRn, b ∈ IRn andK ⊂ IRn is a
convex cone.
Some choices forK:

• nonnegative orthant inIRn — linear programming
(LP);

• the cone ofm × m positive semidefinite matrices
such thatn =

(

m+1
2

)

— semidefinite
programming (SDP).
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Importance of SDP
• Contains important convex optimization

problems as special cases: LP, QP, etc.
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Importance of SDP
• Contains important convex optimization

problems as special cases: LP, QP, etc.
• Important applications: Global and combinatorial

optimization, control, etc.
• Can be solved efficiently by interior point

algorithms.
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More on convex cones
A subsetK of IRm is aconeif

a ∈ K, λ ≥ 0 ⇒ λa ∈ K,

and the coneK is aconvex coneif moreover

a, a′ ∈ K ⇒ a + a′ ∈ K.
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More on convex cones
A subsetK of IRm is aconeif

a ∈ K, λ ≥ 0 ⇒ λa ∈ K,

and the coneK is aconvex coneif moreover

a, a′ ∈ K ⇒ a + a′ ∈ K.

We impose three more conditions onK to obtain
duality results similar to those for LP, namely:

• K must bepointed(may not contain a ray);
• K must beclosed;
• K must besolid (have a nonempty interior).
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Dual cones
Thedual coneof a convex coneK is:

K∗ =
{

λ ∈ IRm : λTa ≥ 0 ∀a ∈ K
}

.
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Dual cones
Thedual coneof a convex coneK is:

K∗ =
{

λ ∈ IRm : λTa ≥ 0 ∀a ∈ K
}

.

Theorem: LetK ⊂ IRm be a nonempty cone.

(i) The setK∗ is a closed convex cone.
(ii) If K is solid thenK∗ is pointed.

Lectures on Semidefinite Programming – p.6/46



Dual cones
Thedual coneof a convex coneK is:

K∗ =
{

λ ∈ IRm : λTa ≥ 0 ∀a ∈ K
}

.

Theorem: LetK ⊂ IRm be a nonempty cone.

(i) The setK∗ is a closed convex cone.
(ii) If K is solid thenK∗ is pointed.

(iii) If K is a closed convex pointed cone, thenK∗ is
solid.
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Dual cones
Thedual coneof a convex coneK is:

K∗ =
{

λ ∈ IRm : λTa ≥ 0 ∀a ∈ K
}

.

Theorem: LetK ⊂ IRm be a nonempty cone.

(i) The setK∗ is a closed convex cone.
(ii) If K is solid thenK∗ is pointed.

(iii) If K is a closed convex pointed cone, thenK∗ is
solid.

(iv) If K is a closed convex cone, then so isK∗, and
the cone dual toK∗ is K itself.

Corollary: If K ⊂ IRm is a closed, pointed, solid, con-

vex cone then so isK∗, and vice versa.
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Dual problem
Consider the conic optimization problem:

(COP ) : inf
{

cTx
∣

∣ Ax = b, x ∈ K
}

,

whereA has full rank. Feasible setP, optimal setP∗

(possibly empty).
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Dual problem
Consider the conic optimization problem:

(COP ) : inf
{

cTx
∣

∣ Ax = b, x ∈ K
}

,

whereA has full rank. Feasible setP, optimal setP∗

(possibly empty).
Associateddual problem

(COD) : sup
{

bTy
∣

∣ ATy + s = c, s ∈ K∗
}

.

Feasible setD, optimal setD∗ (possibly empty).
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Weak duality theorem
Let x ∈ P and(y, s) ∈ D. Then

cTx − bTy = (ATy + s)Tx − bTy

= (Ax)Ty + sTx − bTy

= sTx ≥ 0,

becausex ∈ K ands ∈ K∗.
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Weak duality theorem
Let x ∈ P and(y, s) ∈ D. Then

cTx − bTy = (ATy + s)Tx − bTy

= (Ax)Ty + sTx − bTy

= sTx ≥ 0,

becausex ∈ K ands ∈ K∗.

In words, theduality gap is nonnegativeat feasible

primal-dual solutions.
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Strong duality theorem
Assume(COP ) and(COD) arestrictly feasible:

P ∩ int(K) 6= ∅ andD ∩ int(K∗) 6= ∅.
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P∗ 6= ∅ andD∗ 6= ∅,
and at optimal solutionsx∗ ∈ P∗ and(y∗, s∗) ∈ D∗

one has

cTx∗ − bTy∗ = x∗Ts∗ = 0 (Duality gap zero.)
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Strong duality theorem
Assume(COP ) and(COD) arestrictly feasible:

P ∩ int(K) 6= ∅ andD ∩ int(K∗) 6= ∅.
Then both problems aresolvable, i.e:

P∗ 6= ∅ andD∗ 6= ∅,
and at optimal solutionsx∗ ∈ P∗ and(y∗, s∗) ∈ D∗

one has

cTx∗ − bTy∗ = x∗Ts∗ = 0 (Duality gap zero.)

We call(x∗, s∗) complementary solutions.
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The trace operator
The trace of ann × n matrixA is

Tr(A) =
n

∑

i=1

aii.
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The trace operator
The trace of ann × n matrixA is

Tr(A) =
n

∑

i=1

aii.

Properties:
Let A ∈ IRn×n andB ∈ IRn×n:

• Tr(A) =
∑n

i=1 λi(A);

• Tr(A) = Tr
(

AT
)

;

• Tr(AB) = Tr(BA)

• Tr(ABT ) =
∑n

i,j=1 aijbij.
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An inner product
We denote the cone of real symmetricn × n matrices
by Sn.

Lectures on Semidefinite Programming – p.11/46
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〈A, B〉 := Tr (AB) =
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i,j

aijbij.
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An inner product
We denote the cone of real symmetricn × n matrices
by Sn. Let A, B ∈ Sn. The inner product

〈A, B〉 := Tr (AB) =
∑

i,j

aijbij.

The inner product induces theFrobenius(Euclidean)
norm:

‖A‖2 := 〈A, A〉 = Tr
(

AAT
)

=
n

∑

i,j=1

a2
ij,

Lectures on Semidefinite Programming – p.11/46



An inner product
We denote the cone of real symmetricn × n matrices
by Sn. Let A, B ∈ Sn. The inner product

〈A, B〉 := Tr (AB) =
∑

i,j

aijbij.

The inner product induces theFrobenius(Euclidean)
norm:

‖A‖2 := 〈A, A〉 = Tr
(

AAT
)

=
n

∑

i,j=1

a2
ij,

which is sub-multiplicative:‖AB‖ ≤ ‖A‖‖B‖.
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Positive semidefinite matrices
Let X ∈ Sn. The following are equivalent:
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Positive semidefinite matrices
Let X ∈ Sn. The following are equivalent:

• X ∈ S+
n or X º 0 (X is PSD);

• zTXz ≥ 0 ∀z ∈ IRn;
• λmin(X) ≥ 0;
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Positive semidefinite matrices
Let X ∈ Sn. The following are equivalent:

• X ∈ S+
n or X º 0 (X is PSD);

• zTXz ≥ 0 ∀z ∈ IRn;
• λmin(X) ≥ 0;
• All principal minors ofX are nonnegative;

• X = LLT for someL ∈ IRn×n.
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Positive semidefinite matrices
Let X ∈ Sn. The following are equivalent:

• X ∈ S+
n or X º 0 (X is PSD);

• zTXz ≥ 0 ∀z ∈ IRn;
• λmin(X) ≥ 0;
• All principal minors ofX are nonnegative;

• X = LLT for someL ∈ IRn×n.

A nonsingular matrixX º 0 is called positive definite

(X Â 0).
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P.s.d. matrices (ctd.)
Any A ∈ Sn has aspectral decomposition:

A =
n

∑

i=1

λiqiq
T
i := QΛQT

where

Aqi = λiqi, Q = [q1 . . . qn], QTQ = I,

andΛ is a diagonal matrix withΛii = λi.
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P.s.d. matrices (ctd.)
Any A ∈ Sn has aspectral decomposition:

A =
n

∑

i=1

λiqiq
T
i := QΛQT

where

Aqi = λiqi, Q = [q1 . . . qn], QTQ = I,

andΛ is a diagonal matrix withΛii = λi.
If A ∈ S+

n thenλi ≥ 0. Square root factorization:

A
1

2 :=
n

∑

i=1

√

λiqiq
T
i .

Lectures on Semidefinite Programming – p.13/46



P.s.d. matrices (ctd.)
Theorem (Fejer): The coneS+

n is self-dual with
respect to the Euclidean inner product.
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P.s.d. matrices (ctd.)
Theorem (Fejer): The coneS+

n is self-dual with
respect to the Euclidean inner product.
Proof: Let A ∈ S+

n andB ∈ S+
n ; then

〈A, B〉 = Tr
(

A
1

2A
1

2B
1

2B
1

2

)

= Tr
(

A
1

2B
1

2B
1

2A
1

2

)

=
∥

∥

∥
A

1

2B
1

2

∥

∥

∥

2

≥ 0.
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P.s.d. matrices (ctd.)
Theorem (Fejer): The coneS+

n is self-dual with
respect to the Euclidean inner product.
Proof: Let A ∈ S+

n andB ∈ S+
n ; then

〈A, B〉 = Tr
(

A
1

2A
1

2B
1

2B
1

2

)

= Tr
(

A
1

2B
1

2B
1

2A
1

2

)

=
∥

∥

∥
A

1

2B
1

2

∥

∥

∥

2

≥ 0.

Conversely, ifA ∈ Sn and〈A, B〉 ≥ 0 for all B ∈ S+
n ,

then letx ∈ IRn be given and setB = xxT ∈ S+
n . The

result follows (why?)
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SDP: The standard form
LetK = S+

n . We get the conic optimization problems

(P ) : p∗ = inf
X∈S+

n

Tr(CX)

subject toTr(AiX) = bi, ∀ i.
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SDP: The standard form
LetK = S+

n . We get the conic optimization problems

(P ) : p∗ = inf
X∈S+

n

Tr(CX)

subject toTr(AiX) = bi, ∀ i.

Dual problem:

(D) : d∗ = sup
y∈IRm

,S∈S+
n

bTy

subject to
m

∑

i=1

yiAi + S = C.
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Weak Duality in SDP
We can prove the weak conic duality directly:
FeasibleX ∈ P andy, S ∈ D satisfy:
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Weak Duality in SDP
We can prove the weak conic duality directly:
FeasibleX ∈ P andy, S ∈ D satisfy:

Tr(CX) − bTy

= Tr

((

S +
m

∑

i=1

yiAi

)

X

)

−
m

∑

i=1

yiTr(AiX)

= Tr(SX) ≥ 0 (sinceX, S º 0)
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Weak Duality in SDP
We can prove the weak conic duality directly:
FeasibleX ∈ P andy, S ∈ D satisfy:

Tr(CX) − bTy

= Tr

((

S +
m

∑

i=1

yiAi

)

X

)

−
m

∑

i=1

yiTr(AiX)

= Tr(SX) ≥ 0 (sinceX, S º 0)

(Duality gap always nonnegative.)
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Strong Duality in SDP
From the strong conic duality theorem we have:
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Strong Duality in SDP
From the strong conic duality theorem we have:
If there existstrictly feasibleX Â 0 andS Â 0, then
there existcomplementary solutionsX∗ ∈ P and
S∗ ∈ D, i.e.

Tr(X∗S∗) = 0 ⇔ X∗S∗ = 0.
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Bad duality example

(D) : sup
y∈IR2

y2

subject to

S = −y1

[

1 0

0 0

]

− y2

[

0 0

0 1

]

+

[

0 1

1 1

]

º 0.
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Bad duality example

(D) : sup
y∈IR2

y2

subject to

S = −y1

[

1 0

0 0

]

− y2

[

0 0

0 1

]

+

[

0 1

1 1

]

º 0.

(D) is not solvablebut supy∈D y2 = 1 (why?).
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Bad duality example (ctd)
The dual problem of the example is:

(P ) : min
X

Tr

([

0 1

1 1

]

X

)

subject toX =

[

0 x12

x12 1

]

º 0.
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Bad duality example (ctd)
The dual problem of the example is:

(P ) : min
X

Tr

([

0 1

1 1

]

X

)

subject toX =

[

0 x12

x12 1

]

º 0.

Note thatX º 0 impliesx12 = 0 so that

X∗ =

[

0 0

0 1

]

º 0,

is the unique optimal solution with optimal value1.
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Optimality conditions
From the strong duality theorem we getsufficient
optimality conditions for (P) and (D):

Tr(AiX) = bi, i = 1, . . . , m
∑m

i=1 yiAi + S = C

XS = 0

X º 0, y ∈ IRm, S º 0
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Optimality conditions
From the strong duality theorem we getsufficient
optimality conditions for (P) and (D):

Tr(AiX) = bi, i = 1, . . . , m
∑m

i=1 yiAi + S = C

XS = 0

X º 0, y ∈ IRm, S º 0

NB: Also necessaryif (P) and (D) arestrictly feasible.
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Optimality conditions
From the strong duality theorem we getsufficient
optimality conditions for (P) and (D):

Tr(AiX) = bi, i = 1, . . . , m
∑m

i=1 yiAi + S = C

XS = 0

X º 0, y ∈ IRm, S º 0

NB: Also necessaryif (P) and (D) arestrictly feasible.
If (X, S) are complementary solutionsXS = 0, and
X + S Â 0 then we call(X, S) astrictly
complementary solution pair.
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Special cases of SDP

Tools and examples

• The Schur complement theorem: a useful tool;
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Special cases of SDP
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• The Schur complement theorem: a useful tool;
• Convex quadratic problems;
• Eigenvalue and matrix norm optimization;
• Logarithmic Chebychev approximation;
• Minimization of univariate polynomials;
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Special cases of SDP

Tools and examples

• The Schur complement theorem: a useful tool;
• Convex quadratic problems;
• Eigenvalue and matrix norm optimization;
• Logarithmic Chebychev approximation;
• Minimization of univariate polynomials;
• The Lovász theta function.
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Schur complement theorem
Let

M =

[

A B

BT C

]

whereA Â 0 andC ∈ Sn.
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Schur complement theorem
Let

M =

[

A B

BT C

]

whereA Â 0 andC ∈ Sn. The matrix

C − BTA−1B

is called theSchur complement ofA in M .
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Schur complement theorem
Let

M =

[

A B

BT C

]

whereA Â 0 andC ∈ Sn. The matrix

C − BTA−1B

is called theSchur complement ofA in M . The
following are equivalent:

• M is positive (semi)definite;
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Schur complement theorem
Let

M =

[

A B

BT C

]

whereA Â 0 andC ∈ Sn. The matrix

C − BTA−1B

is called theSchur complement ofA in M . The
following are equivalent:

• M is positive (semi)definite;

• C − BTA−1B is positive (semi)definite.
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Convex quadratic problems

min
{

cTx : fi(x) ≤ 0, i = 1, . . . , m
}

,

where

fi(x) = (Bix + bi)
T (Bix + bi) − cT

i x − di, ∀i.
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Convex quadratic problems

min
{

cTx : fi(x) ≤ 0, i = 1, . . . , m
}

,

where

fi(x) = (Bix + bi)
T (Bix + bi) − cT

i x − di, ∀i.

Omitting the indexi each constraint has the form

‖Bx + b‖2 ≤ cTx + d.
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Convex quadratic problems

min
{

cTx : fi(x) ≤ 0, i = 1, . . . , m
}

,

where

fi(x) = (Bix + bi)
T (Bix + bi) − cT

i x − di, ∀i.

Omitting the indexi each constraint has the form

‖Bx + b‖2 ≤ cTx + d.

Via Schur complement theoremequivalent to:
[

I Bx + b

(Bx + b)T cTx + d

]

º 0.
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Smallest eigenvalue problem
ConsiderM ∈ Sn with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.
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Smallest eigenvalue problem
ConsiderM ∈ Sn with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.

One trivially has

(D) λ1 = max {λ : λI ¹ M} .
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Smallest eigenvalue problem
ConsiderM ∈ Sn with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.

One trivially has

(D) λ1 = max {λ : λI ¹ M} .

Corresponding dual SDP problem is

(P ) min {TrMX : TrX = 1 X º 0} .
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Smallest eigenvalue problem
ConsiderM ∈ Sn with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.

One trivially has

(D) λ1 = max {λ : λI ¹ M} .

Corresponding dual SDP problem is

(P ) min {TrMX : TrX = 1 X º 0} .

Both problems are strictly feasible: In(D), takeλ <

λ1 and in(P ): takeX = 1
n
I.
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Eigenvalue optimization
Notation: λmax(A) denotes thelargest eigenvalueof
A ∈ Sn. Consider

min
y

λmax(A(y))

A(y) := A0 + y1A1 + · · · + ymAm,

for givenAi ∈ Sn (i = 0, . . . , m).
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Eigenvalue optimization
Notation: λmax(A) denotes thelargest eigenvalueof
A ∈ Sn. Consider

min
y

λmax(A(y))

A(y) := A0 + y1A1 + · · · + ymAm,

for givenAi ∈ Sn (i = 0, . . . , m). This can be
formulated as an SDP:

min {t : tI − A(y) º 0}
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Eigenvalue optimization
Notation: λmax(A) denotes thelargest eigenvalueof
A ∈ Sn. Consider

min
y

λmax(A(y))

A(y) := A0 + y1A1 + · · · + ymAm,

for givenAi ∈ Sn (i = 0, . . . , m). This can be
formulated as an SDP:

min {t : tI − A(y) º 0}

NB: the functionf(y) = λmax(A(y)) is convex but not

differentiable. Lectures on Semidefinite Programming – p.25/46



Eig. optimization: example

min
y1,y2

{

λmax

(

y1

[

1 −1

−1 0

]

+ y2

[

0 1

1 −1

])}

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

10

0.5

1

1.5

2

2.5

3

y2

y1

 λ
m

ax
A

(y
1,

y2
)

Optimal solutiony∗1 = y∗2 = 0.
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Chebychev approximation
We wish to solveAx = b approximately, where
A = [a1 · · · am]T ∈ IRn×m.
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Chebychev approximation
We wish to solveAx = b approximately, where
A = [a1 · · · am]T ∈ IRn×m. Chebychev
approximation:

min
x

‖Ax − b‖∞ := min
x

max
i

|aT
i x − bi|.
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Chebychev approximation
We wish to solveAx = b approximately, where
A = [a1 · · · am]T ∈ IRn×m. Chebychev
approximation:

min
x

‖Ax − b‖∞ := min
x

max
i

|aT
i x − bi|.

LP reformulation:

min
{

t : −t ≤ aT
i x − bi ≤ t ∀i

}

.
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Chebychev approximation
We wish to solveAx = b approximately, where
A = [a1 · · · am]T ∈ IRn×m. Chebychev
approximation:

min
x

‖Ax − b‖∞ := min
x

max
i

|aT
i x − bi|.

LP reformulation:

min
{

t : −t ≤ aT
i x − bi ≤ t ∀i

}

.

LogarithmicChebychev approximation:

min
x

max
i

∣

∣ln(aT
i x) − ln(bi)

∣

∣ .

Lectures on Semidefinite Programming – p.27/46



Chebychev approximation (ctd.)

min
x

max
i

∣

∣ln(aT
i x) − ln(bi)

∣

∣

is equivalent to:
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Chebychev approximation (ctd.)

min
x

max
i

∣

∣ln(aT
i x) − ln(bi)

∣

∣

is equivalent to:

min
{

t : 1/t ≤ aT
i x/bi ≤ t ∀i

}

.
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Chebychev approximation (ctd.)

min
x

max
i

∣

∣ln(aT
i x) − ln(bi)

∣

∣

is equivalent to:

min
{

t : 1/t ≤ aT
i x/bi ≤ t ∀i

}

.

SDP formulation:

min







t :





t − aT
i x/bi 0 0

0 aT
i x/bi 1

0 1 t



 º 0 ∀i







.
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Minimization of polynomials
Let p : IR 7→ IR be aunivariate polynomial.
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Minimization of polynomials
Let p : IR 7→ IR be aunivariate polynomial.
Theorem:
p(x) ≥ 0 ∀x ∈ IR iff

p =
∑

i

p2
i

for some polynomialspi.
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Minimization of polynomials
Let p : IR 7→ IR be aunivariate polynomial.
Theorem:
p(x) ≥ 0 ∀x ∈ IR iff

p =
∑

i

p2
i

for some polynomialspi.

We callp asum of squares(SOS) in this case.
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Minimization of polynomials
(ctd.)
Now we have

min
x∈IR

p(x) = max
t,x

{t : p(x) − t ≥ 0 ∀x ∈ IR}

= max
t,x

{

t : p(x) − t =
∑

i

pi(x)2

}

for somepi’s.
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Minimization of polynomials
(ctd.)
Now we have

min
x∈IR

p(x) = max
t,x

{t : p(x) − t ≥ 0 ∀x ∈ IR}

= max
t,x

{

t : p(x) − t =
∑

i

pi(x)2

}

for somepi’s.

SDP can be used to determine if a polynomial is an

SOS (Gram matrix method).
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The Gram matrix method
Theorem: A polynomialp : IRn 7→ IR of degree2m is
an SOS iff

p(x) = x̃TMx̃, for someM º 0, (1)

wherex̃ = [1 x1 x2 . . . xn x2
1 x1x2 . . . xm

n ]T is a
vector of all possible monomials of degree at mostm.
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The Gram matrix method
Theorem: A polynomialp : IRn 7→ IR of degree2m is
an SOS iff

p(x) = x̃TMx̃, for someM º 0, (2)

wherex̃ = [1 x1 x2 . . . xn x2
1 x1x2 . . . xm

n ]T is a
vector of all possible monomials of degree at mostm.

• Dimension ofx̃ is
(

n+m
m

)

: polynomial inn if m is
fixed.
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The Gram matrix method
Theorem: A polynomialp : IRn 7→ IR of degree2m is
an SOS iff

p(x) = x̃TMx̃, for someM º 0, (3)

wherex̃ = [1 x1 x2 . . . xn x2
1 x1x2 . . . xm

n ]T is a
vector of all possible monomials of degree at mostm.

• Dimension ofx̃ is
(

n+m
m

)

: polynomial inn if m is
fixed.

• The right-hand-side in (3) islinearin the entries
of M ⇒ (3) is alinear matrix inequality (LMI)
(semidefinite feasibility problem).
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Example (Parrilo)
Is P (x) := 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 a sum of
squares?
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Example (Parrilo)
Is P (x) := 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 a sum of
squares? For allλ ∈ IR we have

P (x) =





x2
1

x2
2

x1x2





T 



2 −λ 1

−λ 5 0

1 0 −1 + 2λ









x2
1

x2
2

x1x2



 .
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Example (Parrilo)
Is P (x) := 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 a sum of
squares? For allλ ∈ IR we have

P (x) =





x2
1

x2
2

x1x2





T 



2 −λ 1

−λ 5 0

1 0 −1 + 2λ









x2
1

x2
2

x1x2



 .

If we call the3×3 matrix in the last expressionM(λ),
thenM(λ) defines anaffine spaceparametrized byλ.
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Example (Parrilo)
Is P (x) := 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 a sum of
squares? For allλ ∈ IR we have

P (x) =





x2
1

x2
2

x1x2





T 



2 −λ 1

−λ 5 0

1 0 −1 + 2λ









x2
1

x2
2

x1x2



 .

If we call the3×3 matrix in the last expressionM(λ),
thenM(λ) defines anaffine spaceparametrized byλ.

SDP problem: is there aλ such thatM(λ) º 0 (posi-

tive semidefinite)?
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Example (ctd.)
for λ = 3, M(λ) is positive semidefinite, and

M(3) = LTL, L =
1√
2

[

2 −3 1

0 1 3

]

,
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Example (ctd.)
for λ = 3, M(λ) is positive semidefinite, and

M(3) = LTL, L =
1√
2

[

2 −3 1

0 1 3

]

,

and consequently

P (x) = x̃TM(3)x̃ = x̃TLTLx̃ = ‖Lx̃‖2,

wherex̃ = [x2
1 x2

2 x1x2]
T .

ThusP can be written as a sum of squares.
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Nesterov’s aproach
We have obtained:

min
x∈IR

p(x) = max
t,x

{

t : p(x) − t =
∑

i

pi(x)2

}

= max
t,x

{

t : p(x) − t = x̃TMx̃
}

for someM º 0, wherex̃T = [1 x x2 . . . x
1

2
deg(p)].
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Nesterov’s aproach
We have obtained:

min
x∈IR

p(x) = max
t,x

{

t : p(x) − t =
∑

i

pi(x)2

}

= max
t,x

{

t : p(x) − t = x̃TMx̃
}

for someM º 0, wherex̃T = [1 x x2 . . . x
1

2
deg(p)].

Let p(x) =
∑

α aαxα. Then the optimization problem
becomes: maximizet such that

a0 − t = M00, aα =
∑

i+j=α

Mij, M º 0.
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Example

p(x) := x2 − 2x = (x − 1)2 − 1.
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Example

p(x) := x2 − 2x = (x − 1)2 − 1.

Equivalent problem:max t such that

x2 − 2x − t =

[

1

x

]T [

M00 M01

M10 M11

] [

1

x

]

, (5)

for someM º 0.
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Example

p(x) := x2 − 2x = (x − 1)2 − 1.

Equivalent problem:max t such that

x2 − 2x − t =

[

1

x

]T [

M00 M01

M10 M11

] [

1

x

]

, (6)

for someM º 0.
From (6):

M00 = −t, M01 = M10 = −1, M11 = 1.

Lectures on Semidefinite Programming – p.35/46



Example (ctd.)
We therefore get

min
x∈IR

p(x) = max
t,M

t

such that

M =

[

−t −1

−1 1

]

º 0.
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Example (ctd.)
We therefore get

min
x∈IR

p(x) = max
t,M

t

such that

M =

[

−t −1

−1 1

]

º 0.

Note that the optimal value is−1, as it should be.
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Co-cliques
A co-cliqueof G = (V, E) is a subsetV ′ ⊂ V such
that theinduced subgraphonV ′ hasno edges.
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Co-cliques
A co-cliqueof G = (V, E) is a subsetV ′ ⊂ V such
that theinduced subgraphonV ′ hasno edges.
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Co-cliques
A co-cliqueof G = (V, E) is a subsetV ′ ⊂ V such
that theinduced subgraphonV ′ hasno edges.

The co-clique numberα(G) is the cardinality of the

largest co-clique ofG.
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Vertex colourings
• An assignment of colours to the verticesV of G

such that endpoints of eache ∈ E are assigned
different colours.
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Vertex colourings
• An assignment of colours to the verticesV of G

such that endpoints of eache ∈ E are assigned
different colours.

• Chromatic numberγ(G): smallest number of
colours needed to colourV ;
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Vertex colourings
• An assignment of colours to the verticesV of G

such that endpoints of eache ∈ E are assigned
different colours.

• Chromatic numberγ(G): smallest number of
colours needed to colourV ;

• It is NP hard to computeγ(G) (or α(G)), or even
to give a non-trivial polynomial time
approximation.
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Lovászϑ-function
A graphG = (V, E) is given.
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Lovászϑ-function
A graphG = (V, E) is given. Define:

ϑ(G) := max Tr
(

eeTX
)

= eTXe

subject to

Xij = 0, {i, j} ∈ E (i 6= j)

Tr(X) = 1

X ∈ S+
n ,

wheree denotes the all-one vector.
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Lovász ‘sandwich theorem’
Let α(G) denote theindependence numberof G and
γ(Ḡ) thechromatic numberof Ḡ.
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Lovász ‘sandwich theorem’
Let α(G) denote theindependence numberof G and
γ(Ḡ) thechromatic numberof Ḡ.

Lovász’s sandwich theorem

α(G) ≤ ϑ(G) ≤ γ(Ḡ).
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Lovász ‘sandwich theorem’
Let α(G) denote theindependence numberof G and
γ(Ḡ) thechromatic numberof Ḡ.

Lovász’s sandwich theorem

α(G) ≤ ϑ(G) ≤ γ(Ḡ).

First equality is easy. Second inequality via strong
duality theorem.
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Lovász ‘sandwich theorem’
Let α(G) denote theindependence numberof G and
γ(Ḡ) thechromatic numberof Ḡ.

Lovász’s sandwich theorem

α(G) ≤ ϑ(G) ≤ γ(Ḡ).

First equality is easy. Second inequality via strong
duality theorem.

Implication: we can computeα(G) andγ(Ḡ) in pol.

time forperfect graphs.
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Algorithms: The central path
We change the system of optimality conditions to:

Tr(AiX) = bi, i = 1, . . . , m,
m

∑

i=1

yiAi + S = C,

XS = µI,

X º 0, y ∈ IRm, S º 0,

for some parameterµ > 0.
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Algorithms: The central path
We change the system of optimality conditions to:

Tr(AiX) = bi, i = 1, . . . , m,
m

∑

i=1

yiAi + S = C,

XS = µI,

X º 0, y ∈ IRm, S º 0,

for some parameterµ > 0. These central-

ity conditions have a unique solution denoted by

(X(µ), y(µ), S(µ)).
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The central path: properties
i) the curve(X(µ), y(µ), S(µ)) is ananalytic

functionof µ > 0;

Lectures on Semidefinite Programming – p.42/46



The central path: properties
i) the curve(X(µ), y(µ), S(µ)) is ananalytic

functionof µ > 0;

ii) the central path converges asµ ↓ 0;
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The central path: properties
i) the curve(X(µ), y(µ), S(µ)) is ananalytic

functionof µ > 0;

ii) the central path converges asµ ↓ 0;

iii) the limit point (X∗, y∗, S∗) (say) of the central
path is in the relative interior ofP∗ ×D∗.
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The central path: properties
i) the curve(X(µ), y(µ), S(µ)) is ananalytic

functionof µ > 0;

ii) the central path converges asµ ↓ 0;

iii) the limit point (X∗, y∗, S∗) (say) of the central
path is in the relative interior ofP∗ ×D∗.

iv) Rate of convergence in case ofstrict
complementarity:

‖X(µ) − X∗‖ = O(µ), ‖S(µ) − S∗‖ = O(µ).

Lectures on Semidefinite Programming – p.42/46



Primal–dual IPMs: Basic
scheme

1. Compute(X(µ), S(µ)) approximately by solving
the (nonlinear) centrality conditions iteratively;
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Primal–dual IPMs: Basic
scheme

1. Compute(X(µ), S(µ)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduceµ if the current iterates are ‘close
enough’ to(X(µ), S(µ)) and repeat.
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Primal–dual IPMs: Basic
scheme

1. Compute(X(µ), S(µ)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduceµ if the current iterates are ‘close
enough’ to(X(µ), S(µ)) and repeat.

The duality gap at theµ-center(X(µ), S(µ)) is

Tr(X(µ)S(µ)) = Tr(µI) = µn.
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Primal–dual IPMs: Basic
scheme

1. Compute(X(µ), S(µ)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduceµ if the current iterates are ‘close
enough’ to(X(µ), S(µ)) and repeat.

The duality gap at theµ-center(X(µ), S(µ)) is

Tr(X(µ)S(µ)) = Tr(µI) = µn.

Geometrically, we view(X(µ), S(µ)) as a ‘target

point’ on the central path, and the parameterµ there-

fore determines the ‘target duality gap’.
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Example

0 0.5 1 1.5 2
0

0.5

1

1.5

2

λ
min

(XS)

λ
max

(XS) central pathδ(X,S,µ
0
) < 1

y(µ
0
)
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The central path: different in-
terpretation
The pointy(µ) on the dual central path minimizes

fµ
d (y) := −1

µ
bTy − ln det

(

C −
m

∑

i=1

yiAi

)

.
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The central path: different in-
terpretation
The pointy(µ) on the dual central path minimizes

fµ
d (y) := −1

µ
bTy − ln det

(

C −
m

∑

i=1

yiAi

)

.

Note that the ‘barrier term’ln det(·) ensures that the
iteratesS := C − ∑m

i=1 yiAi stay inS+
n (why?)
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The central path: different in-
terpretation
The pointy(µ) on the dual central path minimizes

fµ
d (y) := −1

µ
bTy − ln det

(

C −
m

∑

i=1

yiAi

)

.

Note that the ‘barrier term’ln det(·) ensures that the
iteratesS := C − ∑m

i=1 yiAi stay inS+
n (why?)

Implication: we can findy(µ) by doing
unconstrained minimization offµ

d .

Lectures on Semidefinite Programming – p.45/46



The central path: different in-
terpretation
The pointy(µ) on the dual central path minimizes

fµ
d (y) := −1

µ
bTy − ln det

(

C −
m

∑

i=1

yiAi

)

.

Note that the ‘barrier term’ln det(·) ensures that the
iteratesS := C − ∑m

i=1 yiAi stay inS+
n (why?)

Implication: we can findy(µ) by doing
unconstrained minimization offµ

d .

Also,fµ
d is aself-concordantfunction — use Newton’s

method to minimize it efficiently.
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More info
Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html
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More info
Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.

Semidefinite programming.SIAM Review38, 49–95, 1996.
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More info
Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.

Semidefinite programming.SIAM Review38, 49–95, 1996.

Today’s lecture was largely based on: E. de Klerk. Aspects of

Semidefinite Programming: Interior Point Algorithms and Selected

Applications. Kluwer Academic Publishers, 2002.
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More info
Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.

Semidefinite programming.SIAM Review38, 49–95, 1996.

Today’s lecture was largely based on: E. de Klerk. Aspects of

Semidefinite Programming: Interior Point Algorithms and Selected

Applications. Kluwer Academic Publishers, 2002.

Solving optimization problems via internet (NEOS
server):

http://www-neos.mcs.anl.gov/
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