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Topics for this talk
Convex conic optimization and semidefinite
programming (SDP);
The conic duality theorem,
Positive semidefinite matrices: a short review;
Special cases/examples of SDP;
Primal—dual interior point algorithms.
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Conic Linear Optimization

A conic linear optimization problem (conic LP) takes
the form:

min{ch‘ Ax:b,xElC},

wherethe dataisc R", b € R" and/C C R"Is a
convex cone.
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Conic Linear Optimization

A conic linear optimization problem (conic LP) takes
the form:

min{cT:L“‘ A:L“:b,xEIC},

where the dataisc R",b € R" and/C C R"Is a
convex cone.
Some choices fok:
nonnegative orthant IR — linear programming
(LP);
the cone ofn x m positive semidefinite matrices
such thatr = (")) — semidefinite

2
programming (SDR)
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Importance of SDP

Contains important convex optimization
problems as special cases: LP, QP, etc.
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Important applications: Global and combinatorial
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Importance of SDP
Contains important convex optimization
problems as special cases: LP, QP, etc.

Important applications: Global and combinatorial
optimization, control, etc.

Can be solved efficiently by interior point
algorithms.
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More on convex cones
A subsetlC of R™ I1s aconelf

aell, >0 = la€k,
and the conédC Is aconvex cond moreover

a,d e K=a+d K.
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More on convex cones
A subsetlC of R™ I1s aconelf

aell, >0 = la€k,
and the conédC Is aconvex cond moreover
a,d e K=a+d K.

We impose three more conditions &nto obtain

duality results similar to those for LP, namely:
JC must bepointed(may not contain a ray);
JC must beclosed

JC must besolid (have a nonempty interior).
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Dual cones
Thedual coneof a convex conéC Is:

K.i={ eR" : Ma>0 VaeK}.
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Dual cones
Thedual coneof a convex conéC Is:

K.i={ eR" : Ma>0 VaeK}.

Theorem: Let £ C R be a nonempty cone.

(¢) The set, is a closed convex cone.
(22) If KCis solid then/C, is pointed.
(22¢) If ICis a closed convex pointed cone, thiénis

solid.
(zv) If K is a closed convex cone, then sig, and

the cone dual tdC, 1s K itself.
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Dual cones
Thedual coneof a convex conéC Is:

K.i={ eR" : Ma>0 VaeK}.

Theorem: Let £ C R be a nonempty cone.

(¢) The set, is a closed convex cone.
(22) If KCis solid then/C, is pointed.
(22¢) If ICis a closed convex pointed cone, thiénis

solid.
(zv) If K is a closed convex cone, then sig, and

the cone dual tdC, 1s K itself.

Corollary: If ¢ R™Is aclosed, pointed, solid, con-
vex cone then so 1K, and vice versa.
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Dual problem

Consider the conic optimization problem:
(COP): inf {CT:C ‘ Ar =b, z € K},

whereA has full rank. Feasible s@t, optimal setP*
(possibly empty).
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Dual problem

Consider the conic optimization problem:
(COP): inf {CT:C ‘ Ar =b, z € K},
whereA has full rank. Feasible s@t, optimal setP*
(possibly empty).
Associateddual problem
(COD) : sup {bTy |ATy +s=c¢ se}.

Feasible seD, optimal setD* (possibly empty).
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Weak duality theorem
Letz € Pand(y,s) € D. Then

CTQZ' o bTy _ (ATy 4+ S)TZC o bTy
— (Ax)'y + stz — by

—stx >0,

because: € K ands € IC,.
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Weak duality theorem
Letz € P and(y,s) € D. Then

CTQZ' o bTy _ (ATy 4+ S)TZC o bTy
— (Ax)'y + stz — by

—stx >0,

because: € K ands € IC,.

In words, theduality gapis nonnegativeat feasible
primal-dual solutions.
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Strong duality theorem
Assume(COP) and(COD) arestrictly feasible

P Aint(K) £ 0 andD Nint(K..) £ 0.
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Strong duality theorem
Assume(COP) and(COD) arestrictly feasible
PNint(K) #£ 0 andD Nint(K,) # 0.
Then both problems amolvablg i.e:
P* £ 0 andD* # 0,

and at optimal solutiong* € P* and(y*, s*) € D*
one has

ot — by = 2*'s* =0 (Duality gap zero.)
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Strong duality theorem
Assume(C'OP) and(COD) arestrictly feasible
PNint(K) #£ 0 andD Nint(K,) # 0.
Then both problems amolvablg i.e:
P* £ 0 andD* # 0,

and at optimal solutiong* € P* and(y*, s*) € D*
one has

ot — by = 2*'s* =0 (Duality gap zero.)

We call(z*, s*) complementary solutions
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The trace operator

The trace of am x n matrix A Is

n

Tr(A) =) a;.

1=1
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The trace operator

The trace of am x n matrix A Is

n

Tr(A) =) a;.

1=1

Properties:

Let A € R"*" andB € R""*":
Tr(A) =21 Ai(A);
Tr(A) = Tr (A);
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The

trace operator

The trace of am x n matrix A Is

n

Tr(A) =) a;.

1=1

Properties:
Let A € R"*" andB € R""*":

T(A) = 21 Ai(A);
T(A) = Tr (AD);

T(AB) =Tr(BA)
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The trace operator

The trace of am x n matrix A Is

n

Tr(A) =) a;.

1=1

Properties:
Let A € R"*" andB € R""*":

Tr(A) = > 212 Ai(4);
Tr(A) = Tr (A);
Tr(AB) =Tr(BA)
Tr(ABY) =370 aijbi;.
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An Inner product

We denote the cone of real symmetric n matrices
by S,,.
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An Inner product
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1)
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An Inner product

We denote the cone of real symmetric n matrices
by S,,. LetA, B € §,,. The inner product

(A,B) :==Tr(AB) = ) a;;bi;.
i,J
The inner product induces thheobenius(Euclidean)
norm:

AP == (A, A) =Tr (AAT) = ) a),
i,j=1
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An Inner product

We denote the cone of real symmetric n matrices
by S,,. LetA, B € §,,. The inner product

(A,B) :==Tr(AB) = ) a;;bi;.
i,J
The inner product induces thheobenius(Euclidean)
norm:

n

AP == (A, A) =Tr (AAT) = ) a),
i,j=1

which is sub-multiplicative)| AB|| < | Al|||B]|.
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Positive semidefinite matrices
Let X € §,,. The following are equivalent:
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Positive semidefinite matrices
Let X € §,,. The following are equivalent:
X eShorX =0(XisPSD);
AX2>0 VzeR™
Amin(X) 2> 0;
All principal minors of X are nonnegative,
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Positive semidefinite matrices
Let X € §,,. The following are equivalent:
X eShorX =0(XisPSD);
A2X2>0 VzeR™:
Amin(X ) > 0;
All principal minors of X are nonnegative,
X = LL! for someL € R"*".
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Positive semidefinite matrices
Let X € §,,. The following are equivalent:
X eShorX =0(XisPSD);
A2X2>0 VzeR™:
Amin(X ) > 0;
All principal minors of X are nonnegative,
X = LL! for someL € R"*".

A nonsingular matrixX > 0 Is called positive definite
(X = 0).
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P.s.d. matrices (ctd.)

Any A € §,, has aspectral decomposition
A= Z Nigiq; = QAQ"
1=1

where

AQZ:)\”LQ”M Q:[QI Qn]a QTQ:]7

andA Is a diagonal matrix with\;; = \;.
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P.s.d. matrices (ctd.)

Any A € §,, has aspectral decomposition
A= Z Nigiq; = QAQ"
1=1

where

AQZ:)\”LQ”M Q:[QI Qn]a QTQ:]7

andA Is a diagonal matrix with\;; = \;.
If A e S then)\; > 0. Square root factorization:

Az =Y "V higig)
1=1
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P.s.d. matrices (ctd.)

Theorem (Fejer): The coneS; is self-dual with
respect to the Euclidean inner product.
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P.s.d. matrices (ctd.)

Theorem (Fejer): The coneS; is self-dual with
respect to the Euclidean inner product.
Proof: Let A € S andB € S;7; then

(A, B) =Tr (A%A%B%B%>

—Tr (A%B%B%A%)

2
> 0.

:HA%B%
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P.s.d. matrices (ctd.)

Theorem (Fejer): The coneS; is self-dual with
respect to the Euclidean inner product.

Proof: Let A € S andB € S;7; then
(4, B) =Tr (A*ABIBY)

—Tr (A%B%B%A%)

2
> 0.

:HA%B%

Conversely, ifA € S, and(A, B) > Oforall B € S,
then letz € R" be given and seB = 22! € S. The
result follows (why?)
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SDP: The standard form

Let L = S.". We get the conic optimization problems

(P): p"= inf Tr(CX)
XeSy

subject toTr(A; X) = b;, V1.
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SDP: The standard form

Let L = S.". We get the conic optimization problems

(P): p"= inf Tr(CX)
XeSy

subject toTr(A; X) = b;, V1.
Dual problem:

(D): d*= sup by
yeR" ses)f

subjectto) y;A;+ S =C.

1=1
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Weak Duality in SDP

We can prove the weak conic duality directly:
FeasibleX € P andy, S € D satisty:
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Weak Duality in SDP

We can prove the weak conic duality directly:
FeasibleX € P andy, S € D satisty:

Tr(CX) —bly

— Tr ((S € zm: yz-AZ-) X) — zm: y; Tr(A; X)

1=1
= Tr(SX) > 0 (sinceX, S > 0)
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Weak Duality in SDP

We can prove the weak conic duality directly:
FeasibleX € P andy, S € D satisty:

Tr(CX) —bly

— Tr ((S € zm: yz-AZ-) X) — zm: y; Tr(A; X)

1=1
= Tr(SX) > 0 (sinceX, S > 0)

(Duality gap always nonnegative.)
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Strong Duality in SDP

From the strong conic duality theorem we have:
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Strong Duality in SDP

From the strong conic duality theorem we have:
If there existstrictly feasibleX - 0 andS > 0, then
there existomplementary solution¥* € P and

S* e D, le.

Tr(X*S")=0& X"S*"=0.
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Bad duality example

(D) :  sup v
yeR’

subject to

10 00 01
= — — -
9= foo) = [oa] +[1] =
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Bad duality example

(D) :  sup v
yeR’

subject to

10 00 01
= — — -
9= foo) = [oa] +[1] =

(D) Is not solvablebutsup,.p y2 = 1 (why?).

Lectures on Semidefinite Programming — p.18/46



Bad duality example (ctd)

The dual problem of the example Is:
. 01
(P) : m)%nTr <L 1} X)

subject toX = { . m} = 0.
L19 1
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Bad duality example (ctd)

The dual problem of the example Is:
. 01
(P) : m)%nTr <L 1} X)

subject toX = { . m} = 0.
L19 1

Note thatX > 0 impliesx;> = 0 so that

00
* ~
X {01}_0,

IS the unigue optimal solution with optimal valuie
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Optimality conditions

From the strong duality theorem we getfficient
optimality conditions for (P) and (D):

Tr(A; X) = b, i=1,...,m
2 im YiAi+5=C
XS5S=0
X0, yeR" §5>0
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Optimality conditions

From the strong duality theorem we getfficient
optimality conditions for (P) and (D):

Tr(A; X) = b, i=1,...,m
2 im YiAi+5=C
XS5S=0
X0, yeR" §5>0

NB: Also necessaryf (P) and (D) arestrictly feasible
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Optimality conditions

From the strong duality theorem we getfficient
optimality conditions for (P) and (D):

Tr(AZX):bZ, 1=1,...,m
Z?;%Az’ S=C
X5=0

X0, yeR" §5>0

NB: Also necessaryf (P) and (D) arestrictly feasible
If (X,S) are complementary solutiodsS = 0, and

X + S > 0thenwe call X, S) astrictly
complementary solution pair
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Special cases of SDP

Tools and examples

The Schur complement theorem: a useful tool,
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The Schur complement theorem: a useful tool,
Convex quadratic problems;
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Special cases of SDP

Tools and examples

The Schur complement theorem: a useful tool,
Convex quadratic problems;

Eigenvalue and matrix norm optimization;
Logarithmic Chebychev approximation;
Minimization of univariate polynomials;

The Lovasz theta function.
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Schur complement theorem
Let

[

BT C
whereA = 0 andC € §,,.
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Schur complement theorem
Let

[

BT C
whereA = 0 andC € §,,. The matrix
C—-B'A'B

Is called theSchur complement of in M.
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Schur complement theorem
Let

[

BT C
whereA = 0 andC € §,,. The matrix
C—-B'A'B

Is called theSchur complement of in M. The
following are equivalent:

M is positive (semi)definite;
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Schur complement theorem
Let

[

BT C
whereA = 0 andC € §,,. The matrix
C—-B'A'B

Is called theSchur complement of in M. The
following are equivalent:
M is positive (semi)definite;

C — BT A7 B is positive (semi)definite.
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Convex guadratic problems
min{ch . fi(x) <0, 1= 1,...,m},

where

fi(x) = (Bix + b)) (Biw + b)) — ¢} x — d;, Vi
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Convex guadratic problems

min{ch . fi(x) <0, izl,...,m},
where
fi(x) = (Bix + b)) (Biw + b)) — ¢} x — d;, Vi

Omitting the index each constraint has the form

|Bz +b|° < 'z +d.
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Convex guadratic problems

min{ch . fi(x) <0, izl,...,m},
where
fi(x) = (Bix + b)) (Biw + b)) — ¢} x — d;, Vi

Omitting the index each constraint has the form

Br +b|]* <z +d

Via Schur complement theoreequivalent to:

i Bx +b

~ 0.
(Bx +b)! ¢l +d =0
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Smallest eigenvalue problem

ConsiderM € §,, with eigenvalues

AL S Ag < <A
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Smallest eigenvalue problem

ConsiderM € §,, with eigenvalues
A< A< <A
One trivially has

(D) A =max{\ : N[ < M}.
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Smallest eigenvalue problem

ConsiderM € §,, with eigenvalues
AL <A < <A
One trivially has
(D) A =max{\ : N[ < M}.
Corresponding dual SDP problem is
(P) min{TrMX : TrX =1 X = 0}.
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Smallest eigenvalue problem

ConsiderM € §,, with eigenvalues
AL <A < <A
One trivially has
(D) A =max{\ : N[ < M}.
Corresponding dual SDP problem is
(P) min{TrMX : TrX =1 X = 0}.

Both problems are strictly feasible: (D), take\ <
A\ and in(P): takeX = 1.
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Eigenvalue optimization

Notation: An.<(A) denotes théargest eigenvaluef
A e §,. Consider

min Apax(A(y))

Y

Ay) == Ao+ y1 A1+ + yn A,
forgivenA; € S, (2 =0,...,m).

Lectures on Semidefinite Programming — p.25/46



Eigenvalue optimization

Notation: An.<(A) denotes théargest eigenvaluef
A e §,. Consider

min Apax(A(y))

Y

Ay) == Ao+ y1 A1+ + yn A,

forgivenA; € S, (1 =0,...,m). This can be
formulated as an SDP:

min{t : tI — A(y) = 0}
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Eigenvalue optimization

Notation: An.<(A) denotes théargest eigenvaluef
A e §,. Consider

min Apax(A(y))

Y

Ay) == Ao+ y1 A1+ + yn A,

forgivenA; € S, (1 =0,...,m). This can be
formulated as an SDP:

min{t : tI — A(y) = 0}

NB: the functionf (y) = Amax(A(y)) is convex but not
differentiable




Eig. optimization: example

m1n< )\max <y1

Y1,Y2

\

I -1

-1 0

Optimal solutiony; = y5 = 0.

T\
01)
)

1 -1
1/ )
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Chebychev approximation

We wish to solvedx = b approximately, where
A=laj---a,)t € R™™,
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Chebychev approximation

We wish to solvedx = b approximately, where
A=la;--a,]’ € R”™. Chebychev
approximation

min || Az — b||~ := minmax |a] z — b;].
i X (;
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Chebychev approximation

We wish to solvedx = b approximately, where
A=la;--a,]’ € R”™. Chebychev
approximation

min || Az — b||~ := minmax |a] z — b;].
i X (;

LP reformulation:

min{t : —tgafx—bigt W}.
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Chebychev approximation

We wish to solvedx = b approximately, where
A=la;--a,]’ € R”™. Chebychev
approximation

min || Az — b||~ := minmax |a] z — b;].
LP reformulation:

min{t : —tgafx—bigt W}.

LogarithmicChebychev approximation:

min max |In(a; =) — In(b;)| .
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Chebychev approximation (ctd.)

min max ‘hl(a@-T%) — 111([%')‘

IS equivalent to:
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Chebychev approximation (ctd.)

min max ‘hl(a@-T%) — 111([%')‘

IS equivalent to:

min {¢ : 1/t <a z/b; <t Vi}.
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Chebychev approximation (ctd.)

min max ‘hl(a@-T%) — 111([%')‘

IS equivalent to:
min {¢ : 1/t <a z/b; <t Vi}.
SDP formulation:

t—alz/b; 0 0
min { ¢t : 0 alz/bil| =0 Vi
0 1t
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Minimization of polynomials

Letp : R — R be aunivariate polynomial
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Minimization of polynomials

Letp : R — R be aunivariate polynomial
Theorem:
p(x) > 0Vr € RIiff

P=> 1
1

for some polynomials;.
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Minimization of polynomials

Letp : R — R be aunivariate polynomial
Theorem:
p(x) > 0Vr € RIiff

P=> 1
1

for some polynomials;.
We callp asum of square€SOS) in this case.

Lectures on Semidefinite Programming — p.29/46



VITITTHZau 011 O1F - pPOIyrnofltials
(ctd.)

Now we have

mlqulp(l‘) :H%a,x{t : p(x) —t > 0Ver € R}
TE b

/

=max<t : p(z) —t:pr,;(@z 0

t,x

\

for somep;’s.
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VITITTHZau 011 O1F - pPOIyrnofltials
(ctd.)

Now we have

min p(x) = max{t : p(x) —t > 0Vr € R}

zcR tyx
4 3
— H%%X< t o ople)—t= pr,;(@z 0
\ 1 y
for somep;’s.

SDP can be used to determine if a polynomial Is ar
SOS Gram matrix method
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The Gram matrix method

Theorem: A polynomialp : R" — R of degree€2m is
an SOS Iff

p(z) = &' Mz, for someM > 0, (1)

wherez = [1 x; 2o ... @, 2 1129 ... 2]} isa
vector of all possible monomials of degree at mast
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The Gram matrix method

Theorem: A polynomialp : R" — R of degree€2m is
an SOS Iff

p(z) = &' Mz, for someM > 0, (2)

wherez = [1 x; 2o ... @, 2 1129 ... 2]} isa
vector of all possible monomials of degree at mast

Dimension ofz is ("7™): polynomial inn if m is
fixed.
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The Gram matrix method

Theorem: A polynomialp : R" — R of degree€2m is
an SOS Iff

p(z) = &' Mz, for someM > 0, (3)

wherez = [1 x; 2o ... @, 2 1129 ... 2]} isa
vector of all possible monomials of degree at mast

Dimension ofz is ("7™): polynomial inn if m is

fixed.

The right-hand-side in (3) ilsnearin the entries
of M = (3) is alinear matrix inequality (LMI)
(semidefinite feasiblility problem).
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Is P(x) := 227 + 2229 — 2525 + 5x; a sum of
squares?
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Is P(x) := 227 + 2229 — 2525 + 5x; a sum of
squares? For all € R we have

ay "o 2 1 [ a5
P(r)=| 3 —A 5 0 T3
| L1d2 | i 1 0 —1 + 2)\_ | L1292 |
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Is P(x) := 227 + 2229 — 2525 + 5x; a sum of
squares? For all € R we have

_:z:%_T_Z—)\ 1 [ a5
Plz)=| 3 —A 5 0 T3
| L1d2 | i 1 0 —1 + 2)\_ | L1292 |

If we call the3 x 3 matrix in the last expressial/ (),
thenM ()\) defines araffine spacgarametrized by.
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Is P(x) := 227 + 2229 — 2525 + 5x; a sum of
squares? For all € R we have

ay "o 2 1 [ a5
P(r)=| 3 —A 5 0 T3
| L1d2 | i 1 0 —1 + 2)\_ | L1292 |

If we call the3 x 3 matrix in the last expressial/ (),
thenM ()\) defines araffine spacgarametrized by.

SDP problem: is there a\ such thatM/(\) > 0 (posi-
tive semidefinite)?
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for A = 3, M()) is positive semidefinite, and

1 [2-31
M(3)=L"L, Lﬁ{o | 3}’
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for A = 3, M()) is positive semidefinite, and

1 [2-31
M(3)=L"L, Lﬁ{o | 3}’

and consequently
P(x)=3"M(3)z =3"L'L = ||Lz|]*,

wherez = 27 235 x129]".

ThusP can be written as a sum of squares.
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Nesterov’s aproach

We have obtained:

(

min p(e) =max 3 ¢ p(z) =t =D pi(x)* o
xTre b ‘

=max {t : p(z)—t=73" Mz}

t,x

\

for some)M >+ 0, wherei” = [1 z 22. .. 2 ds®)],
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Nesterov’s aproach

We have obtained:

(

min p(e) =max 3 ¢ p(z) =t =D pi(x)* o
xTre b ‘

=max {t : p(z)—t=73" Mz}

t,x

\

for some)M = 0, wherez! = [1 z 22 ... xzds)],
Letp(z) = ) a,z®. Then the optimization problem
becomes: maximizesuch that

a()—t:MQQ, CLQZZMM, MtO

1+)=«
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Example

p(z) =2° -2z = (x —1)* — 1.
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Example

p(z) =2° -2z = (x —1)* — 1.
Equivalent problemmax ¢ such that

I L]

2
—2r —t =
. . {CB My My £z

}, 5)

for someM > 0.
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Example

p(z) =2° -2z = (x —1)* — 1.
Equivalent problemmax ¢ such that

I L]

2
—2r —t =
. . {CB My My £z

}, 6)

for someM > 0.
From (6):
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Example (ctd.)

We therefore get

min p(r) = maxt
ZEER ( ) t,M

such that
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Example (ctd.)

We therefore get

min p(r) = maxt
ZEER ( ) t,M

such that

Note that the optimal value is1, as it should be.
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Co-cliques

A co-cliqueof G = (V, ) is a subset’”” C V such
that theinduced subgrapon V' hasno edges

Lectures on Semidefinite Programming — p.37/46



Co-cliques

A co-cliqueof G = (V, ) is a subset’”” C V such
that theinduced subgrapon V' hasno edges

/’\
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Co-cliques

A co-cliqueof G = (V, ) is a subset’”” C V such
that theinduced subgrapon V' hasno edges

/’\

The co-cligue number (&) is the cardinality of the

largest co-clique of.

Lec
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Vertex colourings

An assignment of colours to the verticésof ¢
such that endpoints of eaehc E are assigned
different colours.
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Vertex colourings

An assignment of colours to the verticésof ¢

such that endpoints of eaehc E are assigned
different colours.

Chromatic numbet/(G): smallest number of
colours needed to colour:
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Vertex colourings

An assignment of colours to the verticésof ¢

such that endpoints of eaehc E are assigned
different colours.

Chromatic numbet/(G): smallest number of
colours needed to colour:

It is NP hard to compute(G) (or (), or even
to give a non-trivial polynomial time
approximation.
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LovaszJ-function
A graphG = (V, E) is given.
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LovaszJ-function
A graphG = (V, F) is given. Define:

J(G) := maxTr (ee’ X) = e’ Xe
subject to

Tr(X)=1
X eSS,

wheree denotes the all-one vector.
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| ovasz ‘sandwich theorem’

Let a(G) denote thendependence numbef G and
v(G) thechromatic numbeof G.
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| ovasz ‘sandwich theorem’

Let a(G) denote thendependence numbef G and
v(G) thechromatic numbeof G.

| ovasz’s sandwich theorem

a(G) < I(G) < ~(G).
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| ovasz ‘sandwich theorem’

Let a(G) denote thendependence numbef G and
v(G) thechromatic numbeof G.

| ovasz’s sandwich theorem

a(G) < HGE) < H(G).

First equality Is easy. Second inequality via strong
duality theorem.
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| ovasz ‘sandwich theorem’

Let a(G) denote thendependence numbef G and
v(G) thechromatic numbeof G.

| ovasz’s sandwich theorem

a(G) < HGE) < H(G).

First equality Is easy. Second inequality via strong
duality theorem.

Implication: we can compute(G) and~(G) in pol.
time for perfect graphs
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Algorithms: The central path

We change the system of optimality conditions to:

TI’(AZX) :bi, 1=1,....m,

1=1
XS =ul,

X0, yeR™ 5§ >0,

for some parametepr > 0.
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Algorithms: The central path

We change the system of optimality conditions to:

TI’(AZX) :bi, 1=1,....m,

1=1
XS =ul,

X0, yeR™ 5§ >0,

for some parametepr > 0. These central-
ity conditions have aunique solution denoted by

(X (), y(p), S(p))-
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The central path: properties

) the curve(X (1), y(i),S(w)) is ananalytic
functionof . > 0;
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The central path: properties

) the curve(X (1), y(i),S(w)) is ananalytic
functionof . > 0;

) the central path converges ag 0;
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The central path: properties

) the curve(X (u),y(r), S(w)) is ananalytic
functionof . > 0;

) the central path converges ag 0;

i) the limit point (X*, y*, S*) (say) of the central
path is in the relative interior gp* x D*.
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The central path: properties

) the curve(X (1), y(i),S(w)) is ananalytic
functionof . > 0;

) the central path converges ag 0;

i) the limit point (X*, y*, S*) (say) of the central
path is in the relative interior gp* x D*.

IV) Rate of convergence in casedifict
complementarity

[ X (p) = X7 = O(u), |1S() —S™|| = O().
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Primal—dual [IPIVIS: BasIC
scheme

1. Computg X (), S(i)) approximately by solving
the (nonlinear) centrality conditions iteratively;
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Primal—dual [IPIVIS: BasIC
scheme

1. Computg X (), S(i)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduce: Iif the current iterates are ‘close
enough’ to( X (i), S(w)) and repeat.
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Primal—dual [IPIVIS: BasIC
scheme

1. Computg X (), S(i)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduce: Iif the current iterates are ‘close
enough’ to( X (i), S(w)) and repeat.

The duality gap at tha-center(X (u), S(u)) is

TH(X (1)S (1)) = Tr(ul) = pn.
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Primal—dual [IPIVIS: BasIC
scheme

1. Computg X (), S(i)) approximately by solving
the (nonlinear) centrality conditions iteratively;

2. Reduce: Iif the current iterates are ‘close
enough’ to( X (i), S(w)) and repeat.

The duality gap at tha-center(X (u), S(u)) is
Tr(X (1) S () = Tr(ul) = pn.

Geometrically, we view(X(u),S(i)) as a target
point on the central path, and the parametethere-
fore determines théarget duality gap
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Example

A (XS)

max

15

0.5

6(X,S,p6) <1

0.5 1 15 2

A . (XS)
min . .. .
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1 T1IC CClitlal pPall. Ullicicric 1=
terpretation

The pointy(u) on the dual central path minimizes

1 m
fily) = ——bly —Indet (C’ — Z%Az) .
H i=1
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1 T1IC CClitlal pPall. Ullicicric 1=
terpretation

The pointy(u) on the dual central path minimizes

1 m
fily) = ——bly — Indet (C’ — E yz-AZ-) .
H i=1

Note that the ‘barrier termin det(-) ensures that the
iteratesS :=C' — > ", y; A; stay inS," (why?)
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1 T1IC CClitlal pPall. Ullicicric 1=
terpretation

The pointy(u) on the dual central path minimizes

1 m
fily) = ——bly — Indet (C’ — E yz-AZ-) .
H i=1

Note that the ‘barrier termin det(-) ensures that the
iteratesS :=C' — > ", y; A; stay inS," (why?)

Implication: we can findy () by doing
unconstrained minimization of, .
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1 T1IC CClitlal pPall. Ullicicric 1=
terpretation

The pointy(u) on the dual central path minimizes

1 m
fily) = ——bly — Indet (C’ — Z%Az) .
H i=1

Note that the ‘barrier termin det(-) ensures that the
iteratesS :=C' — > ", y; A; stay inS," (why?)

Implication: we can findy () by doing
unconstrained minimization of, .

Also, f! is aself-concordantunction — use Newton’s
method to minimize it efficiently.
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More Info

Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.dehelmberg/semidef.html
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More Info

Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.dehelmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.
Semidefinite programmingIAM Reviewd8, 49-95, 1996.
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More Info

Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.dehelmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.
Semidefinite programmingIAM Reviewd8, 49-95, 1996.

Today'’s lecture was largely based on: E. de Klerk. Aspects of
Semidefinite Programming: Interior Point Algorithms and Selected
Applications. Kluwer Academic Publishers, 2002.
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More Info

Christoph Helmberg’s SDP page with links to papers
and software downloads:

http://www-user.tu-chemnitz.dehelmberg/semidef.html

Excellent introduction to SDP: L. Vandenberghe and S. Boyd.
Semidefinite programmingIAM Reviewd8, 49-95, 1996.

Today'’s lecture was largely based on: E. de Klerk. Aspects of
Semidefinite Programming: Interior Point Algorithms and Selected
Applications. Kluwer Academic Publishers, 2002.

Solving optimization problems via internet (NEOS
server):

http://www-neos.mcs.anl.gov/
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