
Referee Report: Theory of Semidefinite Localization for Sensor Network Localization

This manuscript contributes some interesting ideas, based on a fundamental connection be-
tween the Euclidean distance matrices (EDMs) and the symmetric positive semidefinite matrices
(PSDMs). Regrettably, the authors convey the false impression that this connection was only
recently discovered:

“An alternative approach, called the semidefinite programming method, is recently
developed in [13] and related earlier work [3,23].”

References [13,3,23] were published in 2004, 1999, and 2001. In fact, the connection between EDMs
and PSDMs was discovered in the 1930s and a large body of relevant work has been based on it.
It is incumbent on the authors to at least this cite this work, if not compare their method to other
methods that solve what the authors call the sensor network localization (SNL) problem.

Let ∆ = (δij) denote an r × r pre-distance or dissimilarity matrix, i.e., a symmetric matrix
with nonnegative entries and zero diagonal entries. Let ∆2 = (δ2

ij) and let er = (1, . . . , 1)t ∈ <r.
Schoenberg (1935) and Young and Householder (1938) established (a slight variant of) the following
result: ∆ is an EDM with embedding dimension d (i.e., at least d dimensions are required to realize
an embedding of ∆) if and only if
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is a PSDM of rank d. Furthermore, any r × d matrix X such that XXt = τ(∆2) provides a
realization: the r rows of X specify r points in <d whose interpoint distances are the given δij .
This embedding theorem is the basis for what is now called classical multidimensional scaling
(CMDS), originally developed by Torgerson (1952) and by Gower (1966).

Given a dissimilarity matrx, not necessarily an EDM, and a dimension d, CMDS produces r
points in <d whose interpoint distances approximate the dissimilarities. It does so by replacing
τ(∆2) with the (not necessarily unique) nearest (in the sense of Frobenius norm) PSDM of rank
≤ d. Despite the fact that the closed cone of PSDMs of rank ≤ d is not convex, this matrix can be
computed explicitly. Let λ1 ≥ · · · ≥ λr denote the eigenvalues of τ(∆2) and let q1, . . . , qr denote
the corresponding eigenvectors. For i = 1, . . . , d, let λ̄i = max(λi, 0). Then the points produced by
CMDS are the rows of
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Of course, if ∆ is already an EDM with embedding dimension ≤ d, then λ̄i = λi and XXt = τ(∆2).
Now consider the SNL problem. Because the anchor locations are knnown, so are the anchor-

anchor distances. Suppose that all anchor-sensor distances (d̄kj) and sensor-sensor distances (dij)
are also known. We store these distances in an r×r EDM, ∆, where r = m+n. We then use CMDS
to compute X, a matrix of locations with the correct interpoint distances. The anchor locations
in X will not be a1, . . . , am; however, we can use Procrustes analysis (Mardia et al., 1979, Section
14.7) to recover the desired locations.
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denote the specified anchor locations and let

Y =

 xt
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xt
m


denote the corresponding locations produced by CMDS. Because these configurations have the same
interpoint distances, there is an affine transformation that maps Y to A. Let ā denote the centroid
of a1, . . . , am, let Ā = A−emāt, and compute the singular value decomposition Y tĀ = V ΓU t. Then
A = Y V U t + emāt, so XV U t + erā

t solves the SNL problem.1

The SNL problem is difficult because some of the anchor-sensor and/or sensor-sensor distances
may be unknown. For such pairs, we replace the corresponding δij with an interval of possible
values, [`ij , uij ]. Let [L,U ] denote the rectangle of dissimilarity matrices that satisfy these bounds.
Then the EDM completion problem is the problem of finding an EDM that lies in [L,U ], whereas
the SNL problem is the problem of finding an EDM of embedding dimension ≤ 2 that lies in [L,U ].
(Once the EDM has been found, the solution of the SNL problem is obtained by the methods
described above.)

Because of the relation between EDMs and PSDMs, both the EDM completion problem and
the SNL problem can be posed as problems about PSDMs rather than problems about EDMs. The
former problem admits any matrix in the closed convex cone of PSDMs and can be formulated
as a semidefinite programming problem, for which Alfakih et al. (1998) proposed an algorithm.
The latter problem, however, imposes an additional rank restriction that destroys the convexity of
the feasible set, so that it is not clear how to apply semidefinite programming methodology. The
exciting contribution of the present manuscript is that the authors have found a way to do so.

The authors correctly note that, because the algorithm proposed by Alfakih et al. does not
enforce rank restrictions, it does not guarantee a solution in the prescribed number of dimensions
and therefore is “not quite suitable to our application.” However, they have overlooked a closely
related formulation of the EDM completion problem that can accommodate rank restrictions.

Trosset (2000, 2002) suggested solving

min
∆2

Fd ◦ τ (∆2) (1)

s.t. ∆2 ∈ [L2, U2] ,

where Fd(B) is the squared distance (in Frobenius norm) between B and the closed cone of PSDMs
of rank ≤ d. This quantity can be computed using the methods described above and turns out to
be a function of the eigenvalues of τ(∆2). Thus, Trosset circumvented the difficulty of managing
rank restrictions by encoding the restrictions in the objective function.

How should the present manuscript be modified in light of the above? Clearly, the ideas detailed
in this report should be summarized and the relevant papers cited. The issue of which approach is
superior will not be resolved easily and it would be unrealistic to ask the authors to do so. They
might observe that their semidefinite programming algorithm has faster local convergence than
the limited memory algorithm (L-BFGS-B) that Trosset (2002) used to solve (1). On the other
hand, what is interesting about (1) is the formulation itself, which undoubtedly can be solved by
algorithms more efficient than L-BFGS-B.

1This construction works when d = 2, presumably the case of interest. It might fail when d = 3 if A and Y
have chiral fragments, but this possiblity seems unlikely in practice. I believe that it is precluded by the authors’
uniqueness assumption.
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