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1 Introduction

One of the most studied problems in distance geometry is the Graph
Realization problem, in which one is given a graph G = (V, E) and a set
of non–negative weights {dij : (i, j) ∈ E} on its edges, and the goal is to
compute a realization of G in the Euclidean spaceRd for a given dimension d,
i.e. to place the vertices of G in Rd such that the Euclidean distance between
every pair of adjacent vertices vi, vj equals to the prescribed weight dij . This
problem and its variants arise from applications in various areas, such as
molecular conformation, dimensionality reduction, Euclidean ball packing,
and more recently, wireless sensor network localization [3,12,14,21,27,30].
In the sensor networks setting, the vertices of G correspond to sensors, the
edges of G correspond to communication links, and the weights correspond
to distances. Furthermore, the vertices are partitioned into two sets — one
is the anchors, whose exact positions are known (via GPS, for example);
and the other is the sensors, whose positions are unknown. The goal is to
determine the positions of all the sensors. We shall refer to this problem as
the Sensor Network Localization problem. Note that we can view the Sensor
Network Localization problem as a variant of the Graph Realization problem
in which a subset of the vertices are constrained to be in certain positions.

In many sensor networks applications, sensors collect data that are loca-
tion dependent. Thus, another related question is whether the given instance
has a unique realization in the required dimension (say, in R2). Indeed, most
of the previous works on the Sensor Network Localization problem fall into
two categories — one deals with computing a realization of a given instance
[12,14,15,21,26–28,30], and the other deals with determining whether a given
instance has a unique realization inRd using graph rigidity [15,18]. It is inter-
esting to note that from an algorithmic viewpoint, the two problems above
have very different characteristics. Under certain non–degeneracy assump-
tions, the question of whether a given instance has a unique realization on
the plane can be decided efficiently [22], while the problem of computing a
realization on the plane is NP–complete in general, even if the given instance
has a unique realization on the plane [7]. Thus, it is not surprising that all
the aforementioned heuristics for computing a realization of a given instance
do not guarantee to find it in the required dimension. On another front, there
have been attempts to characterize families of graphs that admit polynomial
time algorithms for computing a realization in the required dimension. For
instance, Eren et al. [15] have shown that the family of trilateration graphs
has such property. (A graph is a trilateration graph in dimension d if there
exists an ordering of the vertices 1, . . . , d + 1, d + 2, . . . , n such that (i) the
first d + 1 vertices form a complete graph, and (ii) each vertex j > d + 1 has
at least d+1 edges to vertices earlier in the sequence.) However, the question
of whether there exist larger families of graphs with such property is open.

1.1 Our Contribution

In this paper, we resolve this question by showing that the family of
uniquely localizable graphs also enjoys such a property. Informally, a graph is
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uniquely localizable in dimension d if (i) it has a unique realization inRd, and
(ii) it does not have any realization whose affine span is Rh, where h > d.
Specifically, we present an SDP model that guarantees to find the unique
realization in polynomial time when the input graph is uniquely localizable.
The proof employs SDP duality theory and properties of interior–point al-
gorithms for SDP. To the best of our knowledge, this is the first time such
a theoretical guarantee is proven for a general localization algorithm. More-
over, our results are interesting in view of the hardness result of Aspnes et
al. [7], as they identify a large family of efficiently realizable graphs. Next,
using the theory of graph rigidity, we give a simple and efficient criterion for
checking whether a given instance has a unique realization on the plane. We
remark that this result has been independently proven by Eren et al. [15].
However, our approach is different in that we use techniques from kinematics
and these techniques may be of independent interest. Lastly, we introduce the
concept of strong localizability. Informally, a graph is strongly localizable if
it is uniquely localizable and remains so under slight perturbations. We show
that the SDP model will identify all the strongly localizable subgraphs in the
input graph.

We should mention here that the Sensor Network Localization problem
(or its variants) has been studied in various contexts before. However, these
earlier works have quite different emphases from ours. For instance, Schoen-
berg [29] and Young and Householder [34] have studied the problem in the
context of Euclidean distance matrix characterizations. They have considered
the case where there are no anchors, but all pairwise distances among the
sensors are known. They have shown that the given pairwise distances arise
from points in an d–dimensional (but not (d − 1)–dimensional) Euclidean
space if and only if a certain matrix is positive semidefinite and has rank d.
Such a characterization forms the basis for the classical approach to multidi-
mensional scaling (see, e.g., [17,31]), where various algorithms are developed
for constructing a configuration of points in Rd (where d is part of the in-
put) such that the induced distance matrix matches or approximates the
given (complete) distance matrix. Later, Trosset [32,33] has extended clas-
sical multidimensional scaling to include the case where the given distance
matrix is incomplete, i.e. some of the pairwise distances may be missing. He
has shown that a realization in the required dimension exists if and only if the
global optimum of a certain optimization problem is zero, and has provided
a numerical procedure for finding such a realization. However, it is not clear
under what conditions would Trosset’s algorithm terminate with a desired
realization in polynomial time. On another front, Barvinok [10] has studied
the Sensor Network Localization problem in the context of quadratic maps
and used SDP theory to analyze the possible dimensions of the realization.
In addition, Alfakih et al. [3–5] have related this problem to the Euclidean
Distance Matrix Completion problem and obtained an SDP formulation for
the former. Moreover, Alfakih has obtained a characterization of rigid graphs
in [1] using Euclidean distance matrices and has studied some of the com-
putational aspects of such characterization in [2] using SDP. However, these
papers mostly address the question of realizability of the input graph, and
the analyses of their SDP models only guarantee that they will find a realiza-
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tion whose dimension lies within a certain range. Thus, these models are not
quite suitable for our application. In contrast, our analysis takes advantage
of the presence of anchors and gives a condition which guarantees that our
SDP model will find a realization in the required dimension. We remark that
SDP has also been used to compute and analyze distance geometry problems
where the realization is allowed to have a certain amount of distortion in the
distances [11,24]. Again, these methods can only guarantee to find a realiza-
tion that lies in a range of dimensions. Thus, it would be interesting to extend
our method to compute low–distortion realizations in a given dimension. For
some related work in this direction, see, e.g., [8].

1.2 Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we give a for-
mal definition of the Sensor Network Localization problem and introduce the
notations that will be used in the paper. In Section 3, we provide a formu-
lation of the problem as an SDP. We remark that the SDP model used here
is developed earlier in a companion paper [12]. In that paper the authors
have reported the model’s superb experimental performance, and the cur-
rent work is an attempt to provide theoretical justifications for using that
model. Specifically, we analyze the SDP and discuss its characteristics in
Section 4. In Section 5 we discuss our results in the context of rigidity the-
ory. In Section 6 we introduce the notion of strong localizability and show
how the SDP model can identify strongly localizable subgraphs in the input
graph. In Section 7 we compare the different notions introduced in this paper
and demonstrate their differences via examples. In particular, we show that
rigidity in R2, unique localizability, and strong localizability are all distinct
concepts. Lastly, we summarize our results in Section 8 and discuss some
possible future directions.

2 Preliminaries

We begin with some notations. The trace of a matrix A is denoted by
Trace(A). We use I and 0 to denote the identity matrix and the matrix of
all zeros, respectively, whose dimensions will be clear from the context. The
inner product of two matrices P and Q is denoted by P •Q = Trace(PT Q).
The 2–norm of a vector x, denoted by ‖x‖, is given by

√
x • x. A positive

semidefinite matrix X is denoted by X º 0.
In this paper we study the Sensor Network Localization problem, which

is defined as follows. We are given m anchor points a1, . . . , am ∈ Rd whose
locations are known, and n sensor points x1, . . . , xn ∈ Rd whose locations we
wish to determine. Furthermore, we are given the Euclidean distance values
d̄kj between ak and xj for some k, j, and dij between xi and xj for some
i < j. Specifically, let Na = {(k, j) : d̄kj is specified} and Nx = {(i, j) : i <
j, dij is specified}. The Sensor Network Localization problem is then to find
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a realization of x1, . . . , xn ∈ Rd such that:

‖ak − xj‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx

(1)

We would like to develop fast algorithms to answer questions like: Does the
network have a realization of xj ’s? Is the realization unique? As we shall see
in subsequent sections, these questions can be answered efficiently.

3 Semidefinite Programming Method

In general, problem (1) is a non–convex optimization problem and difficult
to solve. In fact, most previous approaches adopt global optimization tech-
niques such as nonlinear least square methods, or geometric methods such
as triangularization. An alternate approach, called the semidefinite program-
ming method, is recently developed in [12] and related earlier work [3,23].
We shall review this approach below.

Let X = [x1 x2 . . . xn] be the d×n matrix that needs to be determined.
Then, for all (i, j) ∈ Nx, we have:

‖xi − xj‖2 = eT
ijX

T Xeij

and for all (k, j) ∈ Na, we have:

‖ak − xj‖2 = (ak; ej)T [Id;X]T [Id; X](ak; ej)

Here, eij ∈ Rn is the vector with 1 at the i–th position, −1 at the j–th
position and zero everywhere else; ej ∈ Rn is the vector of all zeros except
an −1 at the j–th position; (ak; ej) ∈ Rd+n is the vector of ak on top of
ej ; and Id is the d–dimensional identity matrix. Thus, problem (1) becomes:
find a symmetric matrix Y ∈ Rn×n and a matrix X ∈ Rd×n such that:

eT
ijY eij = d2

ij ∀ (i, j) ∈ Nx

(ak; ej)T

(
Id X
XT Y

)
(ak; ej) = d̄2

kj ∀ (k, j) ∈ Na

Y = XT X

The SDP method is to relax the constraint Y = XT X to Y º XT X, where
Y º XT X means that Y −XT X º 0. It is well–known [13] that the condition
Y º XT X is equivalent to:

Z =
(

Id X
XT Y

)
º 0 (2)
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Thus, we can write the relaxed problem as a standard SDP problem, namely,
find a symmetric matrix Z ∈ R(d+n)×(d+n) to:

maximize 0

subject to Z1:d,1:d = Id

(0; eij)(0; eij)T • Z = d2
ij ∀ (i, j) ∈ Nx

(ak; ej)(ak; ej)T • Z = d̄2
kj ∀ (k, j) ∈ Na

Z º 0

(3)

where Z1:d,1:d is the d×d principal submatrix of Z. Note that this formulation
forces any possible feasible solution matrix to have rank at least d.

The dual of the SDP relaxation is given by:

minimize Id • V +
∑

(i,j)∈Nx

yijd
2
ij +

∑

(k,j)∈Na

wkj d̄
2
kj

subject to
(

V 0
0 0

)
+

∑

(i,j)∈Nx

yij(0; eij)(0; eij)T

+
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)T º 0

(4)

Note that the dual is always feasible, as V = 0, yij = 0 for all (i, j) ∈ Nx

and wkj = 0 for all (k, j) ∈ Na is a feasible solution.

4 Analysis of the SDP Relaxation

We now investigate when will the SDP (3) have an exact relaxation,
i.e. when will the solution matrix Z have rank d. Suppose that problem
(3) is feasible. This occurs when, for instance, d̄kj and dij represent exact
distance values for the positions X̄ = [x̄1 x̄2 . . . x̄n]. Then, the matrix
Z̄ = (Id; X̄)T (Id; X̄) is a feasible solution for (3). Now, since the primal is
feasible, the minimal value of the dual must be 0, i.e. there is no duality gap
between the primal and dual.

Let U be the (d + n)–dimensional dual slack matrix, i.e.:

U =
(

V 0
0 0

)
+

∑

(i,j)∈Nx

yij(0; eij)(0; eij)T +
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)T

Then, from the duality theorem for SDP (see, e.g., [6]), we have:

Theorem 1 Let Z̄ be a feasible solution for (3) and Ū be an optimal slack
matrix of (4). Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;
2. Rank(Z̄) + Rank(Ū) ≤ d + n;
3. Rank(Z̄) ≥ d and Rank(Ū) ≤ n.
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An immediate result from the theorem is the following:

Corollary 1 If an optimal dual slack matrix has rank n, then every solution
of (3) has rank d. That is, problems (1) and (3) are equivalent and (1) can
be solved as an SDP in polynomial time.

Another technical result is the following:

Proposition 1 If every sensor point is connected, directly or indirectly, to
an anchor point in (1), then any solution to (3) must be bounded, that is, Yjj

is bounded for all j = 1, . . . , n.

Proof If sensor point xj is connected to an anchor point ak, then we have:

‖xj‖2 − 2aT
k xj + ‖ak‖2 ≤ Yjj − 2aT

k xj + ‖ak‖2 = d̄2
kj

so that from the triangle inequality ‖xj‖ in (2) is bounded. Hence, we have:

Yjj ≤ d̄2
kj + 2‖ak‖‖xj‖ − ‖ak‖2

Furthermore, if xi is connected to xj and Yjj is bounded, we have:

Yii − 2
√

YiiYjj + Yjj ≤ Yii − 2Yij + Yjj = d2
ij

so that from the triangle inequality Yii must be also bounded.

In general, a primal (dual) max–rank solution is a solution that has the
highest rank among all solutions for primal (3) (dual (4)). It is known [16,19]
that various path–following interior–point algorithms compute the max–rank
solutions for both the primal and dual in polynomial time. This motivates
the following definition.

Definition 1 Problem (1) is uniquely localizable if there is a unique local-
ization X̄ ∈ Rd×n and there is no xj ∈ Rh, j = 1, . . . , n, where h > d, such
that:

‖(ak;0)− xj‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx

xj 6= (x̄j ;0) for some j ∈ {1, . . . , n}
The latter says that the problem cannot have a non–trivial localization in
some higher dimensional space Rh (i.e. a localization different from the one
obtained by setting xj = (x̄j ;0) for j = 1, . . . , n), where anchor points are
augmented to (ak;0) ∈ Rh, for k = 1, . . . ,m.

We now develop the following theorem:

Theorem 2 Suppose that the network is connected. Then, the following are
equivalent:

1. Problem (1) is uniquely localizable.
2. The max–rank solution matrix of (3) has rank d.
3. The solution matrix of (3), represented by (2), satisfies Y = XT X.
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Proof The equivalence between 2. and 3. is straightforward.
Now, since any rank d solution of (3) is a solution to (1), from 2. to 1. we

need to prove that if the max–rank solution matrix of (3) has rank d then it
is unique. Suppose not, i.e., (3) has two rank–d feasible solutions:

Z1 =
(

Id X1

XT
1 XT

1 X1

)
and Z2 =

(
Id X2

XT
2 XT

2 X2

)

Then, the matrix Z = αZ1 +βZ2, where α +β = 1 and α, β > 0 is a feasible
solution and its rank must be d, since all feasible solution of (3) has rank at
least d but the max–rank is assumed to be d. Therefore, we have:

Z =
(

Id αX1 + βX2

αXT
1 + βXT

2 αXT
1 X1 + βXT

2 X2

)
=

(
Id B
BT BT B

)

where B = αX1 + βX2. It follows that (X1 −X2)T (X1 −X2) = 0, or ‖X1 −
X2‖ = 0, i.e. Z1 = Z2, which is a contradiction.

Next, we prove the direction from 1. to 2., that is, the rank of a max–rank
solution of (3) is d. Suppose that there is a feasible solution Z of (3) whose
rank is greater than d. Then, we must have Y º XT X and Y 6= XT X. Thus,
we have the decomposition Y −XT X = (X ′)T X ′, where X ′ = [x′1, . . . , x′n] ∈
Rr×n and r is the rank of Y −XT X. Now, consider the point:

x̃j =
(

xj

x′j

)
∈ Rd+r for j = 1, . . . , n

Then, we have:

‖x̃j‖2 = Yjj , (x̃i)T x̃j = Yij ∀ i, j

Moreover, since the network is connected, we conclude from Proposition 1
that Yii and Yij are bounded for all i, j. Hence, we have:

‖(ak;0)− x̃j‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖x̃i − x̃j‖2 = d2
ij ∀ (i, j) ∈ Nx

In other words, x̃j is a localization of problem (1) in Rd+r, which is a con-
tradiction.

Theorem 2 establishes, for the first time, that as long as problem (1)
is uniquely localizable, then the realization can be computed in polynomial
time by solving the SDP relaxation. Conversely, if the relaxation solution
computed by an interior–point algorithm (which generates max–rank feasible
solutions) has rank d (and hence Y = XT X), then X is the unique realization
of problem (1). Moreover, Theorem 2 implies the existence of a large family
of efficiently realizable graphs, even though the recent result of Aspnes et
al. [7] shows that the problem of computing a realization of the sensors on
the plane is NP–complete in general (this is true even when the instance has
a unique solution on the plane).
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5 Connections to Rigidity Theory

In this section we give a simple and efficient criterion for checking whether
a graph G with anchors has a unique realization on the plane using rigidity
theory. The main idea is to augment G to another graph G′ by adding edges
between the anchors in G and check whether G′ is rigid. We remark that the
main theorem of this section, Theorem 3, has been independently proven by
Eren et al. in [15]. However, our proof (in particular, Propositions 2, 3 and
4) gives a connection between the graphs G and G′ which [15] did not offer.

Before we state our result, we shall briefly review the theory of rigidity.
For a more detailed account, see, e.g., [18,20].

The theory of rigidity concerns with the study of frameworks. A frame-
work is a pair (G, p), where G is a graph and p : V → Rd is an embedding
mapping the vertices into an Euclidean space. Equivalently, we can view p
as an |V |d–dimensional vector assigning coordinates to the vertices. Given
a framework (G, p), we can define the edge function f : R|V |d → R|E| by
f(p)ij = ‖pi−pj‖2, where (i, j) ∈ E. A natural question is then whether there
exists another non–congruent realization of the framework (G, p), i.e. whether
there exists an q ∈ R|V |d not congruent to p such that ‖qi−qj‖2 = ‖pi−pj‖2
for all (i, j) ∈ E. By non–congruence we mean that q is not obtained by
applying a rigid motion to p. In this section, we shall only consider generic
embeddings, which means that the vertex coordinates assigned by the em-
beddings are algebraically independent over the rationals. There are several
ways in which a framework in R2 can have non–congruent realizations. We
first consider the following.
Definition 2 A finite flexing of a framework (G, p) is a family of realizations
of G, parametrized by t, such that the location of each vertex is a differentiable
function of t, and ‖pi(t)− pj(t)‖2 = cij for all (i, j) ∈ E.
Now, upon differentiating with respect to t, we have the relation:

(pi − pj)T (vi − vj) = 0 ∀ (i, j) ∈ E (5)

where vi is the instantaneous velocity of vertex i. An assignment of velocities
such that the above relation is satisfied is called an infinitesimal motion of
the framework. We say that the infinitesimal motion is trivial if it is simply a
translation or rotation. Thus, it follows that if a framework has a non–trivial
infinitesimal motion, then the framework has a non–congruent realization.
In this case, we say that the framework is infinitesimally flexible. Otherwise,
the framework is infinitesimally rigid.

Note that the above definition does not restrict the assignment of veloc-
ities besides the requirement that it satisfies (5). Thus, the theory cannot
be applied directly to our setting, since we require certain vertices be an-
chored. However, if there is a non–zero assignment that satisfies vi = 0 for
all anchored vertex i, then the framework is clearly not uniquely localizable.
In addition, such an assignment will necessarily preclude translations and
rotations when there are more than one anchors, as such motions do not fix
two or more vertices.

The observation in the preceding paragraph gives us a clue on relating
unique localizability and rigidity. We say that G has a fixing infinitesimal
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motion if it has an infinitesimal motion that fixes the anchors. Given a graph
G, consider the graph G′ obtained from G by including the edges connecting
the anchors. In other words, if ai, aj are anchors, then (ai, aj) ∈ E(G′). We
then have the following proposition.

Proposition 2 G has no fixing infinitesimal motion iff G′ is infinitesimally
rigid.

Proof Suppose that G has an infinitesimal motion M that fixes the anchors.
Then, M would also be an infinitesimal motion for G′. For necessity, sup-
pose that G has no infinitesimal motion that fixes the anchors, but that
G′ is not infinitesimally rigid. Then, G′ must have an infinitesimal motion
M = {v(a1), . . . , v(ak), v1, . . . , vn} that assigns some non–zero velocity to
an anchor. However, the subgraph induced by the anchors is complete, and
hence rigid. Thus, M restricted to this subgraph is an infinitesimal isometry
[18]. Without loss of generality, we consider the two cases where this isom-
etry is a translation or a rotation. For the translation case, v(ai) = v for
1 ≤ i ≤ k. Then, the assignment M′ = {0, . . . , 0, v1 − v, . . . , vn − v} is an
infinitesimal motion of G′ (and hence of G) that fixes the anchors, which is a
contradiction. For the rotation case, we may assume, by a change of reference
frame if necessary, that the center of rotation is at one of the anchors, say
a1. Thus, we have v(a1) = 0. Let ω be the angular velocity of the rotation,
and for sensor xi, define v̄i = ω × ‖xi − a1‖, for 1 ≤ i ≤ n. In other words,
v̄i is the velocity of sensor xi if the whole network is to rotate around a1 at
an angular velocity of ω. Note that v̄i satisfy the following relations:

(xi − aj)T (v̄i − v(aj)) = 0 1 ≤ i ≤ n, 1 ≤ j ≤ k (6)

(xi − xj)T (v̄i − v̄j) = 0 1 ≤ i ≤ j ≤ n (7)

Now, consider the velocity assignment:

M′ = {0, . . . , 0, v1 − v̄1, . . . , vn − v̄n}

We claim that it is an infinitesimal motion of G′ that fixes the anchors. To
see this, it suffices to check that:

(xi − aj)T ((vi − v̄i)− 0) = 0 ∀ (i, j) ∈ Na

(xi − xj)T ((vi − v̄i)− (vj − v̄j)) = 0 ∀ (i, j) ∈ Nx

The first equation follows since we have:

(xi − aj)T (vi − v̄i)

= (xi − aj)T ((vi − v(aj)) + (v(aj)− v̄i)) = 0

by definition of M and relation (6). The second equation again follows di-
rectly from the definition of M and the relation (7). This again leads to a
contradiction. Therefore, the proof is completed.
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Next, we consider another way in which a graph can have non–congruent
realizations. We say that a set of vertices form a mirror if they lie on a line,
and there are no edges crossing this line. Obviously, by reflecting across this
mirror, we would have two non–congruent realizations of the graph. We say
that a framework allows a partial reflection if such a mirror exists. Then, we
have the following proposition.
Proposition 3 G allows a partial reflection that fixes the anchors iff G′

allows a partial reflection.

Proof It suffices to observe that if there is a partial reflection, then all the
anchors will lie on one side of the mirror.

As indicated in [20], the above two conditions are still not sufficient to guaran-
tee a unique realization of a graph on the plane. To state the third condition,
we begin with some definition.
Definition 3 A framework F is said to be redundant if the framework F ′
obtained from F by removing an edge is infinitesimally rigid.
Definition 4 A framework is said to be redundantly rigid if all its edges are
redundant.
We then have the following proposition:
Proposition 4 Suppose that G has at least four anchors. Then, G has no
fixing infinitesimal motion after the removal of any of its edges iff G′ is
redundantly rigid.

Proof Consider an edge e ∈ E(G). If G has a fixing infinitesimal motion after
the removal of e, then G′ is not redundantly rigid. Conversely, suppose that
G has no fixing infinitesimal motion after the removal of any of its edges.
To show that G′ is redundantly rigid, it suffices to note that the subgraph
induced by the anchors in G′ is rigid, even after the removal of any one of
its edges. Thus, if G′ has an infinitesimal motion after the removal of e, we
have a contradiction by a similar argument in Proposition 2.

A recent result of Jackson and Jordán [22] shows that infinitesimal rigidity,
3–connectivity and redundant rigidity are necessary and sufficient conditions
for unique realization of a graph in R2. Thus, from the results of Propositions
2, 3 and 4, we obtain the following theorem:
Theorem 3 The graph G with anchors is uniquely realizable in R2 iff the
associated graph G′ is uniquely realizable in R2.
Corollary 2 In order for the graph G with anchors to be uniquely localizable,
it is necessary that the associated graph G′ is uniquely realizable in R2.

We remark that the unique realizability of G′ in R2 can be checked effi-
ciently, and we refer the interested readers to [20].

Note that the graph G′ has Ω(m2) edges, where m is the number of
anchors. An examination of the proofs above would immediately reveal that
all we need is a graph G′ such that the subgraph induced by the anchors is
uniquely realizable. There exist graphs with only O(m) edges that possess
such property. One example is the trilateration graph defined in [15]. In
order to improve computational efficiency, we should use one of these graphs
instead.
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6 Strongly Localizable Problem

Although unique localizability is a useful notion in determining the solv-
ability of the Sensor Network Localization problem, it is not stable under
perturbation. As we shall see in Section 7, there exist networks which are
uniquely localizable, but may no longer be so after small perturbation of
the sensor points. This motivates us to define another notion called strong
localizability.

Definition 5 We say problem (1) is strongly localizable if the dual of its
SDP relaxation (4) has an optimal dual slack matrix with rank n.

Note that if a network is strongly localizable, then it is uniquely localizable
from Theorems 1 and 2, since the rank of all feasible solution of the primal
is d.

We show how we can construct a rank–n optimal dual slack matrix. First,
note that if U is an optimal dual slack matrix of rank n, then it can be written
in the form U = (−XT ; In)T W (−XT ; In) for some positive definite matrix
W of rank n. Now, consider the dual matrix U . It has the form:

U =
(

U11 U12

UT
12 U22

)

where U22 is an n × n matrix. Moreover, it can be decomposed as U22 =
A + D, where Aij = yij if (i, j) ∈ Nx, Aii = −∑

j:(i,j)∈Nx
Aij ; and D is a

diagonal matrix where Dii = −∑
(k,i)∈Na

wki. (If there is no (k, i) ∈ Na, then
Dii = 0.) Note that if we impose the constraints yij ≤ 0 and wki ≤ 0, then
both A and D are positive semidefinite. Moreover, we have the following:

Proposition 5 Suppose that the network is connected. Furthermore, suppose
that yij < 0 for all (i, j) ∈ Nx, and that wki < 0 for all (k, i) ∈ Na, with
Na 6= ∅. Then, U22 is positive definite, i.e. it has rank n.

Proof Since A and D are positive semidefinite, we have xT U22x ≥ 0 for all
x ∈ Rn. We now show that there is no x ∈ Rn\{0} such that xT Ax =
xT Dx = 0. Suppose to the contrary that we have such an x. Then, since D
is diagonal, we have xT Dx =

∑n
i=1 Diix

2
i = 0. In particular, for Dii > 0, we

have xi = 0. Now, note that:

xT Ax = −
∑

(i,j)∈Nx

(xi − xj)2Aij

Thus, xT Ax = 0 implies that xi = xj for all (i, j) ∈ Nx. Since Na 6= ∅, there
exists an i such that Dii > 0, whence xi = 0. Since the network is connected,
it follows that x = 0.

Proposition 5 gives us a recipe for putting U into the desired form. First,
we set U22 to be a positive definite matrix. Then, we need to set U12 =
−X̄U22, where X̄ is the matrix containing the true locations of the sensors.
We now investigate when this is possible. Note that the above condition is
simply a system of linear equations. Let Ai be the set of sensors connected
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to anchor i, and let E be the number of sensor–sensor edges. Then, the
above system has E +

∑
i |Ai| variables. The number of equations is E +

3m, where m is the number of sensors that are connected to some anchors.
Hence, a sufficient condition for solvability is that the system of equations
are linearly independent, and that

∑
i |Ai| ≥ 3m. In particular, this shows

that the trilateration graphs defined in [15] are strongly localizable.

We now develop the next theorem.

Theorem 4 If a problem (graph) contains a subproblem (subgraph) that is
strongly localizable, then the submatrix solution corresponding to the subprob-
lem in the SDP solution has rank d. That is, the SDP relaxation computes a
solution that localizes all possibly localizable unknown points.

Proof Let the subproblem have ns unknown points and they are indexed as
1, . . . , ns. Since it is strongly localizable, an optimal dual slack matrix Us

of the SDP relaxation for the subproblem has rank ns. Then, in the dual
problem of the SDP relaxation for the whole problem, we set V and those
wkj ’s associated with the subproblem to the optimal slack matrix Us and set
all other wkj ’s to 0. Then, the slack matrix:

U =
(

Us 0
0 0

)
º 0

must be optimal for the dual of the (whole–problem) SDP relaxation, and
it is complementary to any primal feasible solution of the (whole–problem)
SDP relaxation:

Z =
(

Zs ∗
∗ ∗

)
º 0 where Zs =

(
Id Xs

XT
s Ys

)

However, we have 0 = Z • U = Zs • Us and Us, Zs º 0. The rank of Us is
ns implies that the rank of Zs is exactly d, i.e. Ys = (Xs)T Xs, so Xs is the
unique realization of the subproblem.

7 A Comparison of Notions

In this section, we will show that the notions of unique localizability,
strong localizability and rigidity in R2 are all distinct.

7.1 Unique Localizability 6⇒ Strong Localizability

We have already remarked earlier that a strongly localizable graph is
necessarily uniquely localizable. However, as we shall see, the converse is not
true.

Let G1 be the network shown in Figure 1(a). The key feature of G1 is
that the sensor x2 lies on the line joining anchors a1 and a3. It is not hard to
check that this network is uniquely localizable. Now, suppose to the contrary
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that G1 is strongly localizable. Then, the dual slack matrix U admits the
decomposition U = (−X̄T , I)T W (−X̄T , I). It is easy to verify that:

U12 = (ȳ21a2 + ȳ31a3, ȳ12a1 + ȳ32a3)

U22 =
(−(ȳ21 + ȳ31)− y12 y12

y12 −(ȳ12 + ȳ32)− y12

)

and the form of U requires that U12 = −X̄U22. This is equivalent to the
following system of equations:

(x̄1 − a2)ȳ21 + (x̄1 − a3)ȳ31 = (x̄1 − x̄2)y12 (8)

(x̄2 − a1)ȳ12 + (x̄2 − a3)ȳ32 = −(x̄1 − x̄2)y12 (9)

Since x̄2 lies on the affine space spanned by a1 and a3, equation (9) implies
that y12 = 0. However, equation (8) would then imply that x̄1 lies on the
affine space spanned by a2 and a3, which is a contradiction. Thus, we conclude
that G1 is not strongly localizable.

x1

a1

a2 a3

x2

(a) A uniquely localizable, but
not strongly localizable network

x2=(0.6,0.7)

a2=(−1,0)

a1=(0,1.4)

x1=(0,0.5)

a3=(1,0)

(b) A rigid network that is not
uniquely localizable

Fig. 1 A comparison of graph notions

7.2 Rigid in R2 6⇒ Unique Localizability

By definition, a uniquely localizable network is rigid in R2. However, the
converse is not true. To see this, let G2 be the network shown in Figure 1(b).

Note that G2 can be viewed as a perturbed version of G1. It is easy to
verfiy that G2 is rigid. Thus, by Theorem 2, it can fail to be uniquely localiz-
able only if it has a realization in some higher dimension. Indeed, the above
network has an 3–dimensional realization. The idea for constructing such a
realization is as follows. Let us first remove the edge (x1, x2). Then, reflect
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the subgraph induced by a1, x2, a3 across the dotted line. Now, consider two
spheres, one centered at a2 and the other centered at a3, both having radius√

5/2. The intersection of these spheres is a circle, and we can move x1 along
this circle until the distance between x1 and x2 equals to the prespecified
value. Then, we can put the edge (x1, x2) back and obtain an 3–dimensional
realization of the network.

More precisely, for the above realization, the reflected version of x2 has
coordinates x′2 =

(
173
370 , 112

185 , 0
)
. Now, let x′1 =

(
0, 23

64 ,
√

495
64

)
. It is straightfor-

ward to verify that:

‖x1 − a2‖2 = ‖x′1 − a2‖2 = 5
4

‖x1 − a3‖2 = ‖x′1 − a3‖2 = 5
4

‖x1 − x2‖2 = ‖x′1 − x′2‖2 = 2
5

Hence, we conclude that G2 is not uniquely localizable.
It would be nice to have a characterization on those graphs which are

rigid in the plane but have higher dimensional realizations. However, finding
such a characterization remains a challenging task, as such characterization
would necessarily be non–combinatorial, and would depend heavily on the
geometry of the network. For instance, the networks shown in Figure 2, while
having the same combinatorial property as the one shown in Figure 1(b), are
uniquely localizable (in fact, they are both strongly localizable):

x2

a1

a2 a3

x1

(a)
x1

a1

a2 a3

x2

(b)

Fig. 2 Strongly localizable networks

8 Conclusion

In this paper we have studied the Sensor Network Localization problem,
which is a variant of the Graph Realization problem. We have shown for
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the first time that the SDP method yields an algorithm that guarantees to
find the solution if the input graph is uniquely localizable. Moreover, we
have defined various notions of localizability and demonstrated their rela-
tionship with classical rigidity theory. However, this work has still left many
interesting open questions unanswered. First, for those instances that are
not uniquely localizable, it would be interesting to investigate how many
anchors are needed and how should they be placed in order to make the in-
stance uniquely localizable. Secondly, our SDP model assumes that the input
data are noise–free. However, sensor measurements are often noisy, and it is
important to have a model that can handle noisy data and has good the-
oretical properties. Thirdly, besides the distance measurements, there may
be extra information available to help us determine the desired realization.
For instance, we may have angle estimates between a pair of sensors that
are within communication range. It would be desirable to develop a model
that incorporates and exploits these information. For some results in this
direction, see, e.g., [9].
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