
Referee Report on ”The Q-Method for Symmetric Cone Programming” by Yu Xia and Farid Aliadeh.

This paper attempts to provide a global convergence analysis for the Q-method (originally proposed for
SDP by Alizadeh-Haeberly-Overton) for symmetric cone programming by borrowing ideas from the analysis
of the infeasible interior-point algorithm for LP due to Kojima-Megiddo-Mizuno (KMM). A second, but
similar, algorithm based on a further modification of the central-path neighborhood is shown to rectify the
problem of unbounded iterates in the first algorithm. The second algorithm has some potential for warm
starting.

Overall, the problem addressed is a relevant and important one, the paper is readable (with room for
improvement in the exposition), and the references are comprehensive. However, the authors have glossed
over important technical issues, hence trivialising, in some sense, an otherwise difficult and challenging
convergence analysis. The paper is not publishable until these issues have been satisfactorily resolved.

Main Issues.

1. In the middle of page 26, the authors casually assume that the search direction is uniformly bounded.
But this is a key step that has to be proved, not assumed! This boundedness claim is simply not true even
from a ’regular’ point (unless you impose some notion of ’sufficiently regular’ that holds uniformly over all
iterations — certainly no reason to expect this to be true.) In fact, a typical convergence analysis would
require a stronger result, namely a quantitative (up to order) bound on the search direction in terms of µ,
the duality gap.

2. Remark 3.1 is not as innocuous as it seems. Cutting the step length to maintain regularity has to be
done carefully for at least two reasons. (i) The bound η depends strongly on the distance to irregularity.
It is crucial to quantify this since η appears so prominently in the rest of the analysis. (ii) Regularity is
complicated nonlinear function of steplength. A large step length may bring an effective decrease duality
gap and infeasibility, but result in a more irregular iterate from which only poor progress may be possible
in the next iteration. A step length selection strategy must therefore carefully balance these criteria. The
suggested approach of simply cutting step length by a fixed fraction is likely to be inadequate.

3. Even if this simple step length selection strategy were adopted, there is nothing to prevent the step
lengths from approaching zero. (The paper’s claim to the contrary seems fallacious.) It is possible to conceive
of a pathological scenario where a bad iterate results in a bad search direction along which a step length of,
say, 1/2 is taken. The next iterate, also a bad one, could result in (nearly) the same search direction along
which a step of only 1/4 may be possible, and so on, thus producing step lengths convering to zero. This is
an unlikely situation, but there is nothing in the analysis to preclude it.

On the whole, the paper lacks a rigorous quantitative analysis that cleanly establishes how the chosen
neighborhood leads simultaneously to bounded search directions, sufficient decrease in duality gap and
infeasibility, all the while ensuring that iterates stay sufficiently regular. Loose hand-waving arguments
result in the peculiar and unconvincing convergence result stated in Theorem 4.1.

Other Issues.

4. Below (2): ”forms a square system”. With the complementarity condition stated as XZ = 0, this is
not a square system.

5. Page 3, 3rd line: ”second order asymptotic rate of convergence may be lost”. This sentence is somewhat
misleading. While it’s correct that Newton’s method is applied to a different function in each step (hence
quadratic convergence is not an obvious consequence of Newton’s method), it is true that many of these
families of algorithms enjoy quadratic or superlinear convergence under suitable assumptions.

6. Section 2: This 15 page review of Euclidean Jordan algebras is tedious and distracts from the main
point of the paper — the convergence analysis. It should be possible to distill only the essentials (perhaps
even in an appendix), with appropriate references to Faraut & Koranyi or Koecher’s lecture notes for the
rest. In fact, it suffices to have a clean analysis for just SDP; the rest is a straightforward generalization
with the Jordan algegra machinery.

7. Page 14, 3rd line: If the dilation group simply acts by positive scaling, I don’t see why Jordan frames
aren’t preserved.
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8. Example 18: GLn⊗GLn is obviously not isomorphic to GLn. You need better notation here to denote
the set of transformations X → PXPT with P ∈ GLn.

9. Lemma 3.3: You could mention that this generalizes the result of Alizadeh-Haeberly-Overton for SDP.
Also, it’s not clear how this result fits into the convergence analysis. You claim at the end of the proof
that the Q-method is therefore numerically stable near the optimal solution provided nondegeneracy, strict
complementarity and regularity holds at the solution. Yet, the convergence analysis doesn’t particularly rely
on any of these properties.

10. Theorem 4.1: This is an unusual convergence theorem. When could the condition ‖Fnw‖ ≥ d > 0
be violated? Shouldn’t the algorithm be fixed somehow so that this condition is always satisfied?

11. Page 28, 7th line from the bottom: How do you define ‖(Fmi)−1‖ for the nonlinear function within
the norm?

12. Section 4.3: How do iterates get unbounded? With Slater’s condition, the solution sets are bounded.
Theorem 4.1 shows convergence in a finite number of steps. Thus it seems that the condition in Theorem
4.1 could be violated, and that this would lead to unbounded iterates, although this connection is not very
clear. At any rate, it’s disconcerting to encounter the possibility of unbounded iterates immediately after a
convergence theorem was proved!

13. Section 5: The interesting experiments for the Q-method are not randomly generated problems,
but ones that involve eigenvalue coalescence at the optimal solution. Since the convergence analysis doesn’t
assume regularity at the solution, you could study how the algorithm performs in this case, or when started
close to an irregular point. Numerical results on SDP’s would be especially instructive. If the second
algorithm does indeed have some potential for warm starts, numerical evidence to this effect is required.

A few typos are scattered throughout the paper, but the items above need to be addressed first.
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