A new variant of the interior point method, for large scale and warm started linear programs

Jos F. Sturm
j.f.sturm@uvt.nl
http://center.uvt.nl/staff/sturm
CentER, Tilburg, The Netherlands

Overview

- IPM vs. Other Approaches
- Linear Programming
- IPM Centrality
- Predictor-Corrector
- Aggregate Model Corrector
- Submodel Predictor
- Future work

IPM vs. Other Approaches

\square IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.

IPM vs. Other Approaches

\square IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.
\square Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.

IPM vs. Other Approaches

\square IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.
\square Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.
\square IPM works on complete model (A, b, c).

IPM vs. Other Approaches

\square IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.
\square Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.
\square IPM works on complete model (A, b, c).
\square Simplex only on $\left(A_{B}, b, c_{B}\right)$.

IPM vs. Other Approaches

\square IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.

- Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.
\square IPM works on complete model (A, b, c).
\square Simplex only on $\left(A_{B}, b, c_{B}\right)$.
- Simplex benefits from warm start.

IPM vs. Other Approaches

- IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.
- Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.
\square IPM works on complete model (A, b, c).
\square Simplex only on $\left(A_{B}, b, c_{B}\right)$.
- Simplex benefits from warm start.
- Low rank updates.

IPM vs. Other Approaches

- IPM iteration factors $n \times n$ matrix variable Z in each iteration. Slow for large n.
- Bundle and NLP approaches merely need p such that $p^{T} Z p<0$. Uses Lanczos. Fast for large n.
\square IPM works on complete model (A, b, c).
\square Simplex only on $\left(A_{B}, b, c_{B}\right)$.
- Simplex benefits from warm start.
- Low rank updates.
- Exploiting structure.

Context

- Bundle: Helmberg, Rendl, Oustry, Madhu N. a.o.
- NLP approach of Burer, Monteiro, Zhang.
- Active set, simplex variants: Goldfarb, Y. Zhang.
- Projection methods: Lin-Han, Orsi-Rami-Moore.
- ACCPM: Goffin, Vial a.o.
- Low rank IPM: Karmarkar a.o.

Linear Programming

$$
\begin{array}{lll}
& \min & c^{\mathrm{T}} x \\
(P) & \text { s.t. } & A x-s=b \\
& x \in \Gamma, s \in \mathcal{K}
\end{array}
$$

$\max b^{\mathrm{T}} y$
(D) s.t. $A^{\mathrm{T}} y+z=c$

$$
z \geq \Gamma^{*}, y \in \mathcal{K}^{*}
$$

Here $\mathcal{K}=\{0\}^{m}$ or $\mathcal{K}=\Re_{+}^{m}$.

Unify

$$
\begin{gathered}
x=\left[\begin{array}{c}
y \\
{ }^{\prime} x^{\prime}
\end{array}\right], z=\left[\begin{array}{c}
s \\
' z^{\prime}
\end{array}\right], \\
\forall i \in \mathcal{I}:\left\{\begin{array}{l}
x_{i} \geq 0 \\
z_{i} \geq 0 .
\end{array}\right. \\
\forall i \notin \mathcal{I}:\left\{\begin{array}{l}
x_{i} \text { is free } \\
z_{i}=0 .
\end{array}\right.
\end{gathered}
$$

All slacks (P,D) in z.

IPM vs. Active Set

- Active Set moves along the boundary

IPM vs. Active Set

- Active Set moves along the boundary
- Warm start initiates from complementary solution

IPM vs. Active Set

\square Active Set moves along the boundary

- Warm start initiates from complementary solution

But IPM follows Central Path in interior!

IPM Centrality

Wide Region

\square Let

$$
w_{i}=x_{i} z_{i}, i \in \mathcal{I}
$$

Wide Region

\square Let

$$
w_{i}=x_{i} z_{i}, i \in \mathcal{I}
$$

- Central path

$$
\left\{w \mid w_{i}=w_{j}>0 \forall i, j \in \mathcal{I}\right\} .
$$

Wide Region

\square Let

$$
w_{i}=x_{i} z_{i}, i \in \mathcal{I}
$$

Central path

$$
\left\{w \mid w_{i}=w_{j}>0 \forall i, j \in \mathcal{I}\right\} .
$$

Central region (CR)

$$
\left\{w\left||\mathcal{I}| \min _{i \in \mathcal{I}} w_{i} \geq \theta \sum_{i} w_{i}>0\right\}\right.
$$

Wide Region

\square Let

$$
w_{i}=x_{i} z_{i}, i \in \mathcal{I}
$$

- Central path

$$
\left\{w \mid w_{i}=w_{j}>0 \forall i, j \in \mathcal{I}\right\} .
$$

Central region (CR)

$$
\left\{w\left||\mathcal{I}| \min _{i \in \mathcal{I}} w_{i} \geq \theta \sum_{i} w_{i}>0\right\}\right.
$$

$\square \theta=1$ yields CP; choose $0<\theta<1$.

Wide Region(2)

- w^{θ} is projection of w onto CR

Wide Region(2)

$\square w^{\theta}$ is projection of w onto CR
\square Proximity measure (Roos et al.)

$$
\delta_{w}^{\theta}=\frac{\left\|w^{\theta}-w\right\|_{w}}{\|w\|_{w}}
$$

with $\|x\|_{w}^{2}=\sum_{i \in \mathcal{I}} \frac{x_{i}^{2}}{w_{i}} \cdot$.

Wide Region(2)

- w^{θ} is projection of w onto CR
\square Proximity measure (Roos et al.)

$$
\delta_{w}^{\theta}=\frac{\left\|w^{\theta}-w\right\|_{w}}{\|w\|_{w}}
$$

with $\|x\|_{w}^{2}=\sum_{i \in \mathcal{I}} \frac{x_{i}^{2}}{w_{i}} \cdot$.
\square Neighborhood $\left\{w \mid \delta_{w}^{\theta} \leq \beta\right\}$.

Predictor-Corrector Method

- Corrector Step reduces $\delta_{w}^{\theta} \leq \beta$ to $O\left(\beta^{2}\right)$. (Newton step to $x_{i} z_{i}=w_{i}^{\theta}$.)
\square Predictor Step reduces duality gap until $\delta_{w}^{\theta} \approx \beta$.

Corrector Basics

Linearize

$$
\left(x_{i}+\Delta x_{i}\right)\left(z_{i}+\Delta z_{i}\right)=w_{i}^{\theta}
$$

yielding

$$
w_{i}+x_{i} \Delta z_{i}+z_{i} \Delta x_{i}=w_{i}^{\theta} .
$$

$(i \in \mathcal{I})$

Centrality Plot

Centrality Plot

Why not aggregate variables above threshold?

First some details...

Optimality Conditions

$$
\begin{array}{rlrl}
A^{\mathrm{T}} y & -c+z & =0 \\
-A x & +b+s & =0 \\
c^{\mathrm{T}} x & -b^{\mathrm{T}} y & & \leq 0
\end{array}
$$

with

$$
\begin{aligned}
& x \geq 0, s \in \mathcal{K} \\
& z \geq 0, y \in \mathcal{K}^{*}
\end{aligned}
$$

Skew-Symmetric Form

Data matrix: $M=-M^{\mathrm{T}}$.
$\min b_{0} y_{0}$
s.t. $\quad M x+z=y_{0} r$
$r^{\mathrm{T}} x=b_{0}$
$x \in \Re^{m} \times \Re_{+}^{n}, z \in\{0\}^{m} \times \Re_{+}^{n}$

Skew-Symmetric Form

Data matrix: $M=-M^{\mathrm{T}}$.

$$
\begin{array}{ll}
\min & b_{0} y_{0} \\
\text { s.t. } & M x+z=y_{0} r \\
& r^{\mathrm{T}} x=b_{0} \\
& x \in \Re^{m} \times \Re_{+}^{n}, z \in\{0\}^{m} \times \Re_{+}^{n}
\end{array}
$$

Observe: $x^{\mathrm{T}} z=y_{0} r^{\mathrm{T}} x=b_{0} y_{0} \geq 0$. Optimum 0 . r is residual vector (from initialization). Possible choice $b_{0}=1$.

Aggregate Model Corrector

For partition (B, N) aggregate at $\left(x^{k}, z^{k}\right)$

$$
\begin{aligned}
a_{0} & :=M_{B N} x_{N}^{k} \\
r_{0} & :=r_{N}^{T} x_{N}^{k}
\end{aligned}
$$

Aggregate model:

$$
\begin{array}{cl}
\min & b_{0} y_{0} \\
\text { s.t. } & M_{B B} x_{B}+x_{0} a_{0}+z_{B}=y_{0} r_{B} \\
& -a_{0}^{\mathrm{T}} x_{B}+z_{0}=y_{0} r_{0} \\
& r_{B}^{\mathrm{T}} x_{B}+r_{0} x_{0}=b_{0}
\end{array}
$$

Currently $x_{0}^{k}=1, z_{0}^{k}=\left(x_{N}^{k}\right)^{\mathrm{T}} z_{N}^{k}$.

Aggregate Model Corrector (2)

- Initialize

$$
B=\left\{i| | \mathcal{I} \mid w_{i}<\theta \sum_{\mathcal{I}} w_{j}\right\}
$$

Aggregate Model Corrector (2)

- Initialize

$$
B=\left\{i \| \mathcal{I} \mid w_{i}<\theta \sum_{\mathcal{I}} w_{j}\right\}
$$

- As long as the inner centrality condition is not met in Master Problem, we disaggregate the most-violating variables.

Aggregate Model Corrector (2)

- Initialize

$$
B=\left\{i| | \mathcal{I} \mid w_{i}<\theta \sum_{\mathcal{I}} w_{j}\right\}
$$

- As long as the inner centrality condition is not met in Master Problem, we disaggregate the most-violating variables.
- Single disaggregation dominated by rank-1 update (quadratic time, not cubic).

Aggregate Model Corrector (2)

- Initialize

$$
B=\left\{i| | \mathcal{I} \mid w_{i}<\theta \sum_{\mathcal{I}} w_{j}\right\}
$$

- As long as the inner centrality condition is not met in Master Problem, we disaggregate the most-violating variables.
- Single disaggregation dominated by rank-1 update (quadratic time, not cubic).
- Efficiency determined by size of final B.

Aggregate Model Corrector (2)

- Initialize

$$
B=\left\{i| | \mathcal{I} \mid w_{i}<\theta \sum_{\mathcal{I}} w_{j}\right\}
$$

- As long as the inner centrality condition is not met in Master Problem, we disaggregate the most-violating variables.
- Single disaggregation dominated by rank-1 update (quadratic time, not cubic).
- Efficiency determined by size of final B.
- (SDP: achieve centrality only in subproblem)

Predictor Basics

Linearize

$$
\left(x_{i}+\Delta x_{i}\right)\left(z_{i}+\Delta z_{i}\right)=0
$$

yielding

$$
w_{i}+x_{i} \Delta z_{i}+z_{i} \Delta x_{i}=0 .
$$

Submodel Predictor

Select only B-variables:

$$
\begin{array}{cl}
\min & \tilde{b}_{0} y_{0} \\
\text { s.t. } & M_{B B} x_{B}+z_{B}=y_{0} \tilde{r}_{B} \\
& \tilde{r}_{B}^{\mathrm{T}} x_{B}=\tilde{b}_{0}
\end{array}
$$

with residual $y_{0}^{k} \tilde{r}_{B}=M_{B B} x_{B}^{k}+z_{B}^{k}$,

$$
y_{0}\left(r_{B}-\tilde{r}_{B}\right)=M_{B N} x_{N} .
$$

In Master Model:

$$
x_{N}=\frac{y_{0}}{y_{0}^{k}} x_{N}^{k} .
$$

Sub Model Predictor (2)

- Initialize B with estimate of binding dual constraints. First step: based on warm start. Subsequent steps: based on previous step.

Sub Model Predictor (2)

- Initialize B with estimate of binding dual constraints. First step: based on warm start. Subsequent steps: based on previous step.
- Step length based on $\left\|\Delta X_{B} \Delta z_{B}\right\|_{w}$.

Sub Model Predictor (2)

- Initialize B with estimate of binding dual constraints. First step: based on warm start. Subsequent steps: based on previous step.
- Step length based on $\left\|\Delta X_{B} \Delta z_{B}\right\|_{w}$.
- If not in Master Problem's neighborhood then introduce the most-violating variable $j \in N$, i.e.

$$
w_{j} \leq 0 \text { or } j \in \arg \max _{i} \frac{\left(w_{i}-w_{i}^{\theta}\right)^{2}}{w_{i}} .
$$

Rank-1 update.

Sub Model Predictor (2)

- Initialize B with estimate of binding dual constraints. First step: based on warm start. Subsequent steps: based on previous step.
- Step length based on $\left\|\Delta X_{B} \Delta z_{B}\right\|_{w}$.
- If not in Master Problem's neighborhood then introduce the most-violating variable $j \in N$, i.e.

$$
w_{j} \leq 0 \text { or } j \in \arg \max _{i} \frac{\left(w_{i}-w_{i}^{\theta}\right)^{2}}{w_{i}} .
$$

Rank-1 update.
Worst-case rate $1-1 / O(\sqrt{|B|})$.

(SDP remarks)

- Update increments order of matrix variable, thus low (not 1) rank update
- MP: maintain feasibility
- SP: also centrality

Predictor Issues

\square For Master-Problem $\Delta x^{\mathrm{T}} \Delta z \neq 0$ hence normalization b_{0} changes. Merit Function.

Predictor Issues

- For Master-Problem $\Delta x^{\mathrm{T}} \Delta z \neq 0$ hence normalization b_{0} changes. Merit Function.
\square Impact on centrality, especially if $\Delta x^{\mathrm{T}} \Delta z>0$.

Predictor Issues

- For Master-Problem $\Delta x^{\mathrm{T}} \Delta z \neq 0$ hence normalization b_{0} changes. Merit Function.
- Impact on centrality, especially if $\Delta x^{\mathrm{T}} \Delta z>0$.
\square Alternative: keep b_{0} constant, $\Delta x^{\mathrm{T}} \Delta z=0$ by changing r_{N}. Maintain $-r_{\infty} \leq r_{N} \leq r_{\infty}$.

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.
- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}} .
$$

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.
- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}}
$$

- Not only columns, also rows may be added

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.
- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}} .
$$

- Not only columns, also rows may be added
\square Exploiting sparsity

Implementational Issues

\square Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.

- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}} .
$$

- Not only columns, also rows may be added
- Exploiting sparsity
- Pivot ordering in augmented self-dual system

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.
- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}} .
$$

- Not only columns, also rows may be added
- Exploiting sparsity
- Pivot ordering in augmented self-dual system
- Prepare for future extensions

Implementational Issues

- Rank deficiency of reduced system $A_{B} D A_{B}^{\mathrm{T}}$. Standard rank-1 update formula not applicable.
- Remedy: product-form-Cholesky

$$
L_{0} L_{1} \ldots L_{k} \Theta_{k} L_{k}^{\mathrm{T}} L_{k-1}^{\mathrm{T}} \ldots L_{0}^{\mathrm{T}} .
$$

- Not only columns, also rows may be added
- Exploiting sparsity
- Pivot ordering in augmented self-dual system
- Prepare for future extensions
- Submodel pre-solving?

Finally...

- Computational savings
- Iterates potentially more powerful
- Benefits from warm start
- Both rows and columns can be discarded
- Modifications for large SDP.
- More at ISMP2003, SIOPT2005, ISMP2006.

