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IPM vs. Other Approaches

IPM iteration factors n × n matrix variable Z in each
iteration. Slow for large n.

Bundle and NLP approaches merely need p such that
pTZp < 0. Uses Lanczos. Fast for large n.

IPM works on complete model (A, b, c).

Simplex only on (AB, b, cB).

Simplex benefits from warm start.

Low rank updates.

Exploiting structure.
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Context

Bundle: Helmberg, Rendl, Oustry, Madhu N. a.o.

NLP approach of Burer, Monteiro, Zhang.

Active set, simplex variants: Goldfarb, Y. Zhang.

Projection methods: Lin-Han, Orsi-Rami-Moore.

ACCPM: Goffin, Vial a.o.

Low rank IPM: Karmarkar a.o.
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Linear Programming

min cTx

(P ) s.t. Ax − s = b

x ∈ Γ, s ∈ K

max bTy

(D) s.t. ATy + z = c

z ≥ Γ∗, y ∈ K∗

Here K = {0}m or K = <m
+ .
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Unify

x =

[

y

‘x′

]

, z =

[

s

‘z′

]

,

∀i ∈ I :

{

xi ≥ 0

zi ≥ 0.

∀i 6∈ I :

{

xi is free
zi = 0.

All slacks (P,D) in z.
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IPM vs. Active Set

Active Set moves along the boundary

Warm start initiates from complementary solution

But IPM follows Central Path in interior!

Central path depends on all constraints and variables!
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IPM Centrality
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Wide Region

Let
wi = xizi, i ∈ I.

Central path

{w | wi = wj > 0∀i, j ∈ I}.

Central region (CR)

{w | |I|min
i∈I

wi ≥ θ
∑

i

wi > 0}.

θ = 1 yields CP; choose 0 < θ < 1.
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Wide Region(2)

wθ is projection of w onto CR

Proximity measure (Roos et al.)

δθ
w =

‖wθ − w‖w

‖w‖w

,

with ‖x‖2
w =

∑

i∈I
x2

i

wi

..

Neighborhood {w|δθ
w ≤ β}.
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Predictor-Corrector Method

Corrector Step reduces δθ
w ≤ β to O(β2). (Newton

step to xizi = wθ
i .)

Predictor Step reduces duality gap until δθ
w ≈ β.
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Corrector Basics

Linearize
(xi + ∆xi)(zi + ∆zi) = wθ

i

yielding
wi + xi∆zi + zi∆xi = wθ

i .

( i ∈ I )
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Centrality Plot
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First some details...
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Optimality Conditions

ATy −c +z = 0

−Ax +b +s = 0

cTx −bTy ≤ 0

with
x ≥ 0, s ∈ K,

z ≥ 0, y ∈ K∗.
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Skew-Symmetric Form

Data matrix: M = −MT.

min b0y0

s.t. Mx + z = y0r

rTx = b0

x ∈ <m ×<n
+, z ∈ {0}m ×<n

+

Observe: xTz = y0r
Tx = b0y0 ≥ 0. Optimum 0. r is

residual vector (from initialization). Possible choice b0 = 1.
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Aggregate Model Corrector

For partition (B,N) aggregate at (xk, zk)

a0 := MBNxk
N

r0 := rT

Nxk
N

Aggregate model:

min b0y0

s.t. MBBxB + x0a0 + zB = y0rB

−aT
0 xB + z0 = y0r0

rT
BxB + r0x0 = b0

Currently xk
0 = 1, zk

0 = (xk
N)Tzk

N .
IMA Workshop, March 2003 – p.17/25



Aggregate Model Corrector (2)

Initialize
B = {i||I|wi < θ

∑

I

wj}

As long as the inner centrality condition is not met in
Master Problem, we disaggregate the most-violating
variables.

Single disaggregation dominated by rank-1 update
(quadratic time, not cubic).

Efficiency determined by size of final B.

(SDP: achieve centrality only in subproblem)
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Predictor Basics

Linearize
(xi + ∆xi)(zi + ∆zi) = 0
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Submodel Predictor

Select only B-variables:

min b̃0y0

s.t. MBBxB + zB = y0r̃B

r̃T
BxB = b̃0

with residual yk
0 r̃B = MBBxk

B + zk
B,

y0(rB − r̃B) = MBNxN .

In Master Model:
xN =

y0

yk
0

xk
N .
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Sub Model Predictor (2)

Initialize B with estimate of binding dual constraints.
First step: based on warm start. Subsequent steps:
based on previous step.

Step length based on ‖∆XB∆zB‖w.

If not in Master Problem’s neighborhood then
introduce the most-violating variable j ∈ N , i.e.

wj ≤ 0 or j ∈ arg max
i

(wi − wθ
i )

2

wi

.

Rank-1 update.

Worst-case rate 1 − 1/O(
√

|B|).
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(SDP remarks)

Update increments order of matrix variable, thus low
(not 1) rank update

MP: maintain feasibility

SP: also centrality
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Predictor Issues

For Master-Problem ∆xT∆z 6= 0 hence normalization
b0 changes. Merit Function.

Impact on centrality, especially if ∆xT∆z > 0.

Alternative: keep b0 constant, ∆xT∆z = 0 by
changing rN . Maintain −r∞ ≤ rN ≤ r∞.
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Implementational Issues

Rank deficiency of reduced system ABDAT
B. Standard

rank-1 update formula not applicable.

Remedy: product-form-Cholesky

L0L1 . . . LkΘkL
T

k LT

k−1 . . . LT

0 .

Not only columns, also rows may be added

Exploiting sparsity

Pivot ordering in augmented self-dual system

Prepare for future extensions

Submodel pre-solving?
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Finally...

Computational savings

Iterates potentially more powerful

Benefits from warm start

Both rows and columns can be discarded

Modifications for large SDP.

More at ISMP2003, SIOPT2005, ISMP2006.
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