
Mathematical Programming manuscript No.
(will be inserted by the editor)

Madhu V. Nayakkankuppam

Solving Large-Scale Semidefinite Programs
in Parallel
Dedicated to the memory of Jos Sturm.

the date of receipt and acceptance should be inserted later

Abstract We describe an approach to the parallel and distributed solution of
large-scale, block structured semidefinite programs using the spectral bundle method.
Various elements of this approach (such as data distribution, an implicitly restarted
Lanczos method tailored to handle block diagonal structure, a mixed polyhedral-
semidefinite subdifferential model, and other aspects related to parallelism) are
combined in an implementation called LAMBDA , which delivers faster solution
times than previously possible, and acceptable parallel scalability on sufficiently
large problems.

Keywords Semidefinite programming, eigenvalue optimization, subgradient
bundle methods, Lanczos method, parallel computing.

Mathematics Subject Classification (2000)90C22, 90C06, 65F15, 65Y05.

1 Introduction

Background. There has been a recent renewed interest in first order subgradient
bundle methods for semidefinite programming (SDP) and eigenvalue optimiza-
tion owing to the fact that storage requirements and solution time of interior-point
methods scale poorly with increasing problem size. In contrast, even for large-
scale problems, subgradient bundle methods can produce a solution of low accu-
racy using only a modest amount of memory. To see this difference clearly, denote
by Sn the space of real, symmetricn×n matrices equipped with the trace inner
product, and consider the standard primal form of an SDP

min
X∈Sn

〈C, X〉 s.t. AX = b; X � 0, (1)

This work was supported in part by NSF grants DMS-0215373 and DMS-0238008.

Department of Mathematics & Statistics, University of Maryland, Baltimore County, 1000 Hill-
top Circle, Baltimore, MD 21250. Email: madhu@math.umbc.edu.



2 M. V. Nayakkankuppam

whereb∈Rm, A : Sn → Rm : X 7→ [〈A1, X〉 , . . . ,〈Am, X〉]T is a linear operator, the
matricesC, X, Ai (i = 1, . . . ,m) ∈ Sn, andX � 0 means thatX is constrained to
be positive semidefinite. The subproblem of finding a search direction in every
iteration of a typical primal-dual interior-point method requires the solution of an
m×m linear system involving the so-calledSchur complementmatrix. It requires
O(m2n2 +mn3) operations to form, andO(m3) operations to factorize, the Schur
complement matrix, while storing this matrix and the primal variableX requires
O(m2) and O(n2) memory respectively. In practice, substantial savings in both
storage requirements and computational time may be realized by exploiting spar-
sity [9, 24], resorting to dual-only methods [1], employing a low-rank factorization
technique [3, 4], or using carefully preconditioned iterative methods [2, 19, 31, 32]
for this linear system. Nevertheless, as a rule of thumb, serial implementations
of primal-dual interior-point methods are limited to problems approximately as
large asn≈ 2,000 andm≈ 5,000, with such an instance requiring a few hundred
megabytes of memory and a few hours of solution time on a typical workstation;
see [23] for a recent benchmarking of SDP codes.

On the other hand, Helmberg and Rendl [14] observed that whenever the pri-
mal feasible matricesX are constrained to have constant tracea> 0, the dual of (1)
is equivalent to the nonsmooth, convex, unconstrained, eigenvalue optimization
problem

min
y∈Rm

aλmax(ATy−C)−〈b, y〉 , (2)

where

AT : Rm→ Sn : y 7→
m

∑
i=1

yiAi

is the adjoint ofA, andλmax(·) is the maximal eigenvalue function. Subgradient
bundle methods, pioneered by C. Lemaréchal and further developed by K. C. Ki-
wiel and others, approximate this nonsmooth objective with a small number of
cutting planes, each derived from a subgradient of the objective function. Hence,
the storage requirements areO(m). The suproblem of determining a search di-
rection typically requires the solution of quadratic program whose size depends
on the number of cutting planes retained. Thespectral bundle methodof [14],
obtained by specializing theproximal bundle methodof Kiwiel [18], has been
remarkably successful in solving SDP relaxations — as large asn≈ 6,000 and
m≈ 20,000 — of combinatorial optimization problems, within tens of minutes
on a typical workstation.

Summary. In this paper, we describe LAMBDA , ageneral-purpose, portable, par-
allel implementation of the spectral bundle method,i.e. a code that handles most
types of SDP’s, particularly those with block diagonal structure (general-purpose),
that is based on the Message Passing Interface (MPI) for execution on a variety of
parallel platforms (portable), and that operates on distributed data (parallel). Thus
LAMBDA is suited for problems which cannot be accommodated within the mem-
ory of a single computer, or which cannot be solved within a reasonable time on
a single computer, or both. Some preliminary studies to this end were conducted
with an earlier prototype [26] based partly on Matlab. Numerical results from



Solving Large-Scale SDP’s in Parallel 3

the present improved implementation show that the techniques proposed here sig-
nificantly extend current limits on problem sizes, with acceptable scalability of
solution times on sufficiently large problems.

Beginning with the proximal bundle method (§2), we describe how the prob-
lem is formulated (§3) and how problem data are distributed (§4). We then explain
how each step of the algorithm is implemented (§5 –§8), focusing on block struc-
ture and parallelism. Numerical results illustrating various aspects of the code are
supplied in§9 prior to concluding perspectives in§10.

Notation. As usual, lowercase letters denote vectors and uppercase letters denote
matrices. Thej th coordinate vector is denotedej , andIn is then×n identity matrix.
Parentheses are used to refer to blocks of a block diagonal matrix (e.g. C(k) for the
kth diagonal block ofC) or of a block vector. A superscript may denote an iteration
index or an exponent, with usage to be inferred from context. Subscripts index an
element in a set (e.g. Ai (i = 1. . . . ,m)), an entry in a vector, a column vector, or an
entry in a matrix named with the same uppercase letter (e.g. P= [p1, . . . , pr ], orci j

for the(i, j) entry ofC, or ci j (k) for the(i, j) entry ofC(k)); again, usage should
be evident from context. Additionally, some Matlab-like array indexing notation
(e.g.1 : n for indices 1 throughn), as well as some Matlab built-in function names
are employed in pseudocode for algorithms. The Diag(·) operator maps its vector
argument to a diagonal matrix, whereas the svec(·) operator isometrically maps a
symmetric matrix to a vector. Throughout, we use the 2-norm on vectors.

2 The Algorithm

In this section, we describe the basic ideas behind the proximal bundle method
of Kiwiel [18], and its adaptation to the formulation (2) by the spectral bundle
method.

2.1 The Proximal Bundle Method

Consider the minimization of a finite-valued, convex functionf : Rm → R. Al-
though f may be nondifferentiable, it is well known that its Moreau-Yosida regu-
larization

fρ(x) = min
y∈Rm

{
f (y)+

ρ

2
‖y−x‖2

}
(ρ > 0) (3)

is a Lipschitz continuously differentiable convex function with the same set of
minimizers asf [15]. The unique minimizer ˜x in (3), called the proximal point of
x, satisfies

∇ fρ(x) = ρ (x− x̃) ,

and hence represents a displacement ofx along the negative gradient offρ , with
ρ−1 being a step length. The proximal point algorithm for minimizingf is then to
minimize fρ by updating the current pointx to its proximal point ˜x.

The proximal bundle algorithm approximates ˜x by replacing thef (y) term
in the right hand side of (3) with acutting plane modelbased on the subdiffer-
ential [15, 29] of f . Given a current iterateyk and some subset of past iterations



4 M. V. Nayakkankuppam

Jk ⊆ {1, . . . ,k}, the so-called “bundle”, namely function valuesf (y j) ( j ∈ Jk) and
a setGk =

{
g j ∈ ∂ f (y j) : j ∈ Jk

}
of subgradients, furnishes a polyhedral cutting

plane model
f̂ k(y) = max

j∈Jk
f (y j)+

〈
g j , y−y j

〉
, (4)

which minorizesf . Using f̂ k(y) from (4) in lieu of f (x) and settingx = yk in (3)
yields

min
y∈Rm

{
max
j∈Jk

f (y j)+
〈
g j , y−y j

〉}
+

ρ

2

∥∥y−yk
∥∥2

(5)

as the subproblem, which is readily formulated as a quadratic program. By solving
this program, one obtains the optimal subgradientg j in (5), call it ḡ, as well as the
unique minimizer ¯y which approximates the proximal point ofyk. If ȳ meets the
’sufficient descent’ criterion

f (ȳ)≤ f (yk)+mL
(

f̂ k(ȳ)− f (yk)
)

(6)

for a given constantmL ∈ (0,1/2), it is accepted as the new iterate by setting
yk+1 = ȳ; this is termed aserious step. Otherwise,yk+1 = yk, and we have anull
step. In either case, the cutting plane modelGk is improved by adding ¯g and a
new subgradientg∈ ∂ f (ȳ) to yield Gk+1, thus making a serious step more likely
when (5) is solved in the next iteration. The stopping criterion

f (yk)− f̂ k(ȳ)≤ δ
(
| f (yk) |+1

)
(7)

tests if the upper bound on the maximum attainable descent in this step (left hand
side of (7)) falls below a small fractionδ of the magnitude of the objective value
(right hand side of (7)), in which caseyk is returned as the computed solution.

Two more steps need to be addressed to complete the description of the algo-
rithm. First, to keep storage bounded, less significant subgradients inGk may be
lumped together into anaggregate subgradient. Second, for good practical per-
formance, the penalty parameterρ has to be judiciously varied at every iteration,
as was already recognized in the early computational works of Lemaréchal. Both
issues have been addressed by Kiwiel [17, 18], but we defer their discussion to§8,
and outline the essence of the method in Algorithm 2.1.

The convergence of the algorithm, which requires only that the updated bundle
containḡ and one new subgradient from∂ f (ȳ), may be summarized as follows.

Theorem 1 (Kiwiel [17, 18]) Assume that Algorithm 2.1 is executed withδ = 0
in the stopping test(7). If the algorithm performs a finite number of serious steps,
i.e. performs only null steps from some iteration k onwards, then yk ∈ argmin f .
If the algorithm generates an infinite sequence of serious steps, then

{
yk

}
is a

minimizing sequence for f , and is convergent to a minimizer of f , if one exists.

2.2 The Spectral Bundle Method

From an algorithmic standpoint, it is convenient and more general to treat the exact
subgradientsg j ( j ∈ Jk) asε-subgradients off atyk for an appropriateε ≥ 0, and
to then view the cutting plane model (4) as being derived from a particular inner



Solving Large-Scale SDP’s in Parallel 5

Algorithm 2.1 (Proximal Bundle Method)
1: (Input) Given a starting pointy0, an improvement parametermL ∈ (0,1/2), a termination

parameterδ > 0, a penalty parameterρ0 ≥ ρmin > 0, whereρmin is a lower bound for theρk

sequence.
2: (Output) An approximate minimizer ˜y to (2).
3: (Initialization) Set the iteration counterk = 0. Compute a subgradientg0 ∈ ∂ f (y0), and set

G0 =
{

g0
}

.
4: for k = 0,1, . . . until terminationdo
5: (Subproblem)Solve (5) to obtain ¯g andȳ.
6: if (6) holdsthen
7: Setyk+1 = ȳ. {serious step}
8: else
9: Setyk+1 = yk. {null step}

10: end if
11: if (7) is satisfiedthen
12: Stop. Return ˜y = yk as the computed solution.
13: end if
14: (Update) Add ḡ and a new subgradientg ∈ ∂ f (ȳ) to Gk, and perform aggregation (if

necessary) to obtainGk+1. Updateρk to its new valueρk+1. (Details are deferred to§8.)
15: end for{k loop}

approximation of theε-subdifferential off at yk; this opens up the possibility of
choosing other inner approximations designed to better exploit the structure off
and itsε-subdifferential. Each choice for such an inner approximation yields a
different model for theε-subdifferential off with its own ’bundling process’, yet
the resulting algorithms can all be analyzed within the same unified framework.

Thespectral bundle methodof Helmberg and Rendl [14] specializes the prox-
imal bundle method to the objective function in (2) using anε-subdifferential
model tailored to exploit the structure of the maximal eigenvalue function. There
is no loss of generality in assuminga= 1, so let us consider the objective function

f (y) = λmax(ATy−C)−〈b, y〉 . (8)

Rayleigh’s variational formulation of the maximal eigenvalue

λmax(Z) = max
W�0; tr(W)=1

〈W, Z〉

as the support function of the compact, convex set{W � 0 : tr(W) = 1} leads to
the well known [6, 15, 16, 27]ε-subdifferential formula

∂ε λmax(Z) = {W � 0 : tr(W) = 1; 〈W, Z〉 ≥ λmax(Z)− ε} , (9)

for ε ≥ 0. Exact andε-subgradientsW ∈ ∂ε λmax(Z) are obtained by takingW =
ppT , with p being a normalized eigenvector to the maximal eigenvalue (exact sub-
gradient) or a nearly maximal eigenvalue (ε-subgradient) ofZ. A standard chain
rule from nonsmooth calculus [15] then provides

∂ε f (y) =
{

AW−b : W ∈ ∂ε λmax(ATy−C)
}

. (10)

Thus eigenvectors corresponding to the maximum eigenvalue ofZ = ATy−C give
rise to exact subgradients(ε = 0) of f , while eigenvectors corresponding to nearly



6 M. V. Nayakkankuppam

maximum eigenvalues yieldε-subgradients off . By a harmless abuse of terminol-
ogy, we refer to both exact andε-subgradients as simply ’subgradients’, dropping
theε prefix in the sequel. In similar vein, we loosely use the term ’maximal eigen-
pairs’ to denote the largest few eigenvalues of a matrix and their corresponding
eigenvectors, the latter being called ’maximal eigenvectors’.

At a given iterationk, supposePk = [p1, . . . , pr ] is an orthonormal matrix
whoser columns are maximal eigenvectors ofATy−C at the current iteratey= yk,
and possibly at some past iteratesy = y j ( j ∈ Jk). Whereas the traditional proxi-
mal bundle method employs a polyhedral cutting plane modelGk (see above (4))
with a typical subgradient of the formA(pi pi

T)−b, a novel feature of the spectral
bundle method is thesemidefinite cutting plane model

Gk =
{

AW−b : W = αW+PkV(Pk)
T
, α ≥ 0V � 0, α + tr(V) = 1

}
,

whereW represents an aggregate subgradient.
In terms of computation, the evaluation of the objective function and its sub-

gradients amounts to computing maximal eigenpairs of the matrixZ = ATy−C.
The Lanczos method (further details in§5) efficiently computes the largest eigen-
pair when intrinsic structure in problem data allows for fast multiplications byZ.
In fact, incurring only a slightly larger computational expense, the method can
extract several leading eigenpairs, provided these eigenvalues are not too closely
clustered. Although such a clustering is inevitable as the iteratesyk approach a
minimizer of f , the Lanczos method provides an effective way to add several
ε-subgradients in Step 14 (Update) of the algorithm at least in the early stages,
when the maximal eigenvalue ofZ is typically well separated from the rest of the
spectrum. The net result is an enhanced subdifferential model and convergence in
fewer iterations, with a slightly increased cost per iteration.

Furthermore, the dominant expense of computing maximal eigenvectors ofZ
is better justified by using them within a rich semidefinite cutting plane model,
rather than within a crude (by comparison) polyhedral model. Consequently, the
subproblem — traditionally a quadratic program — now becomes a conic pro-
gram involving linear, convex quadratic, and semidefinite constraints. However,
this conic program is much smaller than the original semidefinite program, and
can be solved quickly with an interior-point method. The additional computa-
tional expense incurred in solving this conic program is amply compensated by
convergence in many fewer iterations.

Beginning with the problem formulation in the next section, we describe how
each step of the algorithm may be parallelized and adapted to block structured
semidefinite programs.

3 Problem Formulation

LAMBDA treats SDP’s with the usual block diagonal structure,i.e. the data ma-
tricesC, Ai (i = 1, . . . ,m) are block diagonal with block sizesn1, . . . ,ns, andSn

in (1) now denotes bySn1 × . . .×Sns. For SDP’s whose primal feasible matrices
may not have constant trace, LAMBDA allows the user to specify an upper bound
on the trace of some optimal primal solution. This bound has to be inferred by the



Solving Large-Scale SDP’s in Parallel 7

user based on problem data, or must be guessed large enough so that at least one
primal solution satisfies the bound. Thus the primal problem (1) may be rewritten
as

min
X∈Sn

〈C, X〉 s.t. AX = b; tr(X)≤ a; X � 0,

and its dual as

min
y∈Rm

a max
{

λmax(ATy−C), 0
}
−〈b, y〉 . (11)

This is transformed without loss of sparsity to the form in (2) by adding an extra
1×1 block to theX,C, Ai (i = 1, . . . ,m) matrices:

X′ =
[

X 0
0 x

]
, C′ =

[
C 0
0 0

]
, A′

i =
[

Ai 0
0 0

]
(i = 1, . . . ,m),

resulting in the final form in which the SDP is stored internally. We assume that
a = 1 and use the simplified form (8) in the remainder of the paper.

4 Data Distribution

LAMBDA distributes the matricesC, Ai (i = 1, . . . ,m) and the entries of the vector
bi to multiple processors in the following simple way. Ifp processors are available,
the index set{1, . . . ,m} is partitioned intop mutually disjoint subsets:

{1, . . . ,m}= M0∪ . . .∪Mp−1, (12)

and processork is allocated the matricesAi (i ∈ Mk), and that portion of the vec-
tor b with entriesbi (i ∈Mk). Processor 0, designated the root (master) processor,
also holds the matrixC in addition to its share of theAi (i ∈ M0) matrices. This
admittedly simple scheme offers some key advantages. First, distributing entire
matrices (rather than portions thereof) facilitates a simple implementation. The
scheme may be consistently applied to all problems, whether block structured or
not, whereas partitioning within a matrix involves some detailed book-keeping, es-
pecially when such partitions straddle block boundaries. Second, scalability relies
on the requirement thatm (the number of primal constraints) is a large multiple of
the number of available processors, whileni (the block sizes) may be modest in
comparison; this is usually the case in many applications. Third, based on sparsity
or presence of other structure in the data, it is easy to determinea priori a suitable
partitioning in (12) that ensures a good load balance among the processors. (Some
limitations in this regard are mentioned in§10.) Fourth, by parallelizing the ap-
plication of theA(·) and theAT(·) operators, the computationally most intensive
parts of the algorithm (subgradient computation, forming the data defining the
subproblem) may be effectively parallelized, leaving the serially executed portion
(solution of the subproblem, bundle updateetc.) at an acceptable level. The root
processor bears the additional overhead of executing the serial portion. Finally,
as a fringe benefit, this scheme conserves some memory by allowing distributed
storage of the polyhedral part (details in§7) of the subgradient bundle.



8 M. V. Nayakkankuppam

5 Subgradient Computation

Since maximal eigenvectors ofZ = ATy−C furnishε-subgradients off at y, the
Lanczos method may be used to compute maximal eigenpairs ofZ — a matrix
which inherits the combined sparsity of theC, Ai (i = 1, . . . ,m) matrices. LAMBDA
implements animplicitly restarted block structured Lanczos methodwith an ac-
tive block strategy. We provide only a brief overview of the implicitly restarted
Lanczos method, referring to the excellent exposition in [20, 28] for full details.
Our focus here is rather on efficiently handling block structure.

5.1 The Implicitly Restarted Lanczos Method

The Lanczos method is essentially a Rayleigh-Ritz procedure that approximates
invariant subspaces ofZ = ATy−C from a sequenceK j(Z,v1) ( j = 0,1, . . .) of
expanding Krylov subspaces

K j(Z,v1) = Span
{

v1,Zv1,Z2v1, . . . ,Z j−1v1
}

,

wherev1 is a vector of unit norm with a nontrivial component in the desired
eigenspace. The method usesZ only via matrix-vector products, and is particu-
larly effective the structure inZ allows these products to be quickly computed.
Each step of the method involves augmenting aLanczos factorization, which con-
sumes progressively more storage and computing time. The speed of convergence
speed improves ifv1 has a large component in the maximal eigenspace and the
maximal eigenvalue is well separated from the rest of the spectrum, but in practice,
some form of restarting must be employed. Ifp maximal eigenpairs are desired,
a simple scheme would be to restart the Lanczos process everyp steps, using the
last Lanczos vectorvp as the starting vectorv1 for the next round of iterations.
At this stage, spectral transformations (such as Chebyshev acceleration) may be
employed to enhance the component ofv1 in the space spanned by the desired
eigenvectors, and hence to speed up convergence.

In our present setting, the matrixZ = ATy−C is distributed. Inter-processor
communication adds overhead to matrix-vector products, making spectral trans-
formations via explicit use of matrix polynomials quite expensive. Hence we have
adoptedimplicit restarting[30], a technique by which a Lanczos factorization of
lengthp+d is compressed to one of lengthp in a way that retains the information
most relevant to the desired eigenvectors ofZ. The ARPACK Users’ Guide [20]
clearly explains how this procedure is tantamount to a spectral transformation with
a filter polynomial of high degree.

In exact arithmetic, the method generates an expanding orthogonal basis —
the Lanczos basis — for the nested Krylov subspacesK j(Z,v1) ( j = 0,1, . . .).
With rounding errors, periodic reorthogonalization is necessary [28]. LAMBDA
usescomplete reorthogonalizationof the Lanczos basis prior to each restart.

5.2 Handling Block Diagonal Structure

When the matricesC, Ai (i = 1, . . . ,m) are block diagonal,Z = ATy−C and its
eigenvectors inherit the same block diagonal structure, and it is important to ex-



Solving Large-Scale SDP’s in Parallel 9

ploit this structure in all stages of the algorithm. To the see the inadequacy of the
standard Lanczos method, lets be the number of diagonal blocks, and denote the
kth block (k = 1, . . . ,s) of these matrices byC(k),Ai(k) (i = 1, . . . ,m) andZ(k)
respectively. Supposep maximal eigenpairs ofZ are desired. On the one hand, the
näıve approach (call this Method 1) of computing thep largest eigenvalues of each
diagonal blockZ(k) retains block structure, but is obviously inefficient, sinceps
eigenpairs are computed. On the other hand, a Lanczos process that treats the en-
tire block diagonal matrixZ as a single operator onRn1+...+ns can produce exactly
p maximal eigenpairs (call this Method 2), but will likely converge to Ritz vec-
tors (and consequently, eigenvectors) without block structure when the associated
maximal eigenvalue is multiple, and split across different blocks ofZ. For exam-
ple, if Z has a multiple maximum eigenvalue that occurs in every block, then the
Lanczos method will likely produce an associated eigenvector that is fully dense.
Although such eigenvectors, whether possessing block structure or not, yield le-
gitimateε-subgradients, the loss of block structure degrades the overall efficiency
of the algorithm.

Fortunately, this can be rectified by incorporating simple modifications into
the Lanczos method; for ease of reference, let us call the modified algorithm
the Block Structured Lanczos Method.1 Here we perform asynchronizedset of
s Lanczos processes, one for each block, maintaining Lanczos vectors indepen-
dently for each block (akin to Method 1). However, none of these processes is
allowed to completely resolvep maximal eigenpairs of any block ofZ. Instead,
after p+d steps, the restarting process uses Ritz values fromall blocks to deter-
mine unwanted eigenvalues, and hence also implicit shifts for the entire matrixZ
(akin to Method 2). Thus the proposed method may be viewed as a hybridization
of Methods 1 and 2, with the restarting procedure synchronizing the independent
Lanczos processes. Equivalently, it is a method that incorporates block structure
in the Lanczos basis. This method requires storage forp+ d Lanczos vectors of
lengthn1 + . . .+ns (plus a bit more for some auxiliary arrays) and, upon conver-
gence, producesp (approximate) maximal eigenpairs ofZ, not counting multiplic-
ities, i.e. the method may resolve only one copy of a multiple eigenvalue (since
it is not a block Lanczos method), but a single eigenvector corresponding to the
maximum eigenvalue is all that is needed for convergence of the bundle method.

5.3 Active Block Strategy

It is obvious that blocks ofZ for which the Lanczos process has converged (for
instance, small blocks whose sizes are smaller than the size chosen for the Lanczos
basis) may be excluded from further computation. By monitoring the Ritz values
and their corresponding error bounds [28] in every remaining block prior to each
implicit restart, we can ignore those blocks which are no longer candidates for
producing one of the largestp eigenvalues; such blocks are deemedinactive. The
remaining blocks are calledactive, and subsequent computation is restricted to
these blocks only. This can produce significant savings (as demonstrated in§9) in
problems with many blocks, but where the largestp eigenvalues are concentrated
in a small number of blocks in most of the iterations.

1 Not to be confused with the block Lanczos method.



10 M. V. Nayakkankuppam

5.4 Null Steps

We include a time-saving inexact evaluation procedure for null steps suggested by
Helmberg [11]. Since the Ritz values provide progressively better lower bounds
on the maximal eigenvalues as the Lanczos method progresses, the error bounds
on the Ritz values may be used to determine if a null step is inevitable. In this
case, further resolution of eigenpairs is prematurely terminated, and the algorithm
performs a null step; see [11] for details.

5.5 Parallelism

Parallelism is easily exploited in Step 14 in the matrix-vector productsw= Zvj+1.
Recall thatZ = ∑m

i=1 yiAi −C is not available explicitly, as theC, Ai (i = 1, . . . ,m)
matrices reside on different processors. IfA ⊆ {1, . . . ,s} denotes the index set of
active blocks at a particular iteration, then each processorq, other than the root
processor 0, uses the locally availableAi (i ∈ Mq) to compute the partial sum

wq(k) = ∑
i∈Mq

yiAi(k)v j+1(k) (k∈A ). (13)

These partial sums are subsequently collected on the root processor which com-
putes the desired matrix-vector product

w(k) = ∑
q6=0

wq(k)+ ∑
i∈M0

yiAi(k)v j+1(k)−C(k)v j+1(k) (k∈A ), (14)

without explicitly forming the blocksZ(k). Implicit restarts and complete re-
orthogonalization are executed in serial by the root processor. These operations
depend on the number of Lanczos vectors stored (which is small in comparison to
the block sizesn1, . . . ,ns) and the number of primal constraintsm. For large-scale
problems, these serial operations are dominated by the cost of the matrix-vector
products.

We now combine all these features to give a full description of the eigenvec-
tor computation procedure in Algorithm 5.1. Steps 4 – 20 implement the basic
Lanczos process, while Steps 28 – 40 deal with the implicit restarts, for which
LAMBDA uses some ARPACK [20] routines. The portion in Steps 21 – 27 keeps
track of the desired eigenvalues, computes the implicit shifts for the unwanted
ones, and implements the active block strategy. More precisely, the error bounds
for each eigenvalue produced by the Lanczos processes are used to infer which
eigenvalues could never possibly be one of thep largest ones (not counting mul-
tiplicities). These unwanted eigenvalues then determine the implicit shifts and the
inactive blocks.

As a general-purpose SDP solver, LAMBDA assumes no particular prior in-
formation about the maximal eigenvector, and hence initializesv1 to be a random
vector normalized within each block.



Solving Large-Scale SDP’s in Parallel 11

Algorithm 5.1 Block Structured Lanczos Method with Active Block Strategy
1: (Input) A vectory, a blockwise normalized initial vectorv1, a convergence tolerancetol,

the numberp of maximal eigenpairs desired, the numberd of additional Lanczos vectors
allowed.

2: (Output) p triples (θ ,x,k) such thatθ is an (approximate) maximal eigenvalue ofZ, with
(θ ,x) being an (approximate) eigenpair ofZ(k).

3: Initialize the active blocks index setA = {1, . . . ,s}, the inactive blocks index setI = /0,
and the converged blocks index setC = /0.

4: Computew = Zv1 = (ATy−C)v1 in parallel using (13) and (14).
5: α1 = (v1)T

w; r1 = w−α1v1; V1 = v1; T1 = α1; β 1 =
∥∥r1

∥∥.
6: j = 1.
7: for rst= 1,2, . . . until convergencedo
8: {—- begin restart loop —-}
9: while j < p+d do

10: {—- begin Lanczos factorization —-}
11: for k∈A do
12: {—- augment Lanczos factorization for each block —-}
13: v j+1(k) = r j(k)/β j(k); V j+1(k) = [V j(k) v j+1(k)]; T̂ j(k) =[

T j(k); β j(k)(ej(k))
T
]
.

14: Computew(k) = Z(k)v j+1(k) in parallel using (13) and (14).
15: t(k) = V j+1(k)T

w(k); r j+1(k) = w(k)−V j+1(k) t(k); β j+1(k) =
∥∥r j+1(k)

∥∥.

16: T j+1(k) = [T̂ j(k) t(k)].
17: end for{—- k loop —-}
18: j = j +1.
19: end while
20: Compute the spectral factorizationT p+d(k) = S(k)Θ(k)S(k)T for k∈A .
21: For each (i,k) ∈ {1, . . . , p+d} × {1, . . . ,s}, test the convergence condition

β p+d(k) |sp+d,i(k)| < tol to find indices (i,k) corresponding to converged eigen-
pairs.

22: If all eigenpairs in any blockk∈A have converged, setC = C ∪{k}.
23: Compute upper bounds

λ̄ (k) = max
i=1...,p+d; k∈A ∪C

θi(k)+β
p+d(k) |sp+d,i(k)|

SetW to be the index pairs(i,k) for thep largest values among the upper boundsθi(k)+
β p+d(k) |sp+d,i(k)| , (i = 1, . . . , p+d ;k∈A ∪C ).

24: Defineω to be thepth largest of theθi(k)−β p+d(k) |sp+d,i | (i = 1, . . . , p+ d; k ∈ A ).
SetI = I ∪

{
k∈A : λ̄ (k) < ω

}
.

25: UpdateA = A \{C ∪I }. {—- active block strategy —-}
26: Compute lower bound on maximal eigenvalue

λ = max
i=1,...,p+d; k∈A

θi(k)−β
p+d(k) |sp+d,i(k)| .

If λ is large enough to violate (6) by the margin required for a null step, break out of the
rst loop.

27: If the Ritz valuesθi(k) for all (i,k) ∈W have converged to the prescribed tolerancetol,
break out of the rst loop.
{—- synchronize Lanczos processes via implicit restarts —-}

28: For eachk∈A , setQ̂(k) = Ip+d, and select the indices of the ’unwanted’ eigenvalues

U =
{
(i,k) : θi(k)+β

p+d(k) |sp+d,i |< ω
}

. (15)

29: for (i,k) ∈U do
30: [Q(k),R] = qr(T p+d(k)−θi(k) Ip+d). {—- QR factorization with implicit shifts —-}
31: T p+d(k) = Q(k)TT p+d(k)Q(k).
32: Q̂(k) = Q̂(k)Q(k).
33: end for
34: for k∈A do
35: β

p
+(k) = T p+d

p+1,p(k); σ p = Q̂p+d,p(k).
36: r p(k) = β

p
+(k)vp+1(k)+σ pr p(k).

37: V p(k) = V p+dQ̂:,1:p(k); T p(k) = T p+d
1:p,1:p(k).

38: ReorthogonalizeV p(k).
39: end for{—- k loop —-}
40: j = p.
41: end for{—- rst loop —-}
42: For eachk such that(i,k) ∈W , reorthogonalizeV p+d(k).
43: For each of thep index pairs(i,k) ∈ W , compute an approximate eigenvectorxi(k) =

V p+d(k)si(k). Return thep triples(θi ,xi(k),k) for each(i,k) ∈W .



12 M. V. Nayakkankuppam

6 Subdifferential Model

LAMBDA employs a mixed polyhedral-semidefiniteε-subdifferential model. At a
given iteration, the bundle consists of a polyhedral partG = [g1, . . . ,gl ] ∈ Rm×l

and a semidefinite partP∈ Rn×r , resulting in a subdifferential model of the form{
l

∑
i=1

αigi +A(PVPT)−b : αi ≥ 0, V � 0, α1 + . . .+αl + tr(V) = 1

}
,

with some columns inG and inP possibly retained from earlier iterations,i.e.
eachgi = A(Wi) for some subgradientWi ∈ ∂ε λmax(Z), each columnpi of P is a
maximal eigenvector ofZ, andZ = ATy−C is derived from the current iterate
y = yk or an earlier iteratey = y j ( j ∈ Jk).

To enrich the model (in the Update step in Algorithm 2.1), maximal eigen-
vectors toZ = AT ȳ−C are orthogonalized against, and subsequently added to,
existing columns inP. This model may be viewed as a hybrid combination of
that used by traditional bundle methods (obtained by restrictingV to be diagonal)
and the one used by the spectral bundle method (obtained by restrictingl = 1, a
minimal requirement for aggregation).

Following [25], we can write the model minimization subproblem (5) as

min
(α;V)∈Rl×Sr

β

s.t.
1
2
〈[α;svec(V)], Q[α;svec(V)]〉+ 〈[u; v] , [α;svec(V)]〉−β ≤ 0

(16)
l

∑
i=1

αi + tr(V) = 1

α ≥ 0; V � 0,

where the matrixQ and the vector[u; v] are given by

ui =
〈

y− 1
ρ

b, A(Wi)
〉
−〈C, Wi〉 (i = 1, . . . , l), (17)

v = svec(PT(AT(y− 1
ρ

b)−C)P)], and (18)

Q =
[

Q11 Q12

QT
12 Q22

]
, with (19)

Q11 =
1
ρ

GTG, (20)

Q12 =
1
ρ

 (svec(PT (ATg1)P))T

...
(svec(PT (ATgl )P))T

 , and (21)

Q22 =
1
ρ

m

∑
i=1

svec(PT Ai P)(svec(PT Ai P))T
. (22)



Solving Large-Scale SDP’s in Parallel 13

It is obvious from our data distribution scheme and the formulas above that the
evaluations ofA(·) and AT(·) in (17), (18) and (21), as well as the orthogonal
conjugations in (21) and (22) may be performed in parallel. Further, observe that
the polyhedral part of the bundle can be distributed in exactly the same manner
as theC, Ai (i = 1, . . . ,m), i.e. processork holds those rows ofG whose indices
i ∈ Mk. Hence the Gram matrix in (20) may also be computed in parallel. Note
that each processor needs the matrixP to compute the orthogonal conjugations
definingQ22, hence the semidefinite portion of the bundle must be stored on all
processors, if the costs of communicating it are to be avoided.

7 Subproblem

The data defining the subproblem (Q,u,v) thus computed in parallel are assembled
on the root processor, which solves the subproblem — a conic program — in
serial using SeQuL, a primal-dual interior-point code written in the C language
by J.-P. Haeberly. Conversion of (16) to standard, dual form requires a Cholesky
factorization ofQ. Pivoting is employed to deal with (nearly) linearly dependent
subgradients that cause rank deficiency inQ. Finally, since SeQuL accepts only
inequalities in its dual formulation, we incorporated modifications to the algorithm
to accommodate the equality constraint in (16).

Whereas in a serial code, solving the subproblem takes a negligible fraction of
the time spent in any iteration, this may not be the case in a parallel context. Dom-
inant computational costs (subgradient computation) could be sped up so much
with multiple processors (as we will demonstrate in§9) that, at least for some
range of problem sizes and number of available processors, the time spent in solv-
ing the subproblem and other serial portions of the code is no longer negligible,
and will eventually limit scalability. The mixed polyhedral-semidefinite subdif-
ferential model helps in this regard by allowing a small semidefinite model to
be compensated, to some extent, by a large polyhedral model, thus allowing the
subproblem to be solved quickly.

8 Update

To keep storage bounded, subgradients, in both the polyhedral and semidefinite
parts of the bundle, that are less relevant to the model need to be lumped together
to make room for the addition of new subgradients in subsequent iterations. This
update of the bundle is termedaggregation[17], and is implemented as described
in [25].

The final ingredient is a suitable update ofρk, the penalty parameter. Roughly
speaking, one would expect to increaseρk after a null step and decrease it after
a serious step, but in any case, ensuring that it never violates the lower bound
ρmin required for convergence. Based on Helmberg’s numerical experiments [12],
LAMBDA uses a starting value ofρ0 =

∥∥g0
∥∥ /

√
m, but updates it using a rather

involved scheme developed by Kiwiel [18].
The updates to the bundle and to the penalty parameter are executed in serial

by the root processor.



14 M. V. Nayakkankuppam

9 Numerical Results

Our description of the experimental setup (collection of test problems, hardware
details, default parameters) is followed by numerical experiments evaluating con-
vergence behavior, the proposed block structured Lanczos method for eigenvector
computation, the effect of the polyhedral component in the subdifferential model,
and finally, parallel scalability.

9.1 Experimental Setup

9.1.1 Test Problems

Our overall test set consists of 13 problems (see Table 1), including:

– a fully dense, randomly generated SDP,
– four SDP relaxations (max-cut and Lovászϑ -function) of graph problems2,

and
– eight SDP relaxations arising in quantum chemistry fromab initio calculations

of electronic structure.3

The maxG11 problem is a max-cut relaxation on a graph with 800 nodes. For
the theta problems, the names indicate the sizes of the graphs,e.g. theta-5k-67k
is for a graph with 5,000 nodes and about 67,000 edges. The quantum chemistry
problems have 23 blocks each. Usinga(b) to denoteb blocks each of sizea×a,
the block structure for these problems is [6(1) 10(4) 45(4) 100(4) 120(2) 200(1)
230(1) 450(4) 1450(2)] withm= 7230 constraints, except in BH+where the block
structure is [6(5) 15(4) 20(2) 36(4) 72(1) 90(4) 94(1) 306(2)] withm= 948 con-
straints. The total number of nonzeros in theC, Ai (i = 1, . . . ,m) for the quantum
chemistry problems is about 0.85 million, except for BH+, where it is 0.067 mil-
lion. For the dense, randomly generated problem rand-1k-8k, the total number of
nonzeros is about 1.17 millon.

The problem BH+is small enough to be solved quickly by interior-point meth-
ods even in serial. (Indeed SDPA solves it to high accuracy within about 30 min-
utes, when executed in serial on one of the nodes of the KALI cluster described
below.) Nevertheless, its solution provides insight into the behavior of the bundle
method. In particular, the quantum chemistry problems, though modest in size,
have solutions where the maximal eigenvalue has high multiplicity — a feature
that poses a significant challenge for bundle methods.

9.1.2 Hardware

All runs of our code were conducted on KALI ,4 a 64-cpu Beowulf cluster consist-
ing of 32 dual Intel Xeon nodes operating at 2 GHz. Each processor has a 512 KB
L2 cache. Each node has 1 GB RAM (shared by two processors), with the entire

2 Graphs generated using the graph generator programrudy, written by G. Rinaldi.
3 Available fromhttp://www.is.titech.ac.jp/~mituhiro/software.html in the

SDPA format.
4 Seehttp://kali.math.umbc.edu for details.



Solving Large-Scale SDP’s in Parallel 15

Table 1 Description of problems in test set.

Prob n1, ...,ns m Description
rand-1k-8k [250 250 250 250] 8192 Fully dense, random
maxG11 800 800 Max cut
theta-1k-4k 1,001 5996 Lovászϑ -function, random graph
theta-5k-67k 5001 67489 Lovászϑ -function, random graph
theta-5k-100k 5001 105,106 Lovászϑ -function, random graph
BH+ 948 Quantum chemistry
B2 7230 Quantum chemistry
BeO 7230 Quantum chemistry
C2 (see§9.1.1) 7230 Quantum chemistry
C+

2 7230 Quantum chemistry
Li2 7230 Quantum chemistry
LiF 7230 Quantum chemistry
NaH 7230 Quantum chemistry

cluster interconnected by a Myrinet network (2 Gbit/sec peak bandwidth). One of
these 32 nodes also acts as astorage nodewith access to a 0.5 TB RAID array.

9.1.3 Default Parameter Values

The default tolerance for eigenvalue computations is 10−12. The parametermL for
determining a serious step is set to 0.1. The parameterρmin = 10−6, and Kiwiel’s
update [17] ofρ requires another parametermR ∈ (mL,1), which we set to 0.5.
The maximum number of iterations allowed is 10,000. The default accuracy level
is δ = 0.01. In every iteration,p= 5 new eigenvectors are computed usingp+d =
50 Lanczos vectors. The subdifferential model containsl = 10 subgradients in the
polyhedral part, andr = 15 eigenvectors in the semidefinite part. The starting point
is alwaysy0 = 0. Exceptions to these default values are mentioned as needed.

In all tables, the following naming conventions are employed: ’Prob’ denotes
problem name, ’Ser’ and ’Tot’ denote the number of serious steps and the total
number of iterations, ’err’ is the relative error in the objective value, and ’Time’
is computational time. Timings are reported entirely in seconds or as hh:mm:ss
(hours:minutes:seconds). All timings are elapsed wall-clock time, and exclude the
time taken to read problem data.

9.2 Convergence

In Figure 1, we plot the objective function values for four of the smaller problems,
with each plotted point denoting a serious step. The circles on the plot indicate the
number of iterations needed for stopping tolerances ofδ = 0.1,0.01,0.001. For all
problems, the plots exhibit the characteristic tailing off effect of first order bundle
methods,i.e. rapid initial progress, with theδ = 0.1, andδ = 0.01 accuracy levels
attained within a few iterations, and theδ = 0.001 accuracy level attained between
100 and 1000 iterations.

A notable exception is BH+which takes an order of magnitude more iterations
to attain theδ = 0.001 accuracy level. This problem is block structured with 22
blocks making up a matrix of total dimension 1406. Yet the multiplicity of the



16 M. V. Nayakkankuppam

0 1 2 3
600

800

1000

1200

log10 (iterations)

ob
je

ct
ive

maxG11

0 1 2 3 4
0

1000

2000

3000

4000

5000

log10 (iterations)
ob

je
ct

ive

theta−1k−4k

0 1 2 3
240

260

280

300

320

log10 (iterations)

ob
je

ct
ive

rand−1k−8k

0 1 2 3 4
−200

0

200

400

600

log10 (iterations)

ob
je

ct
ive

BH+

Fig. 1 Typical convergence behavior (serious steps only shown in plot) on four problems.

maximal eigenvalue ofZ∗ = ATy∗−C at any optimal solutiony∗ is at least 368,
as confirmed by a solution of high accuracy computed by SDPA [7]. The slow
convergence witnessed here is an inevitable outcome of the fact that the dimension
of our subdifferential model (l = 10 vectors in the polyhedral partG, andr = 15
eigenvectors in the semidefinite partP) falls severely short of the dimension of the
subdifferential at the optimal solution. Using a computed solution ˜y and the true
optimal valuef ∗, we calculate the relative error as

err=
| f (ỹ)− f ∗|

1+ | f ∗|
.

For the three problems other than BH+, this quantity is less than 1% forδ =
0.01, and less than 0.1% forδ = 0.001. For BH+, this error is 1.69% withδ =
0.01. With δ = 0.001, this relative error decreases to 0.7% (at the cost of about
7900 extra iterations), but a solution satisfying theδ = 0.0001 accuracy level was
unattainable in 10,000 iterations. Relative errors for the other instances in this



Solving Large-Scale SDP’s in Parallel 17

Table 2 Relative errors in the optimal value for the quantum chemistry problems withδ = 0.01.

Problem err

BH+ 0.0169
B2 0.0179
BeO 0.0183
C2 0.0187
C+

2 0.0195
Li2 0.0128
LiF 0.0153
NaH 0.0255

problem class are similar and are given in Table 2; forf ∗, we used the highly
accurate optimal values computed in [34].

9.3 Active Block Strategy

In Table 3, we show the effect of the active block strategy (described in§5.3) on
the time required for eigenvector calculation and overall run time. Each problem
has two rows: (i) overall solution time, and (ii) time for eigenvalue / eigenvec-
tor computation. The active block strategy produces savings on every problem,
and sometimes by significant amounts. This is remarkable for the quantum chem-
istry problems, since the maximal eigenvalue at the optimal solution not only has
high multiplicity but also occurs in most of the blocks. For example, this maximal
eigenvalue for BH+, earlier noted to have multiplicity at least 368, occurs in 18 of
the 22 blocks. Consequently, close to the optimal solution, only 4 blocks may be
eliminated prematurely from the matrix-vector products in the Lanczos method.
Yet the savings on computation and communication realized in the early iterations
of the algorithm (when the maximal eigenvalue is simple or occurs only in a few
blocks) are enough to speed up eigenvector computation and total solution time by
more than 3.5 times. Savings on other problems range from barely noticeable (Li2,
NaH), through significant (C+2 , rand-1k-8k), to dramatic (B2, BeO, C2, LiF).

9.4 Subdifferential Model

Next, we show the effect of the mixed polyhedral-semidefinite subdifferential
model on parallel run time using two sets of experiments on BH+.

In the first set (Table 4), we use a coarse accuracy level ofδ = 0.01. The
columns titled ’Total’ and ’Sub’ denote total solution time and time occupied by
the subproblem (in seconds); the last column expresses the subproblem solution
time as a percentage of total solution time. The first row is a serial run taking 310
seconds, of which subproblem solution occupies under 12%. In a parallel context,
solving the subproblem could become a serial bottleneck. Table 4 shows a series
of runs, all conducted on 8 processors, but with varying sizes of polyhedral and
semidefinite components in the subdifferential model. All runs require more or
less the same number of serious steps to achieve the specified accuracy, but the
richer models (largerr, smaller l ) do so in fewer total iterations, as expected.
Nevertheless, the simpler models (smallerr, largerl ) solve the problem faster.



18 M. V. Nayakkankuppam

Table 3 Effect of the active block strategy on run time. All problems were solved withδ = 0.01,
l = 15 andr = 10 on 4 processors.

Name Time (without ABS) Time (with ABS)

BH+ 00:25:09 00:07:40
00:25:00 00:07:00

B2 06:14:06 01:33:26
06:06:40 01:28:28

BeO 13:25:22 03:20:50
13:20:01 03:20:08

C2 06:54:15 01:41:43
06:51:23 01:36:40

C+
2 01:48:39 01:31:39

01:43:20 01:28:21
Li2 02:31:03 02:28:28

02:26:00 02:23:20
LiF 01:25:13 00:50:03

01:21:40 00:48:21
NaH 01:28:21 01:23:44

01:25:01 01:20:01
rand-1k-8k 00:20:36 00:15:36

00:19:51 00:14:42

Table 4 Parallel runs on BH+for δ = 0.01 showing the effect of the subdifferential model on
overall solution time. The first row alone is a serial run; the remaining ones used 8 processors.

Ser / Tot l r Total Sub %
24 / 282 10 25 310 37 11.94
23 / 283 10 25 130 38 29.23
25 / 335 15 20 95 22 23.16
25 / 351 20 15 84 11 13.10
22 / 315 25 10 72 6.3 8.75
24 / 402 30 5 65 2.8 4.31

In the second set, we repeat a similar sequence of runs, but using a finer accu-
racy level ofδ = 0.001. Since the optimal multiplicity is high, a large subdiffer-
ential model will be required, so we choosel = 10 andr = 50 for the serial run
shown in the first row of Table 5. Here solving the subproblem already occupies
a substantial 45% of the total solution time, since the blocks are small. Similar
remarks as in the first set apply to iteration counts and solution times, but note
that the last row (withl = 50 andr = 10) shows an increase in the solution time
achieved by the penultimate row (withl = 40 andr = 20). Thus there is a tradeoff
between saving computational time per iteration by using a simpler model and
incurring an increase in iteration count, with a commensurate increase in overall
solution time.

The speed-up factors of 4 – 5 times obtained by a suitable choice of the subdif-
ferential model are due to the small size of this problem; the subproblem solution
occupies a signicant fraction of overall solution time in the serial run because
the blocks are small. With increasing problem size, the speed-up factors become
less dramatic, and the choice of the subdifferential model becomes less crucial, as
evidenced by Table 6.



Solving Large-Scale SDP’s in Parallel 19

Table 5 Parallel runs on BH+for δ = 0.001 showing the effect of the subdifferential model on
overall solution time. The first row alone is a serial run; the remaining ones used 8 processors.

Ser / Tot l r Total Sub %
44 / 1156 10 50 3085 1400 45.38
44 / 1236 10 50 1900 1400 73.68
48 / 1554 20 40 1600 970 60.62
45 / 1688 30 30 920 370 40.22
42 / 1635 40 20 650 130 20.00
44 / 2449 50 10 820 58 7.07

Table 6 Parallel runs on LiF forδ = 0.01 showing the effect of the subdifferential model on
overall solution time. The first row alone is a serial run; the remaining ones used 16 processors.

Ser / Tot l r Total Sub %
32 / 354 10 25 5685 49 0.86
33 / 351 10 25 550 45 8.18
31 / 367 15 20 474 22 4.64
32 / 402 20 15 609 12 1.97
30 / 433 25 10 676 5.4 0.80
33 / 386 30 5 457 2.2 0.48

9.5 Scalability

To study parallel scalability, we solved the 10 largest problems in our test set on
processors numbering 1 through 64 in powers of two. The results are reported
in Table 7, where the columns denote the number of processors used. Each row
contains three lines in the following order: (i) total solution time; (ii) time used
in calculating eigenvalues (objective function values) and eigenvectors (subgradi-
ents); and (iii) time spent in forming the data for the subproblem. Since eigenvec-
tor computation is the dominant expense, the scalability of overall solution time
essentially follows that of eigenvector computation.

A curious phenomenon in these experiments is that the same problem solved
on different numbers of processors could yield quite different iterate sequences,
producing seemingly anomalous entries in Table 7. Rounding errors in the Lanc-
zos process sometimes produce different eigenvectors (albeit from the same eigenspace),
and hence different subgradients, and consequently a different solution to the sub-
problem, which may further trigger the conversion of a null step into a serious
step or vice versa. In general, there could be significant differences in iteration
sequences, number of serious and null steps, and running time across the columns
of Table 7 for any given problem. In particular, the suprisingly fast execution time
for NaH on 64 processors compared to that on 32 processors is mostly due to the
fact that the 64-processor run performed 17% fewer serious steps with the benefit
of the early termination heuristic. A null step is typically several times faster than
a serious step, and this has resulted in a fortuitous speed-up. In contrast, the 64-
processor runs of BeO and LiF consumed approximately the same number of total
iterations and serious steps as their respective 32-processor runs, yet the solution
times have nearly doubled. This increase in run time as the number of proces-
sors is increased — typical in parallel computing applications — is purely due to
communication losses.



20 M. V. Nayakkankuppam

Table 7 Scalability studies on ten problems on up to 64 processors.

Name 1 2 4 8 16 32 64
B2 05:50:01 03:03:23 01:33:26 01:01:47 00:43:22 00:55:51 00:33:49

05:16:42 02:46:40 01:28:28 01:00:06 00:41:41 00:55:00 00:33:20
00:01:06 00:00:51 00:00:59 00:00:28 00:00:05 00:00:04 00:00:03

BeO 09:26:39 04:26:48 03:20:50 02:21:49 01:28:22 01:28:25 03:03:29
08:36:41 04:10:07 03:20:08 02:18:23 01:26:42 01:26:46 03:02:24
00:01:50 00:01:12 00:01:39 00:00:56 00:00:08 00:00:05 00:00:04

C2 04:43:21 02:45:30 01:41:43 00:55:00 00:43:47 00:35:58 00:45:42
04:10:05 02:38:22 01:36:40 00:53:20 00:43:20 00:35:00 00:43:21
00:00:55 00:00:42 00:00:49 00:00:29 00:00:04 00:00:03 00:00:02

C+
2 05:16:48 02:26:44 01:31:39 00:58:18 00:41:56 00:48:29 00:56:47

05:00:03 02:20:00 01:28:21 00:56:43 00:40:02 00:46:39 00:55:01
00:00:58 00:00:52 00:00:47 00:00:35 00:00:05 00:00:04 00:00:04

Li2 07:46:51 04:10:48 02:28:28 01:31:39 00:53:28 01:01:06 01:10:20
07:30:11 03:53:23 02:23:20 01:30:02 00:51:41 01:00:01 01:08:31
00:01:40 00:01:08 00:01:27 00:00:47 00:00:09 00:00:07 00:00:06

LiF 02:36:42 01:01:40 00:50:03 00:35:52 00:23:25 00:20:52 00:39:20
02:23:17 00:58:16 00:48:21 00:33:20 00:21:45 00:18:27 00:38:20
00:00:31 00:00:29 00:00:31 00:00:17 00:00:03 00:00:02 00:00:02

NaH 03:36:47 02:01:39 01:23:44 00:39:34 00:41:01 00:28:20 00:08:20
03:20:09 01:55:04 01:20:01 00:38:18 00:40:00 00:28:20 00:07:40
00:00:39 00:00:42 00:00:44 00:00:25 00:00:04 00:00:02 00:00:02

rand- 00:48:21 00:27:42 00:15:36 00:08:38 00:06:29 00:04:30 00:03:32
1k-8k 00:43:20 00:26:38 00:14:42 00:08:20 00:06:10 00:04:18 00:03:20

00:00:37 00:00:21 00:00:12 00:00:06 00:00:03 00:00:02 00:00:01
theta- 01:50:11 00:50:10 00:23:28 00:09:42 00:08:06 00:04:48 00:03:01
5k-67k 01:45:03 00:46:41 00:18:22 00:08:13 00:06:10 00:04:10 00:02:43

00:00:30 00:00:14 00:01:09 00:00:32 00:00:21 00:00:11 00:00:06
theta- 07:13:28 03:53:19 02:01:08 00:58:21 00:30:02 00:15:50 00:09:24
5k-100k 06:56:42 03:36:40 01:56:40 00:56:26 00:26:40 00:13:41 00:08:20

00:08:01 00:04:13 00:02:23 00:01:31 00:01:11 00:00:55 00:00:17

The speed-up plots in Figure 2 for overall solution time provide a quick picture
of scalability. In these plots, the speed-up factorS(p) for p processors is calculated
as

S(p) =
Time taken on 1 processor
Time taken onp processors

.

In summary, for the quantum chemistry problems, speed-up is acceptable for up to
8 processors. (We include only one speed-up plot from this class of problems, as
the plots for the remaining problems are more or less similar.) Improved solution
times are obtained with up to 16 processors (and on some problems, up to 32
processors), beyond which communication costs inevitably degrade run time. But
we hasten to point out two facts: (i) these problems have relatively small blocks
(with only two moderately large blocks of size 1450 each) and a modest value
of m= 7230, and hence are too small to be fully scalable up to the 64 processors
available in our cluster; and (ii) although these problems were the largest instances
available within their class at the time of this work, they constitute toy problems
in the realm of quantum chemistry. Realistic atomic systems would yield much
larger problems more amenable to scalability up to 64 processors.

The situation improves slightly withrand-1k-8k. Although comparable in
size with the quantum chemistry problems, this problem is fully dense, hence



Solving Large-Scale SDP’s in Parallel 21

there is a higher computation-to-communication ratio in the matrix-vector prod-
ucts within the Lanczos method. Acceptable scalability is observed for up to 8
processors, with solution times improving up to 32 processors.

With increasing problem size, as in the two Lovászϑ -function SDP relax-
ations, the scalability improves noticeably, with solution times improving consis-
tently all the way up to 64 processors.

Fig. 2 Speed-up plots for scalability studies.

124 8 16 32 64
12
4

8

16

32

64

processors, p

sp
ee

d−
up

, S
(p

)

Li2

124 8 16 32 64
12
4

8

16

32

64

processors, p

sp
ee

d−
up

, S
(p

)

rand−1k−8k−spd

124 8 16 32 64
12
4

8

16

32

64

processors, p

sp
ee

d−
up

, S
(p

)

theta−5k−67k

124 8 16 32 64
12
4

8

16

32

64

processors, p

sp
ee

d−
up

, S
(p

)

theta−5k−100k

9.6 Fastest Solution Times

Finally, we report the fastest run times that could be obtained in solving the large
quantum chemistry instances to low accuracy withδ = 0.01; this corresponds to
relative errors given in Table 2. To obtain the fastest solution times, we compute
only p= 2 eigenvectors in each iteration usingp+d = 20 Lanczos vectors. In Ta-
ble 8, we show



22 M. V. Nayakkankuppam

Table 8 Fastest solution times on the large quantum chemistry problems usingδ = 0.01, l =
10, r = 20, p = 2,q = 20 on 16 processors. Therst andip.it columns are in thousands, and the
opscolumn is in millions.

Name It Eig Sub Time
ser tot rst ops time # ip.it time

B2 35 584 20.6 1.16 00:14:10 596 20.3 00:00:47 00:16:12
BeO 32 580 18.7 0.97 00:12:00 609 21.9 00:00:51 00:13:55
C2 34 547 18.2 0.94 00:12:30 564 19.1 00:00:41 00:14:16
C+

2 35 1655 53.6 2.33 00:30:02 1701 59.1 00:02:00 00:36:33
Li2 30 761 33.1 1.60 00:32:03 791 26.7 00:00:50 00:34:21
LiF 31 367 12.0 0.55 00:06:50 393 10.2 00:00:22 00:08:01
NaH 35 453 13.2 0.55 00:10:08 481 14.9 00:00:32 00:11:54

– the number of iterations (serious steps,ser; total iterations,tot),
– details pertaining to eigenvalue computation (number of implicit restarts,rst;

number of matrix-vector products counting each block separately,ops; time
spent in eigenvalue computation,time),

– details pertaining to the subproblem (number of subproblems solved, #; the to-
tal number of interior-point iterations,ip.it; time spent in solving subproblems,
time), and

– in the last column, the total solution time for each problem instance.

As a rough comparison with interior-point methods, we mention that these
problems (in addition to others) were originally solved in [34] to high accuracy
(6 or 7 digits) using the parallel interior-point code SDPARA [33] on the NERSC
SMP (shared memory multiprocessor) cluster SEABORG.5 Each problem required
about 14 hours of solution time and 27 GB of memory on a 16-cpu node with
375 MHz processors (slower than KALI ’s 2 GHz processors), but 8 MB of L2
cache and 64 GB of shared memory (much larger than KALI ’s 512 KB L2 cache
per processor and 1 GB of memory per dual node). Shared memory eliminates
expensive communication over a network. A recent update [8] to these results, us-
ing an improved version of SDPARA called SDPARA-SMP, has reduced solution
time to about 13 hours and memory usage to about 5.7 GB. With this improved
code, the authors were able to solve slightly larger atomic systems (but signifi-
cantly larger SDP’s withm≈ 20,000 and a largest block of size around 3200) in
about 5.3 days using 73.9 GB of memory on a 64-cpu subcluster of SEABORG.
Recently, Mazziotti [21, 22] has reported results on even larger atomic systems
(although using a less refined SDP relaxation than employed in [8]) based on a
different type of first order method for semidefinite programming.

10 Perspectives

Subgradient methods, though used for eigenvalue optimization over 30 years ago
by Cullum, Donath and Wolfe [5], had not seen widespread use in semidefi-
nite programming until revived by the spectral bundle method of Helmberg and
Rendl [14] and improved variants [13] thereof. Our implementation draws much

5 Seehttp://www.nersc.gov/nusers/resources/SP for hardware details of this clus-
ter.



Solving Large-Scale SDP’s in Parallel 23

from Helmberg’s serial codeSBmethod [10], which has been remarkably suc-
cessful in solving large-scale problems, albeit restricted to those arising in graph
applications.

Our efforts to extend the applicability of the bundle methodology center around
efficiently handling block diagonal structure, while resorting to parallelism to
solve very large-scale problems. The proposed data distribution scheme allows
efficient storage of problem data and subgradients together with ease of imple-
mentation, without sacrificing performance on algorithmic components (block
structured Lanczos, the active block strategy, implicit restarting, and a choice of
subdifferential models). However, this scheme is not without limitations. In prob-
lems where sparsity levels are vastly different among the data matricesC, Ai (i =
1, . . . ,m), this scheme results in load imbalance. Thus some important problem
classes (notably maximum cut and graph bisection) cannot be effectively paral-
lelized. No single scheme can work equally well for all types of problems, and
these problem classes are best handled in a problem-dependent way. A second lim-
itation in the present implementation is its inability to effectively handle linear in-
equalities and bound constraints on the variables. Such constraints serve to tighten
SDP relaxations of combinatorial optimization problems, andSBmethod handles
them by incorporating a second (inner) iterative procedure within the proximal
bundle method. Thus LAMBDA is presently not fully tailored for applications in
combinatorial optimization. Finally,SBmethod uses Lanczos vectors, even those
that have not converged to eigenvectors, to construct cutting planes. We believe
this is not essential in LAMBDA , since it already has the option of retaining many
additional subgradients in the polyhedral part of the bundle.

The Block Structured Lanczos Method offers an advantage6 even for prob-
lems without block structure, when combined with a preprocessing technique in-
troduced in [9, 24]. This technique, originally proposed to exploit sparsity, uses
positive semidefinite matrix completion to convert a semidefinite program with a
single large block into one with several smaller blocks. Thus subgradient com-
putation with the Block Structured Lanczos Method on the modified problem is
likely to be more efficient than when applied to the original problem with a single
large block.

We now comment on performance. Throughout, we have used basic blocking
communication,i.e. a processor executing a ’Send’ (’Receive’) will wait until the
receiving processor executes a matching ’Receive’ (’Send’). Using more sophis-
ticated MPI communication modes, it is possible to overlap computation with
communication in some parts of the algorithm. Further performance improve-
ment could come from selective orthogonalization and by using a block Lanczos
method. The block Lanczos method is better at resolving multiple eigenvalues.
Also, a single communication of a block of vectors incurs a smaller network la-
tency cost than multiple communications each involving a single vector. How-
ever, the biggest gains are to be realized by fully exploiting problem structure,
which is unfortunately completely lost by encoding problems in the SDPA data
format. Thus, in our experiments, the data matricesC, Ai (i = 1, . . . ,m) from all
the quantum chemistry problems were treated as unstructured, sparse matrices.
On the whole, given that the Lanczos method is an intrinsically serial process
(one cannot computeZ2v before computingZv), and that the parallelization is

6 We thank an anonymous referee for this observation.



24 M. V. Nayakkankuppam

fine-grained at the linear algebra level, the observed speed-up factors and solution
times are better than anticipated.

Finally, we fully acknowledge that the low accuracy solutions computed for
the quantum chemistry problems do not meet the 6 or 7 digits of accuracy re-
quired for ground state energy calculations. We neither claim to have ’solved’
these problems, nor do we suggest that first order bundle methods are a viable so-
lution methodology for them. We have merely used them as realistic, challenging
instances which allow all aspects of this general-purpose code to be fully tested,
and as such, the numerical results for this problem set are to be viewed in that
light. Attaining high accuracy by incorporating some limited form of second or-
der information, ideally in an parallelizable way, remains a topic worthy of future
investigation.

Acknowledgments

We are grateful to Jean-Pierre Haeberly for allowing use of the SeQuL code; to
Mituhiro Fukuda for helpful conversations about the quantum chemistry prob-
lems; and especially to Jorge Moré for access to the Chiba City cluster at Argonne
National Lab during the early stages of this work. We also thank the anonymous
referees for their constructive comments.

This work was supported by NSF grants DMS-0238008 and DMS-0215373.
The computational results presented here would not have been possible without
the high-performance cluster KALI , funded in part by the latter grant.

References

1. Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for com-
binatorial optimization. SIAM Journal on Optimization10(2), 443–461 (2000)

2. Burer, S.: Semidefinite programming in the space of partial positive semidefinite matrices.
SIAM Journal on Optimization14(1), 139–172 (2003)

3. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite
programming via low-rank factorization. Mathematical Programming (Series B)95, 329–
357 (2003)

4. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite pro-
gramming. Mathematical Programming (to appear)

5. Cullum, J., Donath, W., Wolfe, P.: The minimization of certain nondifferentiable sums of
eigenvalues of symmetric matrices. Mathematical Programming Study3, 35–65 (1975)

6. Fletcher, R.: Semidefinite matrix constraints in optimization. SIAM Journal on Control and
Optimization23, 493–523 (1985)

7. Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA User’s Manual — Version
6.00. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
(2002)

8. Fukuda, M., Braams, B.J., Nakata, M., Overton, M.L., Percus, J.K., Yamashita, M., Zhao,
Z.: Large-scale semidefinite programs in electronic structure calculations. Tech. Rep. B-
413, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
(2005)

9. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite pro-
gramming via matrix completion I: General framework. SIAM Journal on Optimization
11(3), 647–674 (2000)

10. Helmberg, C.: SBmethod: A C++ implementation of the spectral bundle method. Tech.
Rep. ZR-00-35, Konrad-Zuse-Zentrum für Informationstechnik, Berlin (2000)



Solving Large-Scale SDP’s in Parallel 25

11. Helmberg, C.: Semidefinite programming for combinatorial optimization. Tech. Rep. ZR-
00-34, TU Berlin, Konrad-Zuse-Zentrum, Berlin (2000)

12. Helmberg, C.: Numerical evaluation of SBmethod. Mathematical Programming95(2), 381–
406 (2003)

13. Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Mathematical Pro-
gramming93(2), 173–194 (2002)

14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM
Journal on Optimization10(3), 673–696 (1999)

15. Hiriart–Urruty, J–B., Lemaréchal, C.: Convex analysis and minimization algorithms, vol. I
& II. Springer–Verlag (1993)

16. Hiriart–Urruty, J–B., Ye, D.: Sensitivity analysis of all eigenvalues of a symmetric matrix.
Numerische Mathematik70, 45–72 (1995)

17. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math-
ematical Programming (1983)

18. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimiza-
tion. Mathematical Programming46, 105–122 (1990)

19. Kǒcvara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified
barrier method using iterative solvers. Tech. Rep. 304, Institute of Applied Mathematics,
University of Erlangen (2005)

20. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. SIAM, Philadelphia
(1998)

21. Mazziotti, D.A.: First-order semidefinite programming for the direct determination of two-
electron reduced density matrices with application to many-electron atoms and molecules.
Journal of Chemical Physics121, 10,957–10,966 (2004)

22. Mazziotti, D.A.: Realization of quantum chemistry without wavefunctions through first-
order semidefinite programming. Physical Review Letters93, 213,001 (2004)

23. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Mathematical
Programming95, 407–430 (2003)

24. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in
semidefinite programming via matrix completion II: Implementation and numerical results.
Mathematical Programming95(2), 303–327 (2003)

25. Nayakkankuppam, M.V.: Optimization over symmetric cones. Ph.D. thesis, New York Uni-
versity (1999)

26. Nayakkankuppam, M.V., Tymofyeyev, Y.: A parallel implementation of the spectral bundle
method for semidefinite programming. In: Proceedings of the Eighth SIAM Conference on
Applied Linear Algebra. SIAM, Williamsburg (VA) (2003)

27. Overton, M.L.: On minimizing the maximum eigenvalue of a symmetric matrix. SIAM
Journal on Matrix Analysis and Applications9(2) (1988)

28. Parlett, B.M.: The Symmetric Eigenvalue Problem. SIAM (1998)
29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (New Jersey)

(1970)
30. Sorensen, D.C.: Implicit application of polynomial filters in ak-step Arnoldi method. SIAM

Journal on Scientific Computing13(1), 357–385 (1992)
31. Toh, K.C.: Solving large scale semidefinite programs via an iterative solver on the aug-

mented systems. SIAM Journal on Optimization14(3), 670–698 (2004)
32. Toh, K.C., Kojima, M.: Solving some large scale semidefinite programs via the conjugate

residual method. SIAM Journal on Optimization12(3), 669–691 (2002)
33. Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA: SemiDefinite Program-

ming Algorithm: paRAllel version. Parallel Computing29, 1053–1067 (2003).
http://grid.r.dendai.ac.jp/sdpa

34. Zhao, Z., Braams, B.J., Fukuda, M., Overton, M.L., Percus, J.K.: The reduced density ma-
trix method for electronic structure calculations and the role of three-index representability
conditions. Journal of Chemical Physics120(5), 2095–2104 (2004)


