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We thank the referee for a thorough review and constructive comments, which
we address below. (References pertain to this revised version.)

The errors in some of the formulas in Section 2.1 have been corrected by rewriting
parts of that section.

The epsilon subdifferential formulas have been restated as suggested. In equa-
tion (10) in the revised version, it is indeed the same ε ocurring twice; this is a
consequence of [15, Vol. II, Theorem X1.3.2.1].

Sections 5.1 and 5.2, along with Algorithms 5.1 and 5.2, of the previous version
have been condensed into a brief overview as Section 5.1 in the present version.
Textual explanations replacing Algorithms 5.1 and 5.2 now guide the reader through
the Block Structured Lanczos Method. Where appropriate, we use the term Ritz
vector instead of eigenvector. We fixed an error in the statement of Algorithm 5.1
that allowed prematurely exiting the rst loop if p eigenvalues had converged; this
handles the referee’s example of p converged eigenvalues immediately after the first
spectral factorization. An eigenvalue is deemed unwanted only if the error bounds
imply that it can never be one of the p largest; these are then used as implicit shifts.
In particular, the maximal eigenvalue will never be one deemed unwanted, and the
component of the starting vector in the direction of the maximal eigenvector will
not be damped by the implicit restart. Unless the starting vector is orthogonal to
the maximum eigenvalue’s eigenspace (in which case any Krylov suspace method
will fail), the maximum eigenpair will eventually emerge. Since this is not a block
Lanczos method, the original claim about obtaining p maximal eigenpairs is true
only if multiplicities are not counted; phrases have been added to reflect this. We
have changed the starting vector to be random. Although this didn’t seem to have
much impact on the numerical results, we fully agree that the original choice of
vector of all ones (normalized) could be a dangerous one.

The referee’s suggestion for matrix-vector products could be faster for some
types of problems (and not for others, such as low-rank, dense matrices), but it is
more involved to implement block row partitioning for SDP’s with multiple blocks,
especially when these partitions straddle block boundaries.

Regarding accuracy, we also feel that δ = 0.01 is very low, but δ = 0.001 takes a
really long time for some of the problems. Since the detailed numerical experiments
require multiple runs, this becomes a very time consuming process overall. For most
of the problems, the dimension of the bundle comes nowhere close to the dimension
of the subdifferential at the optimum, so the method chokes when the accuracy
requirement is increased.

We have added a paragraph in Section 9.5 to explain the anomalous entries in
Table 7.
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In Section 9.6, fewer eigenvalues were used to obtain fast solution times for the
0.01 accuracy level. It is indeed true that use of more eigenvalues improves overall
performance for higher accuracy levels.


