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We thank the referee for a thorough review and constructive criticisms, which
we address below.

Error measures: Measures of primal/dual infeasibility and complementar-
ity are appropriate for primal-dual interior point methods, but not for the
bundle method. The reformulation is an unconstrained one; by construc-
tion, iterates are always dual feasible for the original SDP. The method is a
purely dual one; a primal iterate is never explicitly computed or updated.
However, the sequence of optimal subgradients W* of Ayax () generated by
the method converges to a primal solution X in the limit (proved by Helm-
berg). Thus, the norm of the subgradient AW* —b (of f) is simultaneously
an estimate of primal infeasibility and optimality (complementarity). This
norm, upon termination, is of the same order as the ¢ used in the termina-
tion criterion, but this value itself doesn’t yield a usable error estimate on
the optimal value. For the quantum chemistry problems, the relative errors
in the optimal value are given in Table 2; for the other problems, it’s less
than 0.1%.

Usefulness of low accuracy solutions: Although the ground state energy
calculations require 6-7 digits, there are similar SDP’s arising from dipole
moment calculations for which the accuracy produced by the method is
sufficient (although these test problems are not readily available). In com-
binatorial optimization, the accuracy provided by the bundle method is
already quite useful in branch-and-bound algorithms.

Choice of test set: Most problems in the DIMACS test suite are not readily
reformulated as eigenvalue optimization problems; this requires a compact
primal feasible set, with a known upper bound on an optimal solution. The
only significant problem class exlcuded are the max-cut instances, which are
not well handled by our data distribution scheme, as explained in Section 10.

Besides, a key contribution of the paper is the handling of block struc-
ture, so block structured test problems are required to illustrate the perfor-
mance of the method. Outside of the chosen problems, the standard test
sets contain few instances (perhaps none) that are simultaneously block
structured and amenable to reformulation as eigenvalue optimization.

Finally, we disagree with the referee’s claim that most of the chosen
problems can be solved by primal-dual interior-point codes on a desktop
PC. The last paragraph of Section 9.6 should convince the referee otherwise.

Scalability: We didn’t tabulate parallel efficiencies because the table already
overflows the page and has an overwhelming amount of numbers in it. We
included speed-up plots to give a quick pictorial idea, and the efficiencies
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are readily computed from the timing data, if necessary. Except in the rare
instance of a superscalable algorithm, it is generally to be expected that
efficiency decreases (to the point of slow-down, rather than speed-up) with
increasing processor count, if the problem size is held fixed. [As an aside, it
then makes sense to consider scaled speed-up or scaled efficiency (increasing
problem size and processor count simultaneously). This is easy to do in
PDE applications (one simply refines the mesh size), but is obviously not
applicable in optimization where each test problem stands on its own.] The
paper makes guarded and carefully worded claims regarding scalability:
acceptable parallel scalability on sufficiently large problems. The limits of
scalability on the chosen problems are clearly mentioned in the text. We still
maintain that these are toy instances in the realm of quantum chemistry.
Larger atomic systems, or discretization of the chosen systems in higher
dimensional bases, will result in much bigger problems on which efficiencies
would be quite good even on 64 processors. Such problems will easily
exceed the capabilities of standard primal-dual interior-point methods —
even parallel versions.

A paragraph has been added in Section 9.5 to explain the anomalies in
Table 7.

Comparison with other methods: Earlier works in the literature (cita-
tions have been added) show the relative strengths and weakness of interior-
point methods versus the spectral bundle method; therefore a further com-
parison of these two types of algorithms is redundant. Regarding a com-
parison of software codes, this is the only parallel implementation of the
spectral bundle method as far as we know. But in any case, this paper is
not about benchmarking software codes. The goal of the paper is to en-
hance the applicability and performance of the bundle method on problems
that are particularly amenable to solution by subgradient methods.

The claim that we obtain ”faster solution times than previously possi-
ble” appears only in the abstract, and is not altogether unreasonable. The
proposed algorithmic enhancements (particularly relating to block struc-
ture) combined with the parallel implementation allows solution times in
tens of minutes in contrast with the tens of hours achieved in recent cited
work (Zhao et al. 2004, Fukuda et al. 2005); see Section 9.6.

Appropriateness for the journal: The paper was submitted to a special
issue of Mathematical Programming focusing on large-scale nonlinear and
semidefinite programming, including parallel computing aspects. This re-
vised version is being submitted in deference to the editor’s decision.



