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Abstract. The evolutionary history of species may be described by a phylogenetic tree whose
topology captures ancestral relationships among the species, and whose branch lengths denote evo-
lution times. For a fixed topology and an assumed probabilistic model of nucleotide substitution, we
show that the likelihood of a given tree is a d.c. (difference of convex) function of the branch lengths,
hence maximum likelihood estimates (of the branch lengths) may be obtained by solving an appro-
priate d.c. program. Such a formulation is amenable to global optimization techniques, in contrast
with existing methods and software codes which potentially produce only locally optimal solutions.
We present the formulation of this optimization problem, its solution via an outer approximation
cutting plane algorithm, and illustrative numerical results on small genetic data sets.
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1. Introduction.

1.1. Background and Terminology. A fundamental task in evolutionary bi-
ology is the inference of phylogenetic or ancestral relationships among contemporary
species. Every organism’s genetic blueprint is encoded by the genes in its DNA (a
sequence of nucleotides, each being a symbol in N = {A,C, T, G}), and its biological
functions are carried out by means of proteins (a sequence of amino acids, each being
one of 20 possible symbols). Owing to nucleotide substitutions in DNA, altered genes
and proteins are produced over a period of time, and a hierarchy of organisms with
somewhat different DNA and proteins evolves. This process of biological evolution
may be encoded by a phylogenetic tree — a bifurcating tree with leaf nodes (denoting
observed, contemporaneous species) deriving from internal nodes (denoting ancestral
species). The topology of this tree encodes the evolutionary relationships among the
observed species, while the length of a branch between two adjacent nodes in the
tree is a measure of the elapsed time (divergence time) for the species at one node
to evolve into the species at the other node. The goal of phylogenetic analysis is
the reconstruction of this phylogenetic tree, both its topology and its branch lengths,
from the observed DNA sequences of the contemporary species at the leaf nodes.

Three widely-used methods for phylogenetic analysis are (i) parsimony, (ii) distance-
based methods and (iii) maximum likelihood estimation. Experimental simulations [14]
indicate that maximum likelihood (ML) estimates of phylogenetic trees are consis-
tently superior to parsimony or distance-based methods. The distinct advantage of
likelihood-based methods lies in their ability to provide quantitative and statistically
meaningful measures of confidence in the reconstruction. We focus on this method
in the remainder of the paper. In the ML approach, we start with an underlying
probabilistic model of nucleotide substitution, usually a Markov chain model derived
from instantaneous rates of transition of one nucleotide symbol into another. Then,
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the ML methodology infers the most likely topology and branch lengths which are
consistent with the given DNA sequence data and the assumed probabilistic model of
nucleotide substitution. This is achieved by maximizing a likelihood function L(x; τ)
jointly over the vector of branch lengths x (continuous variables specifying the length
of each edge in the tree) and the topology τ (combinatorial variable). This likelihood
maximization is difficult even if one of the two variables, x or τ , is held fixed:

• Branch Length Optimization: Even for a fixed topology τ , and for most
reasonable probabilistic models of nucleotide substitution, the likelihood func-
tion L(x; τ) is a highly nonlinear function of the branch lengths x. The
heuristic approaches currently in use may get trapped in local maxima.

• Topology Optimization: Even for a fixed choice of the branch lengths x,
the number of topologies grows factorially in the number of input sequences,
making exhaustive search futile. It is known [1] that the number of such
topologies T (n) on n input sequenes is given by T (n) = (2n − 5)!/[(n −
3)!2n−3]. (With 53 input sequences, this number exceeds the total number of
atoms in the visible universe, estimated to be over 4× 1078.)

Thus the problem of computing globally optimal ML estimates of phylogenetic trees
is a computationally intractable one; see the recent work [3]. Existing methods1 in
the literature work around this in different ways. Some algorithms resort to stochas-
tic techniques (e.g. simulated annealing, genetic algorithms, Markov Chain Monte
Carlo), while others rely more on deterministic optimization. PHYLIP [8] uses the
stepwise addition heuristic (explained in Section 6) to generate the topology incre-
mentally, while using a coordinate optimization method to optimize branch lengths.
PAML [25] provides several options for topology generation (including stepwise addi-
tion, or simply fixing a user-supplied topology), and uses a quasi Newton method or
the conjugate gradient algorithm with a Wolfe line search to optimize branch lengths.
However, even for a fixed topology, these methods are not guaranteed to produce
globally optimal estimates of branch lengths.

1.2. Summary. In this paper we primarily focus on computing globally optimal
ML estimates of branch lengths for a given topology using d.c. programming. To this
end, we first list well known properties of d.c. functions and give a simple outer-
approximation algorithm for d.c. programming in Section 2. These properties are
then used to derive a d.c. formulation of the (log) likelihood function (Section 3),
which may then be globally maximized by the given algorithm; related implementation
details are discussed in Section 4. Numerical calculations (Section 5) on small problem
instances and comparisons with existing codes confirm the validity of the approach.
In Section 6, we briefly indicate how the proposed approach may be incorporated into
existing, practically successsful heuristic procedures for determining good estimates
of the optimal topology.

2. DC Programming. We summarize a few basic facts about d.c. functions,
then describe a simple outer-approximation based cutting plane method for optimizing
them.

2.1. DC functions. A function f : X ⊆ Rn → R is said to be d.c. on X if

f(x) = g(x)− h(x) ∀x ∈ X, (2.1)

1J. Felsenstein’s PHYLIP [8] web page is an excellent resource with links [6] to over 200 available
packages for phylogenetic inference.
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with g, h : X → R being convex functions on X. Such a decomposition, when it
exists, is clearly nonunique. Nevertheless, even without an explicit decomposition at
hand, a large class of functions may be readily identified as d.c. via Hartman’s deep
result [10] that every locally d.c. function (i.e. one that has a possibly different d.c.
decomposition on an open neighborhood of each point in Rn) is also globally d.c. (i.e.
admits a d.c. decomposition globally valid on Rn). Thus every C2 function f must
be d.c., since for suitably large K > 0,

f(x) =
[
f(x) + K ‖x‖2

]
−K ‖x‖2

is locally (hence globally) d.c. Consequently, polynomials are d.c., and we may there-
fore conclude that continuous functions may be approximated (uniformly on compact
subsets) by d.c. functions.

Yet algorithms for optimizing d.c. functions rely on an explicit d.c. decomposition
being available. We list several well known operations on d.c. functions that preserve
the d.c. structure with explicitly computable d.c. decompositions; these and other
related results may be found in, for instance, [12, 17, 24]. Some of these results will
be used in Section 3.

Proposition 2.1 (Properties of d.c. functions).
1. If f = g − h and fi = gi − hi (i = 1, , ..., m) are d.c. functions, then so also

are:

m∑
i=1

λifi =

 ∑
{i:λi≥0}

λigi −
∑

{i:λi<0}

λihi

−
 ∑
{i:λi≥0}

λihi −
∑

{i:λi<0}

λigi


max

1≤i≤m
fi = max

1≤i≤m

gi +
m∑

j=1, j 6=i

hj

−
m∑

j=1

hj

min
1≤i≤m

fi =
m∑

j=1

gj − max
1≤i≤m

hi +
∑

j=1, j 6=i

gj


|f | = 2 max {g, h} − {g + h}
f+ = max {0, f}
f− = min {0, f}

2. Let f1 and f2 be nonnegative d.c. functions. Then the product f1 · f2 is d.c.
with the following d.c. decomposition:

f1 · f2 =
1
2

[
(g1 + g2)

2 + (h1 + h2)
2
]
− 1

2

[
(g1 + h2)

2 + (g2 + h1)
2
]
.

3. Let f(x) be a d.c. function defined on a compact convex set X ⊂ Rm such
that f(x) ≥ a > 0 ∀x ∈ X. If q : [a,∞] → R is a convex nonincreasing
function such that q′+(a) > −∞, then q(f(x)) is a d.c. function on X:

q(f(x)) = p(x)−K [g(x) + h(x)]

where p(x) = q(f(x)) + K [g(x) + h(x)] is a convex function and K is a
constant satisfying K ≥

∣∣q′+(a)
∣∣.
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2.2. DC optimization. Here we state an outer approximation cutting plane
method from [13] to solve

min
x

f(x) = g(x)− h(x) s.t. x ∈ X = {x ∈ Rn : α(x) ≤ 0} , (2.2)

where α : Rn → R is a convex function, and the convex feasible set X is assumed to be
compact with nonempty interior. We assume that f has an explicit d.c. decomposition
on X in terms of known convex functions g and h. The algorithm is based on the
optimality condition that x∗ ∈ X is optimal for (2.2) if and only if there exists t∗ ∈ R
such that

0 = inf {−h(x) + t : x ∈ X, t ∈ R, g(x)− t ≤ g(x∗)− t∗} . (2.3)

Starting with an initial guess y0 ∈ int X, Algorithm 2.2 generates a sequence yk,
of which any accumulation point x∗ is an optimal solution of (2.2); see [13] for a
convergence proof.

Methods to construct the first polytope P 0 and its vertex set V (P 0) are given
in [13]. A procedure to compute the vertex set of the reduced polytope P k+1 in Step 20
is given in [12]. This algorithm, chosen for its simplicity and ease of implementation,
does not involve any computationally intensive subproblems — only function and
subgradient evaluations, vertex enumeration, and whenever Step 16 is encountered,
a root finding procedure for a univariate convex function. Other types of algorithms
for d.c.programming are available in [12, 13, 22–24].

3. ML Estimation of Branch Lengths. Beginning with an underlying prob-
abilistic model of nucleotide substitution, we derive a d.c. representation of the like-
lihood function to show how the problem of ML estimation of branch lengths may be
formulated and solved as a d.c. program.

3.1. Nucleotide substitution model. A standard probabilistic model for nu-
cleotide evolution is given by a Markov process with a specified instantaneous rate at
which a nucleotide i gets substituted by nucleotide j. This rate, call it qij , is taken
to be proportional to a mean rate µ (common to all nucleotides) as well as to πj , the
equilibrium frequency of nucleotide j:

qij ∝ µπj .

Introducing appropriate proportionality constants, these rates may be collectively
specified by an instantaneous substitution rate matrix

Q =


· µaπC µbπG µcπT

µgπA · µdπG µeπT

µhπA µjπC · µfπT

µiπA µkπC µlπG ·

 , (3.1)

whose diagonal entries are inferred from the condition that rows must sum to zero. The
matrix Q is the infinitesimal generator for the Markov chain modeling probabilistic
nucleotide substitutions: the (i, j) entry of Q is the expected number of substitutions
of nucleotide i by nucleotide j in an infinitesimal time interval dt.

In practice, the equilibrium frequencies are chosen equal (πA = πC = πT = πG =
0.25), or are taken to be the empirical frequencies observed in the data. We assume
that the other parameters (µ and the proportionality constants a, . . . , l) are given,
hence Q is completely specified.
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Algorithm 2.1 Outer Approximation Cutting Plane Method [13]
1: Initialization: Set ω0 = g(y0)−h(y0), the first upper bound of the optimal value

ω∗ = f(x∗) = g(x∗)− h(x∗) of (2.2).
2: Compute a subgradient s ∈ ∂g(y0) to construct the affine function l(x) = (x −

y0)T s + g(y0).
3: Construct a simplex S0 ⊇ X with vertex set V (S0). Choose ω̄ and t̄ such that

ω̄ = min
{
l(x) : x ∈ V (S0)

}
−max

{
h(x) : x ∈ V (S0)

}
t̄ > max

{
g(x) : x ∈ V (S0)

}
.

This ensures that the function βk(x, t) = max
{
α(x), g(x)− t− ωk

}
satisfies

βk(y0, t̄) < 0 ∀ωk ≤ ω0.
4: Construct a polytope P 0 ⊇ {(x, t) : x ∈ X, t ∈ Rn, g(x)− t− ω∗ = 0}, and com-

pute this initial polytope’s vertex set V (P 0).
5: Set k = 0.
6: Iteration: Compute an optimal solution (xk, tk) of the problem

min
{
−h(x) + t : (x, t) ∈ V (P k)

}
.

7: if −h(xk) + tk = 0 then
8: Stop: yk is the optimal solution of(2.2) with optimal value ωk.
9: else

10: if xk ∈ X (feasible case) then
11: Compute sk ∈ ∂g(xk).
12: Compute the improved upper bound ωk+1 = min

{
ωk, g(xk)− h(xk)

}
, tak-

ing yk+1 such that g(yk+1)− h(yk+1) = ωk+1.
13: else
14: Define the convex function βk(x, t) = max

{
α(x); g(x)− t− ωk

}
.

15: Compute sk ∈ ∂βk(xk, tk).
16: We have βk(xk, tk) > 0 and βk(y0, t̄) < 0, so compute the zero (ζk, θk) of

βk(x, t) on the line segment joint (xk, tk) and (y0, t̄).
17: Compute the improved upper bound ωk+1 = min

{
ωk, g(ζk)− h(ζk)

}
, taking

yk+1 such that g(yk+1)− h(yk+1) = ωk+1.
18: end if
19: Construct the cutting plane (affine function)

lk(x, t) =
{

(x− xk)T sk + g(xk)− ωk+1 − t, if xk ∈ X(
(x, t)− (xk, tk)

)T
sk + βk(xk, tk), if xk /∈ X.

20: Set P k+1 = P k ∩
{
(x, t) : lk(x, t) ≤ 0

}
, and compute V (P k+1).

21: end if
22: Set k = k + 1, and iterate by returning to Step 6.

3.2. Problem setting and assumptions. We start with the given DNA se-
quences for n taxa, each with m sites, and a given unrooted, bifurcating tree topology
τ . For n ≥ 3 sequences, this means that τ has 2n− 2 nodes in all, with n leaf nodes
(corresponding to the n taxa) of degree 1 and n − 2 internal nodes of degree 3, and
2n−3 interconnecting branches whose lengths are to be determined. We assume that
these n sequences are multiply aligned, and that this n ×m matrix of nucleotides is
completely specified, each entry being one of A, C, T or G; see Table A.1 and Fig-
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ure A.1 in Appendix A for an example. (We restrict our attention to DNA sequences,
although the proposed approach — with minor modifications — is applicable to pro-
tein sequence data as well.) Each of these nucleotides evolves independently according
to the same rate matrix (3.1), which is assumed to be time- and lineage-invariant, i.e.
Q remains fixed in time and along different branches of the tree τ .

The problem of branch length estimation is to determine nonnegative values for
the 2n − 3 branch lengths, collectively denoted by the vector x, that maximize the
likelihood L(x) (or equivalently, its logarithm) of the observed data at the leaf nodes
of τ :

max
x≥0

ln L(x). (3.2)

3.3. DC decomposition of log likelihood. By imposing appropriate bound
constraints on x, we show that the problem (3.2) of obtaining ML estimates of branch
lengths may be formulated as a d.c. program:

min
0<l≤x≤u

− ln L(x), (3.3)

where the objective function (− ln L(x)) has an explicit d.c. decomposition.
Theorem 3.1 (Log likelihood is d.c.). If Q is diagonalizable, then − ln L(x) is

(explicitly) d.c. on X :=
{
x ∈ R2n−3 : 0 < l ≤ x ≤ u

}
.

Proof. We proceed in four incremental stages culminating in an explicit d.c.
decomposition for − ln L(x).
1. Substitution probabilities. Let U = [u1, . . . , u4] be a matrix whose columns are
eigenvectors of Q corresponding to eigenvalues λ1, . . . , λ4, and denote the rows of U−1

by vT
1 , . . . , vT

4 . Then the matrix of substitution probabilities over a time interval t

P (t) = eQt =
4∑

k=1

eλktukvT
k

is manifestly entrywise d.c.: its (i, j) entry

pij(t) =
4∑

k=1

eλkt(uk)i (vk)j

is given by an explicitly weighted sum of exponentials.
2. Sitewise likelihood. Fix a site index s, so that the n leaf nodes of the given tree
τ are labeled with nucleotides from the sth site of the n input sequences. Let x be
the vector of all branch lengths in τ . For any node c ∈ τ , denote by Lc

i (x; s) the
conditional likelihood of node c having symbol i, given the data at the leaf nodes of
the subtree rooted at node c. The following recursive argument uses Proposition 2.1
to show that this conditional likelihood is d.c. at each node of the tree. If c is a leaf
node, then Lc

i (x; s) is unity for that symbol i labeling this leaf node, and is zero for
the three other symbols; this is trivially d.c. If c is an internal node connected to
children nodes a and b via branches of lengths xa and xb respectively (see Figure 3.1),
then

Lc
i (x; s) = Lc

i (x; s, a) × Lc
i (x; s, b), where (3.4)

Lc
i (x; s, a) =

∑
j∈N

pji(xa)La
j (x; s), and (3.5)

Lc
i (x; s, b) =

∑
k∈N

pki(xb)Lb
k(x; s). (3.6)
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c

x x

a

a b

b

Fig. 3.1. Typical tree segment.

The product in (3.4) stems from the assumption that evolution occurs independently
along branches. Both Lc

i (x; s, a) and Lc
i (x; s, b), as weighted sums of d.c. functions,

are themselves d.c. Therefore Lc
i (x; s), as a product of d.c. functions, must also be

d.c. In particular, for the root node r of τ , Lr
i (x; s) is d.c., hence also the likelihood

of the entire tree for the sth site

Lr(x; s) =
∑
i∈N

πiL
r
i (x; s).

3. Sitewise log likelihood. Note that when all branch lengths x are strictly positive,
so are the substitution probability functions pij and the likelihood Lr(x; s) for site s.
Again, by Proposition 2.1, the composite function − ln Lr(x; s) is d.c.
4. Log likelihood. Since sites are assumed to evolve independently, the log likelihood
of the tree

− ln L(x) = −
m∑

s=1

ln Lr(x; s) (3.7)

is also d.c.
Several well known nucleotide substitution models result in a symmetric generator

Q. Taking a = . . . = l = 1 and πi = 0.25 ∀i ∈ N in Q yields the JC69 Jukes-Cantor
model [15]:

pij(t) =
{

1
4 + 3

4e−µt (i = j)
1
4 −

1
4e−µt (i 6= j) (3.8)

with substitution probability functions that are purely convex or concave. Kimura’s
two-parameter model K2P [16] divides the nucleotides into two groups — the purines
(A,G) and the pyrimidines (C,T) — and allows for different relative rates of intra-
group substitutions (known as transitions) and intergroup substitutions (known as
transversions) by setting a = c = d = f = g = j = i = l = 1, but b = e = h = k = κ.
With equal equilibrium base frequencies πi, this model gives rise to

pij(t) =


1
4 + 1

4e−µt + 1
2e−µ(κ+1

2 )t, (i = j)
1
4 + 1

4e−µt − 1
2e−µ(κ+1

2 )t, (i 6= j, transition)
1
4 + 1

4e−µt, (i 6= j, transversion).
(3.9)

Both these models result in a symmetric Q, hence the Markov chain P (t) model-
ing nucleotide substitutions is time-reversible. (One consequence of a time-reversible
model is that the root node may be chosen arbitrarily.) Practically every model in the
literature (including [5, 7, 11, 15, 16, 21, 26]) gives rise to a diagonalizable generator,
hence this assumption in the theorem is not a serious limitation.
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4. Computational Details. We discuss several computational issues pertain-
ing to our Matlab implementation. When solving (3.3) with a generic d.c. program-
ming method such as Algorithm 2.2, using closed form expressions for the objective
function and its gradient (via Theorem 3.1 and Proposition 2.1) is both inefficient and
complicated; see (A.1) and (A.2) in Appendix A. Instead, computations of function
and gradient values may be ordered to mimic the topology of the phylogenetic tree
itself, i.e. given a point x, − ln L(x) in (3.7) is computed recursively with a post-
order traversal of the tree, using (3.4) to compute intermediate values at each node.
Simultaneously, gradient values are readily available via the chain rule:

∇xa
Lc

i (x; s) =

∑
j∈N

p′ji(xa)La
j (x; s)

 (∑
k∈N

pki(xb)Lb
k(x; s)

)
,

where we have used the fact that La
j (x; s) (the conditional likelihood of the subtree

rooted at node a) is independent of xa (the branch length connecting node a to node
c).

Since the algorithm relies on an explicit d.c. decomposition of the final log likeli-
hood objective function and its gradient, their constituent intermediate values must
also be represented as a difference of two quantities in a manner that is consistent
with their implicit d.c. decompositions. For example, the probability of an intragroup
transition in the K2P model (3.9) must be explicitly retained as an ordered pair(

1
4

+
1
4
e−µt,

1
2
e−µ(κ+1

2 )t

)
of quantities whose difference equals pij(t). Results of subsequent computations in-
volving this pij(t), such as the conditional likelihoods Lc

i (x; s) on each tree node, must
also be stored as ordered pairs so that the final objects of interest, namely objective
function and gradient values, are available in decomposed form.

Significant savings may be realized by vectorizing these computations. For in-
stance, to evaluate Lc

i (x; s, a) in (3.5) with the JC69 model (3.8), denote by La(x; s) =
u− v, the d.c. decomposition of the 4-dimensional vector La(x; s) whose ith compo-
nent is La

i (x; s). Similarly decompose the JC69 substitution probability matrix as
P (xa)T = G−H with columns gi, hi given by

G = [g1 g2 g3 g4] =


1
4 + 3

4e−µxa 1
4

1
4

1
4

1
4

1
4 + 3

4e−µxa 1
4

1
4

1
4

1
4

1
4 + 3

4e−µxa 1
4

1
4

1
4

1
4

1
4 + 3

4e−µxa


T

and

H = [h1 h2 h3 h4] =


0 1

4e−µxa 1
4e−µxa 1

4e−µxa

1
4e−µxa 0 1

4e−µxa 1
4e−µxa

1
4e−µxa 1

4e−µxa 0 1
4e−µxa

1
4e−µxa 1

4e−µxa 1
4e−µxa 0


T

.

Then we may write

Lc
i (x; s, a) =

∑
j∈N

pji(xa)La
j (x; s) = P (t)T La(x; s) = (G−H) (u− v) .
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This has the explicit d.c. decomposition (via Proposition 2.1)

1
2

4∑
k=1

[
(uk ⊕ gk)2 + (vk ⊕ hk)2

]
− 1

2

4∑
k=1

[
(uk ⊕ hk)2 + (vk ⊕ gk)2

]
,

where the ⊕ operator and the squares stand for Hadamard (componentwise) addition
and exponentiation.

Finally, we point out that most nucleotide substitution models in the literature
admit closed form formulas for the eigenvalues and the eigenvectors of Q, and hence
also for the substitution probabilities P (t). In solving the d.c. program (3.3) (with Al-
gorithm 2.2, for instance), such formulas offer the added computational advantage of
circumventing expensive matrix exponentials in function and gradient evaluations.

5. Numerical Results. ML estimates of branch lengths were computed for the
first four data sets listed in Table 5.1. Although these data sets represent toy instances
in phylogenetic analysis, they serve as a ‘proof of concept’ validation of the approach
developed here.

For each of these data sets, a topology was first generated using PHYLIP [8].
Bound constraints 0.0001 ≤ xi ≤ 1.5 were imposed on all branch lengths xi in every
data set, except in Plant Viroids #2 where the lower bound was 0.001. For each data
set, a strictly feasible starting point was chosen at random. Sequences were evolved
according to the JC69 model (3.8) with µ = 4/3. The algorithm was terminated when
the right hand side in the optimality condition (2.3) was larger than ε = −0.001.
The computed maximum likelihood values and optimal branch lengths, confirmed by
PAML [25], are shown in Figure 5.1 – Figure 5.3.

Data set n (sequences) m (sites)
Gene #1, Acetylcholine receptora 3 1368
Influenza A virusb 3 890
Plant viroids #1b 4 370
Plant viroids #2b 5 295
Primatesa 5 890
a PAML distribution [25].
b European Bioinformatics Institute website [4].

Table 5.1
Details of test data.

Even for a fixed topology and a simple evolutionary model such as JC69, the likeli-
hood is a complicated nonlinear function of the branch lengths (see (A.1) and (A.2)
in Appendix A for an example). Although such a function is likely to have multi-
ple local maxima, Fukami and Tateno [9] claimed that the likelihood function has a
unique maximizer. However, an error was later discovered by Steel [19], who showed
the existence of multiple local maxima, albeit on a contrived example. Rogers and
Swofford [18] later argued (based on empirical evidence) that multiple local maxima
were unlikely with real genetic data even if the substitution model was erroneous,
provided the correct topology was chosen. A subsequent analysis in [2], assisted by
Maple computations, shows that even with only four taxa and an optimal topol-
ogy, there exists a wide range of sequence data for which the likelihood function has
multiple local maxima.

For the last data set in Table 5.1, we identify two stationary points (of the likeli-
hood function) shown in Figure 5.4 and Figure 5.5; one of these is the global maximum
while the other is a saddle point.
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Hong Kong
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0.00382
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Fig. 5.1. Gene #1 and Influenza A.

Columnea LatentCitrus Exocortis

Iresine

0.44820

0.0001

0.7022

0.57933

Plant Viroids

Yellow Corkyvein

1.43151

ln L(y*) =  − 1712.19

Fig. 5.2. Plant viroids #1.

Although the issue of multiple local maxima appears not to have been fully re-
solved, global optimization techniques are evidently relevant in phylogenetic analysis.

6. Extensions. So far, we have assumed a fixed toplogy τ and focused only on
the problem of branch length estimation. As such, this can be considered a bound-
ing procedure in a branch and bound approach to determine the optimal topology.
Here we mention some possibilities for incorporating this procedure into a practi-
cally successful heuristic, known as stepwise addition, for topology optimization. This
heuristic, due to Felsenstein [7], is implemented in PHYLIP [8].

Here a particular order of the input sequences is first chosen. The first 3 sequences
in this order uniquely determine the topology of a tree T3 with 3 leaf nodes, and three
branches can then be chosen to maximize likelihood. For k ≥ 3, we now describe how
Tk+1 is constructed from Tk. Given an optimal tree Tk on k sequences (i.e. with k
leaf nodes), the k + 1th sequence may be added at any one of the 2k − 3 branches
in Tk to yield 2k − 3 new trees T 1

k+1, . . . , T
2k−3
k+1 , each with k + 1 leaf nodes and

(2k − 3) + 2 branches. Denoting these branch lengths again by the (slightly longer)
vector x and the likelihood functions of these trees by L(x;T i

k+1) (i = 1, . . . , 2k− 3),
an optimal branch length vector x(i) that maximizes L(x;T i

k+1) may be computed for
each i = 1, . . . , 2k − 3:

x(i) = arg max
x≥0

L(x;T i
k+1) (i = 1, . . . , 2k − 3). (6.1)
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Plant Viroids

Dapple Peach

Dapple Peach/Plum

Grape Vine

Hop Stunt

Hop Stunt Variant

0.00100

0.00100

0.00100

0.30062

1.41357
0.68457

0.00100

ln L(y*) =  − 1419.008

Fig. 5.3. Plant viroids #2.

Primates

Human

Chimpanzee

Gorilla

Orangutan

Gibbon

ln L(y*) =  − 2926.38

0.0440

0.0524

0.0674
0.1035

0.1534
0.0109

0.0164

Fig. 5.4. Primates #1.

The optimal tree Tk+1 on k + 1 sequences is then chosen to be that tree T i
k+1 that

achieves the largest likelihood:

Tk+1 = arg max
T i

k+1

L(x(i);T i
k+1). (6.2)

Thus the tree is grown incrementally until no input sequence remains to be added.
(This procedure is usually coupled with other heuristics that locally or globally re-
arrange subtrees to further explore the set of tree topologies.) Since the topology
generated in this manner depends on the original ordering of the input sequences, the
whole process is repeated numerous times from different random orderings of the input
sequences, finally taking as optimal the tree that achieved the maximum likelihood
over all runs.

PHYLIP uses coordinate optimization, solving each of the 2k−3 problems in (6.1)
to local optimality, although only one of them will be selected as the best candidate
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Primates

Human

Chimpanzee

Gorilla

Orangutan

Gibbon

ln L(y*) =  − 2914.12

0.0403

0.0523

0.0586
0.0905

0.1250
0.0474

0.0164

Fig. 5.5. Primates #2.

Tk+1 in (6.2). However, since each L(x;T i
k+1) is d.c., we may combine (6.1) into a

single d.c. program:

Tk+1 = arg max
T i

k+1

max
1≤i≤2k−3

{
L(x;T i

k+1)
}

.

A similar d.c. formulation, with its concomitant efficiencies, is applicable in quar-
tet puzzling, a slightly more involved topology generation heuristic due to [20], but we
omit the details.

7. Concluding Remarks. We have presented an approach to compute, un-
der standard assumptions, globally optimal maximum likelihood estimates of branch
lengths (divergence times) in a phylogenetic tree of known topology, by exploiting
the d.c. structure underlying the likelihood function (Section 3). It is an indepen-
dent question how closely biological evolution in nature is captured by the assumed
probabilistic models in the literature, but within their confines, the globally optimal
solutions generated by this approach are arguably superior to the locally optimal
solutions computed by the heuristic methods implemented in existing codes. The
proposed approach also offers the possibility of incorporating a priori biological in-
formation that can be encoded as convex constraints. For instance, we may impose
upper or lower bounds on the length of a clade, or on the evolutionary distance be-
tween two species in the tree, or on ratios of branch lengths, etc. While the simple d.c.
programming algorithm used here was sufficient for small data sets, larger problems
would require a more sophisticated algorithm. One possibility is to embed an effecive
local method such as DCA [22, 23] within a branch and bound procedure. A worth-
while effort for future research is to combine such an algorithm with more realistic
models (e.g. incorporating unknown instantaneous rate parameters, site rate hetero-
geneity, correlated mutations across sites etc.) in an efficient, parallel implementation
specially tailored for large scale phylogenetic analysis.
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Sequence name Data
Puerto Rico (Type I) AGCTCATGAGTACTGCACATGA
Hong Kong AGCTTCCTGATTAACTTGAGAG
Puerto Rico (Type II) AGCTCATGAGCACTGTCCGTAG

Table A.1
Sequences for the Influenza A data set with column weights.

Hong Kong

Puerto Rico (Type I) Puerto Rico (type II)

r

x

x

x
3

2

1

Fig. A.1. The (unique) topology for the Influenza data set. The node labeled r is chosen as the
root node.

Appendix A. A Simple Example. We give a simple, concrete example of
sequence data and the resulting d.c. decomposition of the likelihood function. The
sequence data for the Influenza A data set used in Section 5 has 890 sites which may
be categorized into the 22 patterns shown in Table A.1. The weight of each pattern
wi (i = 1, . . . , 22), which is the number of occurrences of that pattern, is shown in
the weight vector

w = [ 250 186 157 191 13 5 12 4 20 23 2 6 7 4 1 1 1 1 2 2 1 1 ] .

The unique tree on these three taxa is shown in Figure A.1. The likelihood function
Lr(x; 1) for the first site pattern in Table A.1 has the d.c. decomposition:

Lr(x; 1) = g(x)− h(x), with
g(x) = 13

128 + 3
8e−x2 + 133

256e−2x2 + 23
1024e−2x1 + 111

256e−3x2 + 1
64e−x1+

1
8e−x3 + 81

256e−4x2 + 17
1024e−3x1 + 1

1024e−4x1 + 1
16e−2x3 + 11

512e−2x1−x2+

81
1024e−2x1−2x2 + 3

512e−x1−x2 + 9
128e−2x1−x3 + 1

128e−x1−x3+

1
128e−2x1−x3 + 9

1024e−x1−2x2

h(x) = 1
128 + 3

8e−2x2 + 81
256e−4x2 + 13

1024e−x1 + 131
256e−x2 + 1

64e−2x1+

1
2e−x3 + 27

256e−3x2 + 23
512e−x1 + 1

128e−3x1 + 1
4e−2x3 + 1

512e−x1−4x2+

243
1024e−4x1−4x2 + 3

256e−2x1−2x2 + 9
64e−x1−x3 + 1

1024e−2x1−x3+

1
128e−x1−x3 + 3

512e−x1−4x2 .
(A.1)

Similar expressions may be calculated for the remaining 21 site patterns. The overall
negative log likelihood is a rather complicated function given by the weighted sum

− ln Lr(x) = −
22∑

i=1

wi ln Lr(x; i). (A.2)


