Response to Second Referee on the Paper:
A modified nearly exact method for solving
low-rank trust region subproblem

First, we would like to thank you for taking the time and effort to review and provide comments
to our paper. We appreciate your willingness to help to make our paper a better, more worthwhile
document.

Below we answer the two comments you have given in your report.

1. “However, we will have no hard-case if the Hessian is positive definite (particularly when the
matrix is generated by L-BFGS).”: Clearly, when the Hessian of the LRTR subproblem is
positive definite, its solution does not fall into the hard case. When line search methods with
specific stepsize rules (e.g., Wolfe or strong Wolfe rule) are used, then the Hessian generated by
the L-BFGS method is guaranteed to be positive definite. However, when the iterates are found
using the trust region strategy, the Hessian generated by the L-BFGS method is not necessarily
positive definite. In fact, in our implementation the hard case occurs quite frequently for some
NLP instances.

2. “Related earlier work is as follows. The standard trust region subproblem is actually equivalent
to a low dimensional trust region subproblem if the Hessian is generated by L-BFGS method
(for example, see Wang, Wen and Yuan (2004); Yuan (2004)).”: First, our present work was
done independently from the works by Wang, Wen and Yuan (2004) and Yuan (2004). A
preliminary draft of our paper was completed in 2003, and a talk based on it was given in the
Large-Scale Nonlinear Programming Session, 2003 INFORMS Annual Meeting, Atlanta, USA,
October 19-22; 2003. We were not aware of the above two references and we are certainly
grateful to the referee for bringing them to our attention. We have cited them in our paper.
Second, the method proposed in Wang, Wen and Yuan (2004) and Yuan (2004) is generally
different from our limited memory quasi-Newton TR method based on solving a sequence of
full dimensional LRTR subproblems since the TR subproblem of one method may not be
converted into an equivalent one of the other method (see our discussions below). Third, full
dimensional LRTR subproblems naturally appear when using limited memory quasi-Newton
TR method for solving constrained NLP. For example, when solving NLP with simple bound
constraints, the Dikin ellipsoid type of trust regions are extensively used (see the discussions
on pp. 3-4 and pp. 18 of our paper).

First, we argue that the LRTR subproblem studied in our paper generally cannot be converted
into an equivalent TR subproblem discussed in Wang, Wen and Yuan (2004). Indeed, consider a



LRTR subproblem (see also equations (1)-(4) of our paper)

minimize %pTH p+glp

(1)

s.t. Pl < A

where
H = D+VEVT, (2)
M = D+VEVT «o, (3)

and D, D and E are positive diagonal matrices, V and V have few number of columns (say less than
10), and FE is a diagonal matrix.

Case 1: Assume first that D='D € {yI : v > 0}. In this case, we claim that there exists an
optimal solution p* of LRTR subproblem (1) such that p* € S, where

S = Range(A), A=D7l[-gV V]. (4)

(Its proof will be given in the next paragraph.) Hence, using a similar argument as in Wang, Wen
and Yuan (2004), we can easily convert the LRTR subproblem (1) to an equivalent TR subproblem

minimize $:TATHAz + (ATg)T2
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()

s.t. ||z

where M = AT M A. However, we shall notice that the TR subproblem (5) is generally not a low
dimensional TR subproblem as defined in equation (2.13) of Wang, Wen and Yuan (2004) since
M # I. Thus, for the special case, even a standard TR subproblem with the Hessian H generated
by L-BFGS method (i.e., M = I and D = I for some 7 > 0) is not equivalent to a low dimensional
TR subproblem as discussed in Wang, Wen and Yuan (2004).

We next sketch the proof of the above claim. Let

Al = Amin(MTYV2ZHM™/2),

(see also equation (13) of our paper.) Let H(\) = H + AM. First, we will show that for any A > —)\;
(or equivalently, H(\) = 0),

H(\)'we S, VYweRange([g V V]). (6)

Indeed, using (2), (3), Sherman-Morrison-Woodbury (SMW) formula, and the assumption that
D~!'D = I for some v > 0, we observe that, for 0 # X € (=\,00) and w € R",
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The last equality above together with (4) immediately implies that (6) holds for 0 # A\ € (=1, 00).
Similarly, (6) also holds for A = 0if0 € (—=A1, 00). From the discussion on pp. 6 of our paper, we know
that three cases may occur for LRTR subproblem (1), that is, the “easy”, “interior convergence”,
and “hard” cases. We know that, in the first two cases, the optimal solution p* of LRTR subproblem
(1) is unique and p* = —H()\)~!g for some A > —\;, and hence p* € S due to (6). In the “hard”
case, we also see from the discussion on pp. 6 of our paper that there exists an optimal solution p* of
LRTR subproblem (1) such that p* = pers + ™ u for some o™ € R and 0 # u € Ker (H(—)1)), where
pert = —H(=X1)Tg, and the superscript T denotes the Moore-Penrose generalized inverse. Using (6)
and the fact that the subspace S is closed, we easily see that

- T -1
Dert = /\EEI}\I H(/\) g € S (7)

Recall from (2) that H = D+ VEVT, where D > 0 and E is diagonal and nonsingular. We can par-
tition F (after performing a symmetric permutation of its rows and columns) as £ = Diag (E1, —E2),
where both E; and Ey are positive diagonal matrices. Accordingly, we partition V as V = (V1,153),

and hence
VEVT =ViE\ VI — VB V)

(see also Subsection 3.2 and equation (28) of our paper). For any A > —\;, we let
ux = HO)"'o/||[HA) " ollar, (8)

where v = Vor and r is a unit eigenvector of V;/ H (/\)_IVQ corresponding to its maximum eigenvalue
(see also Theorem 3.3 of our paper). Using the fact that v = Vor € Range([g V V), we easily see
from (6) that uy € S for any A > —A;. Let u be any accumulation point of uy as A | —A1, and hence
u € S. Further, using Theorem 3.3 of our paper, we have u? H(—\;)u = 0, i.e., u € Ker(H(—\y)).
Therefore, u € Ker(H(—X1)) NS, and u # 0 since ||u||pr = 1. This together with (7) and the relation
p* = pert + o™y implies that p* € S. Hence, the above claim holds.

Case 2: D™'D ¢ {yI]y > 0}. In this case, we will see from the following observation that it is
hard to identify a fixed subspace where an optimal solution of LRTR subproblem (1) lies unless the
optimal A\* is known. Using (2), (3), and SMW formula, we see that for any A > —\q,

_H(A)ilg € S/\7

where Sy = (I + AD~'D)~'S, and S is defined in (4). We shall notice that the subspace Sy varies
as A changes over (—Aj,00). Therefore, in this case, the LRTR subproblem (1) certainly cannot
be converted into an equivalent low dimensional TR subproblem studied in Wang, Wen and Yuan
(2004).

Second, the TR subproblem discussed in Wang, Wen and Yuan (2004) may not be converted into
an equivalent full dimensional LRTR subproblem studied in our paper (see our discussions below).

For convenience, we rewrite the TR subproblem discussed in Wang, Wen and Yuan (2004) in the
form:



minimize %pTH p+g'p
s.t. p = Bz, 9)
2] < A,

where H is as defined in (2) with D = ~«I for some v > 0, and B = [—¢g V. For convenience, we
assume that B has a full column rank. Under this assumption, for any feasible solution (p, z) of (9),
we have

p=DBz = z=(BT'B)"'BTp,

and hence ||(BTB)~'BTp|| < A since ||z|| < A. Let M = B(BTB)~2B". Then, TR subproblem (9)
is equivalent to the TR subproblem:

minimize %pTHp +4¢'p (10)
s.t. Ipll iz < A

We shall notice that M > 0, but it may not be positive definite. Thus, the TR subproblem (10) is
not a special case of the LRTR subproblem studied in our paper.

Finally, the main contribution of this paper is to show that Moré and Sorensen’s algorithm can
be efficiently modified to solve large scale LRTR subproblems. The most interesting contribution of
this paper in this respect is the handling of the hard case. The paper also demonstrates the efficiency
of the proposed method when used to solve large scale NLP problems. We have not addressed the
issue of global convergence of the overall trust region method since we believe this issue would easily
follow from well-known arguments used in the convergence analysis of trust region methods.

Again, thank you for your insightful comments.



