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Abstract

In this paper, we first develop “economical” representations for positive semidefinitness
of well-structured sparse symmetric matrix. Using the representations, we then reformulate
well-structured large-scale semidefinite problems into smooth convex-concave saddle point
problems, which can be solved by a Prox-method with efficiency O(e~!) developed in [6].
Some numerical implementations for large-scale Lovasz capacity and MAXCUT problems
are finally present.

AMS 2000 subject classification: 90C22, 90C25, 90C51, 65K10

1 Introduction
Consider a semidefinite program
mzin{Tr(c:v) cz e NUSLYE, (1)

where S is the cone of positive semidefinite matrices in the space S of symmetric block-diagonal
matrices with a given block-diagonal structure, N is an affine subspace in S and ¢ € S. The
goal of this paper is to investigate the possibility of utilizing favourable sparsity pattern of a
large-scale problem (1) (that is, sparsity pattern of diagonal blocks in matrices from N') when
solving the problem by a simple first-order method. To motivate our goal, let us start with
discussing whether it makes sense to solve (1) by first-order methods, given the breakthrough
developments in the theory and implementation of Interior Point methods (IPMs) for Semidefi-
nite Programming (SDP) we have witnessed during the last decade. Indeed, IPMs are polyno-
mial time methods and as such allow to solve SDPs within accuracy € at a low iteration count
(proportional to In(1/¢)) and thus capable to produce high-accuracy solutions. Note, however,
that IPMs are Newton-type methods, with an iteration which requires assembling and solving a
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Newton system of n linear equations with n unknowns, where n = min [dim N, codim N] is the
minimum of the design dimensions of the problem and its dual. Typically, the Newton system is
dense, so that the cost of solving it by standard Linear Algebra techniques is O(n®) arithmetic
operations. It follows that in reality the scope of IPMs in SDP is restricted to problems with n at
most few thousands — otherwise a single iteration will “last forever”. At the present level of our
knowledge, the only way to process numerically SDPs with n of order of 10* or more seems to
use simple first-order optimization techniques with computationally cheap iterations. Although
all known first-order methods in the large-scale case exhibit slow — sublinear — convergence and
thus are unable to produce high-accuracy solutions in realistic time, medium-accuracy solutions
are still achievable. Historically, the first SDP algorithm of the latter type was the spectral bun-
dle method [5] — a version of the well-known bundle method for nonsmooth convex minimization
“tailored” to semidefinite problems. A strong point of the method is in its modest requirements
on our abilities to handle matrices from N — all we need is to compute few largest eigenvalues
and associated eigenvectors of such matrices. This task can be carried out routinely when the
largest size p of diagonal blocks in matrices from S is not too large, say, u < 1000. Note that
under this limitation, n still can be of order of 10°, meaning that (1) is far beyond the scope of
IPMs. Moreover, the task in question still can be carried out when p is much larger than the
above limit, provided that diagonal blocks in the matrices A € N possess favourable sparsity
patterns. A weak point of the spectral bundle method, at least from the theoretical viewpoint,
is the convergence rate: the inaccuracy in terms of the objective can decrease with the iteration
count ¢ as slowly as O(¢t~'/?) (this is the best possible, in the large scale case, rate of convergence
of first-order methods of nonsmooth convex programs). Also, theoretical convergence rate re-
sults are not established for the first-order SDP algorithms proposed recently in [1, 2]. Recently,
novel O(t !)-converging first-order algorithms, based on smooth saddle-point reformulation of
nonsmooth convex programs were developed [7, 8, 6]. Numerical results presented in these pa-
pers (including those on genuine SDP with n as large as 100,000 — 190,000 [6]) demonstrate
high computational potential of the proposed methods. However, theoretical and computational
advantages exhibited by the O(t~!)-converging methods as compared to algorithms like spectral
bundle have their price, specifically, the necessity to operate with eigenvalue decompositions of
matrices from S rather than to be able to compute few largest eigenvalues of matrices from N .
As a result, the algorithms from [7, 8, 6]) as applied to (1) become impractical, provided that
the largest size p of diagonal blocks in matrices from S exceeds about 1000.

The goal of this paper is to demonstrate that one can extend the scope of O(t !)-converging
first order methods as applied to semidefinite program (1) beyond the just outlined limits by
assuming that diagonal blocks in matrices from N possess favourable sparsity patterns. This
type of semidefinite program (1) has also been studied in [3] via matrix completion in the context
of IPM. The outline of the paper is as follows. In section 2, we explain what a “favourable sparsity
pattern” is and introduce some notation and definitions which will be used throughout the paper.
In section 3, we develop our main tool, specifically, demonstrate that positive definiteness of
a large symmetric matrix A possessing a favourable sparsity pattern can be represented via
positive semidefiniteness of a bunch of smaller matrices linked, in a linear fashion, to A. We
derive also the “dual counterpart” of the outlined representation, which expresses the possibility
of positive semidefinite completion of a “well-structured” partially defined symmetric matrix
in terms of positive semidefiniteness of a specific bunch of fully defined submatrices of the
matrix’). In section 4 we utilize the aforementioned representations to derive saddle point

DThis result, which we get “for free”, can be also obtained, with a moderate effort, from general results of [4]



formulations of some large-scale SDP problems, specifically, those of computing Lovasz capacity
of a graph and the MAXCUT problem, with emphasis on the case when the incidence matrix
of the underlying graph possesses a favourable sparsity pattern. We demonstrate that the
complexity of solving these problems within a fixed relative accuracy by an appropriate O(t~1)-
converging first order method (namely, the Mirror-Prox algorithm from [6]) is by orders of
magnitude less than complexity associated with IPMs, and show that with our approach, we
indeed can utilize a favourable sparsity pattern in the incidence matrix. In concluding section
5, we illustrate our constructions by numerical results for the MAXCUT and Lovasz capacity
problems on well-structured sparse graphs.

2 Well-structured sparse symmetric matrices

In this section, we motivate and define the notion of a symmetric matrix with “favourable
sparsity pattern” and introduce notation to be used throughout the paper.

Motivation. To get an idea what a “favourable sparsity pattern” might be, consider semidefi-
nite program (1), and let A%, ¢ = 1,..., L, be the diagonal blocks of a generic matrix from N. As-
sume that these blocks possess certain sparsity patterns. How could we utilize this sparsity? Our
first observation is that even high sparsity by itself can be of no use. Indeed, consider the sim-
plest SDP-related computational issue, that is, checking whether a matrix A = Diag{A!, ..., A}
from N is or is not positive semidefinite. Assuming that we are checking positive semidefinite-
ness of sparse symmetric matrices A¢ by applying Cholesky factorization algorithm, that is, by
trying to represent A¢ as DgDzzr with lower triangular Dy, the nonzeros in D, will, generically, be
the entries 4, j with i —v; < j <4, where i —v; = min{j : Afj # 0}. In other words, when adding
to the original pattern of nonzero entries all entries 4, j with ¢ — v; < j < ¢ (and all symmetric
entries), we do not alter the fill in of the Cholesky factor. In other words, we do not lose much by
assuming that the original pattern of nonzeros already was comprised of all sub-diagonal entries
(4,7) with i —v; < j <14, with added symmetric entries. For notational convenience, we prefer to
work with “symmetric” situation, where the nonzero entries are super-diagonal entries ¢, j with
1 < j < i4w;, and the symmetric sub-diagonal entries; note that matrices of the former type can
be obtained from those of the latter one by reversing the order of rows and columns. We arrive
at the notion of a well-structured sparse n X n symmetric matrix with sparsity pattern given by
a nonnegative integral vector v; such that 7 + v; < n for all 7; the “hard zero” super-diagonal
entries 4,7 (¢ < j) in such a matrix are those with j > ¢ 4+ v;. Note that for such a matrix
A, the “hard zeros” in the upper triangular factor U of the Cholesky factorization A = UUT,
are exactly the same as hard zeros in the upper triangular part of A. In particular, if A is a
well-structured sparse symmetric matrix with > v; << n?, then it is relatively easy to check

whether or not A > 0; to this end, it suffices to azpply to A the Cholesky factorization algorithm
(where the factorization being sought is A = UU” with upper triangular U).

We are about to introduce terminology and notation allowing to operate with “well-
structured”, in the sense we have just motivated, sparsity patterns.

Notation. Let J C {1,...,n} be an index set with £ > 0 elements. We denote by [B;;li jcs
£ x £ matrix with rows and columns indexed by elements from J, and by |B;;[; jes — the n x n
matrix with entries B;; for all 4, 7 € J and zero entries for the remaining pairs i, 5.

on existence of positive semidefinite completions.



Simple sparsity structures and associated entities. Let v € R" be a simple sparsity
structure — a nonnegative integral vector such that i + v; < n for all ¢ < n. We associate with
structure v the following entities:

1. A subspace S in the space S™ of symmetric n x n matrices; S(*) is comprised of all
matrices [Aij]?,jzl from S™ such that A;; =0 for j > i+ v;.

2. The set I = {i1 < ig < ... < iy} of all integers representable as i + v; with i < n. Note
that 4,, = n, since n + v, = n (recall that i + v; < n and v; > 0). We refer to m as to
number of blocks in v.

3. The sets
Jp = {Z <igritv > Zk}a Jli: = {Z €Jp:i < Z.k—l}’ k= L..,m, (2)

where 49 = 0 (that is, J{ = 0). Note that Jp\Jx—1 = {ix—1 +1,...,7x} and that J; C Jy_1,
where Jy = 0.

4. The set of occupied cells ij — those with i < j < i+w;. For an occupied cell 5, both integers
i+ wv; and j + v; are elements of the set I = {i1,...,%y,}; thus, min[i + v, j + v;] =4y, for
certain ky =k (4,5) < m. Since j < i+wv;, we have j < min[i+v;, j +v;] = i, . Therefore
the smallest &, let it be called k— = k_(4, j), such that j < i, satisfies k_ < k. Since j+v;
is one of 15, we conclude that j+wv; > 4;_. Note that the segment D;; = {k_,k_+1,...,k; }
is exactly the segment of those k for which i and j belong to Ji; we denote by £(, j) the
cardinality of D;;.

5. Two diagonal matrices £ and K defined as

£ = Diag{£(1,1)7/2, .. ¢(n,n)""/?}, K = Diag{£(1,1), ..., £(n,n)}. (3)

6. The Euclidean space B comprised of collections B = {By = [szj = Bf-]i,je Tty of

symmetric matrices and equipped with natural linear operations and the norm

m
I1BllF = 1Bk %,
k=1

where || Bg||r is the Frobenius norm of By.

7. For B = {By = [Bf; = Blli jes, }it1 € B, we set
B* =1BE[; jes,€ 8™, k=1,...,m.
and define linear mapping S(B) : B — S(*) as

S(B) = f: Bk
k=1

Finally, in the sequel Apin(A) (Amax(A)) denotes the minimal, resp., the maximal eigenvalue of
a symmetric matrix A.



3 Representation results for well-structured sparse symmetric
matrices

Consider again semidefinite program (1). Assuming the diagonal blocks Af in a generic matrix
A € N to be sparse, with well-structured sparsity pattern as defined in section 2, it is relatively
easy to verify whether the Linear Matrix Inequalities (LMIs) are satisfied at a given point
(since the Cholesky factorization Af = UgUZT with upper triangular U; does not increase fill in).
This possibility, however, in many respects is not sufficient. When solving SDPs by numerous
advanced methods, including interior point ones, we would prefer to deal with many small dense
LMIs rather than with few large sparse ones, at least in the case when the total row size of
the former system of LMIs is of the same order of magnitude as the total row size of the latter
system. In this respect, the following question is of definite interest:

Given a well-structured sparse matrix A, is it possible to express the fact that A > 0
by a system of relatively small LMIs in variables A;; and perhaps additional vari-
ables?

We are about to give an affirmative answer to this question.

3.1 Positive semidefiniteness of well-structured sparse matrices

We start with a necessary and sufficient condition for a matrix from S(*) to be positive semidef-
inite.

Proposition 3.1 (i) A matriz A € S® is > 0 if and only if there exists B = {By = [szj =
Bfi]i,jejk = 0}7-, € B such that

A=S8(B) = i BF. (4)
k=1

(ii) Whenever B = {By = [ij]z',je.]k >~ 0}», satisfies (4), one has

S IWT B W < W AW |7 (5)
k=1
(iii) We have
VB e B : |LY/2S(B)LY2|r < |B|r, (6)

where L is given by (3).

Illustration: Overlapping block-diagonal structure. Before proving Proposition 3.1, it
makes sense to “visualize” its simplest “overlapping block-diagonal” version. Consider a sym-
metric block-matrix of the form

PR
* k%
***ﬁ\—

A= * % ok k%

* % k% %
* ok % %
* ok x %k




where * mark nonzero blocks. Proposition 3.1.(i) says that such a matrix is positive semidefinite
if and only if it is sum of positive semidefinite matrices of the form

* k%
* k%
* k% *

* % X %
* X X ¥
* X X ¥
L S

and similarly when the number of overlapping diagonal blocks is > 3

Proof of Proposition 3.1. (i): Induction in m. For m = 1 the statement is evident. As-
suming that the statement is valid for m = s, let us prove it for m = s + 1. The “if” part
is evident; thus, assume that A € S®) is »= 0, and let us prove the existence of the re-

quired By. For € > 0, let A, = [ P @ ] with %, 1 X %;,_1 block P. For ¢ > 0, let

Q" |R+el

QR+eN'Q"| Q
QT ‘ R+ el
have A, — B¢ > 0, thus, B¢ remains bounded as ¢ — +0. Thus, we can find a sequence ¢; — 40,
t — oo, such that IB™ = hm B¢t; observe that both B™ and A— B™ are > 0. By construction,

B™ = 0 and B™ =|B}} [zjeJm, besides this, the rows ¢ and the columns j in C = A — B™ with

1,7 > imym—1 are zero. Removing these rows and columns, we get a 4,1 X 4,—1 matrix C e s ),
where v} = min[iy, 1 —14,v;], 1 <7 <4p_1 = dimv’. Clearly, the number of blocks in v’ is m — 1,
and the corresponding index sets Ji, 1 < k < m — 1, are the same as for v. Applying to C

the inductive hypothesis, we can find m — 1 matrices B* :]ij lijes,= 0, k =1,...,m — 1, such

B¢ =

, so that B¢ > 0 > 0. By the Schur Complement Lemma, we

m—1 m

that C = Y. B*, whence A = C + B™ = 5. B* with B* > 0 of the required structure. The
k=1 k=1

induction is over.

(ii): For matrices B,C > 0, one has Tr(BC) > 0. It follows that under the premise of (ii)
one has | S WTB*W |2 > 3 |[WTB*W 2.
k k

(iii): Let A = S(B), so that A;; = B’c We have
k:,jE€Jg

IC2ALY2E = 5 ALV i)e G, g)
2

= Z( ) Bk) 120,002 (5, )

k:,jE€Jg Card
< k2 Lard({k:i,jeJx})
- ?jk:i,]ZEJk( U) £(3,3)€(5,5)
Card({k:i,jeJk})> k\2
< Redlnhen W Gdld FASLS 3 P2 BE.
= (“%3" ©,0)EG7) 'Z,]:'ki,gzéJk( i)

— (ma Card({k z,]EJk} ) || ||F,
i, £(i,0)E(j

thus, in order to prove (iii) it suffices to verify that

Card({k : 1,5 € Ji}) < \/€(i,4)£(5, ) (7)



for every 4, 5. This is evident due to

Card({k : 4,7 € J}) < min[Card({k : i € Ji}),Card({k : j € J})] = min[l(i,3),£(j,7)].m

Proposition 3.1(i) establishes a characterization for positive semidefiniteness of matrices from
S@) . but it does not give the explicit formulas for the matrices B, = [szj = B]I'ci]i,je Ji- We

next develop an equivalent reformulation of positive semidefiniteness of matrices from S() by
introducing some additional variables.

Lemma 3.1 Let m > 1. A matriz A € SO is = 0 if and only if there exists matriz A™~! =
(A™ T = [A7 Y] jesr, such that the matrices

Aij7 Z¢J;n orj¢J,’n

BEBMA,A’"*):[BMLJEM:Bia':{ AL e ®
ij U m
and
~ - A i€ J orjé&J
C = C(A, A" ) = [Cilimt = S L Im " )
m( ) [ U]Z,]—l L { AZJ _Aij 1, %, € J’IITL ( )

are positive semidefinite.

Proof. A is the sum of matrices obtained from B and C by adding a number of zero rows and
columns; thus, if B and C are > 0, so is A. Vice versa, assuming A > 0, let us prove that there
exists A™~1 such that the corresponding matrices B, C are > 0. Let d =4y, —tp—1 =1 — 1,
let @ be the South-East d x d angular block in A, and P be the matrix with |J/,| rows, indexed
by i € J/, and d columns indexed by j € Jp\JIm—1 = {im—1 + 1,im—1 + 2,...,%m, = n} given
by Pij = A;j. Let € > 0. Setting A = P(Q + eI;)~'PT and applying the Schur Complement
Lemma, we conclude that the matrices

A+ 0%, igJ orjdlJ!
B* = [Bijl jes,, - Bis = { N " "

257 Za] € Jrln
and
€ _ € Tm—1 . € _ Aija 7 ¢ J;n orj ¢ J;n
¢ = [C”]z',jzl $Cy = { Aij =AY, 6,5 €y,

are = 0. As ¢ — 40, the matrices A€ remain bounded; indeed, by construction A€ > 0 and
A€ < [Aij]i,jeJ;n due to C¢ = 0. Thus, we can find a sequence ¢, — +0 in such a way that
A% - A =A""1 ast — oo, whence 0 < B — B,,(A,A™ 1) and 0 < C — C,, (A, A™ ) as
t — oo, that is, By, (A4, A™1) = 0, Cpn(A, A™ 1) = 0, as required. O

Observing that matrix C = Cy,, (A, A™ 1) belongs to S®), where v’ = (v},...,v )T, where
vj = min[v;,ipm-1 — 4], 1 <4 < 41, and applying Lemma 3.1 recursively, we arrive at the
following result.

Theorem 3.1 Let v € R"™ be an integral nonnegative vector such that i + v; < n for all i, let
I ={i1 <iy <..< iy} bethe image of {1,2,...,n} under the mapping i — i + v;, and let the
sets Ji, J;, be defined by (2). A matriz A € S is > 0 if and only if this matriz can be extended,



by properly chosen matrices A* = [AL]T = [A%]i,j € Jl,c-l—l’ k=1,2,....,m —1, to a solution of
the explicit system of m LMIs

Br(A,A) =0, k=1,....m (10)
given by the following recurrence:

Initialization: Set k = m, C™ = A. Step k, m > k > 1: Given matriz C* € S(”k),
with v¥ = minfiy —i,v;], i = 1,2.,,,.ix, set

Clc~, 1 € Ji J] orj € Jy J;
Bu(A,A) = [BEliges, : BS ={ G, eI Vi
ij

i,j € J},
If k =1, terminate, otherwise set
oh-1 [C?“.—l]m_l okl Cz)cj’ . i ¢J,’c orj & Jj,
4o lij=1" "1 Ch—Af, 4,5 €J],

replace k with k — 1 and loop.

From the construction of By = B(A, A) above, we see that each cell ij with ¢ < j belongs
to By exactly for k& from the segment k_(i,7) < k < k4 (7,7), and for those k the corresponding
entry ij in B¥ is

Aij k_(i,d) = k= ki (i,5)
(i) 1 _. o

Bl ={ Ay- V:E(i j) AY, k-(i,5) = k < k(i) (11)
Al k_(i,5) <k < ky(i,5)

Note that AF is the principal sub-matrix in By corresponding to 4,5 € Jy1, and that A is
the sum of matrices obtained from Bi,...,B,, by adding zero rows and columns. We arrive at the
following result.

Theorem 3.2 A matriz A € S®) is = 0 if and only if there ezist matrices AF = [AF]T =
[Afj]i’jeJlch, 1 <k <m—1, such that the matrices By = B(A, {AF}" ) = [szj]i,je]k given by
(11) are > 0. Whenever this is the case, one has

AP = 0 k=1,...m—-1
m=1 (12)
> Tr(A%) < Tr(A).

k=1

Let v € R" be a fixed sparsity structure, and Ji, J;, k = 1,...,m, be the corresponding
index sets. We set

A = A={AF=[AFT = [Afj]i,jeJ,; ?;11} ’

{ ey ”
A, = {AGA:A’CEO, E=1,..m—-1, % Tr(Ak)gp}
k=1

and denote by Bi(4,A) = [Bl“j(A, A))ijes, the linear matrix-valued functions of A € S,

2

A € A defined by (11). Finally, let

Amin(Aa A) = lg'llcl<nm Amin(Bk (Aa A))

The following proposition will be used in section 4.



Proposition 3.2 Let A € S®), A € A be such that Amin(A,A) = =X < 0. Then A = —)\K,
where K is given by (3).

Proof. Let AF, = AL, 17 dlet A=A+ A\K. By (11 h
. Let A, = AF 4 i:j,an et A=A+ AK. By (11), we have
‘7 b

i,j € Jy = BY(A,A) — Bl (A,A) = A,
whence B(A,A) = 0,and A=A+ AC = 0. u
Sizes of S. We have expressed positive semidefiniteness of A € S() as solvability of certain

system S of LMIs in variables A and additional matrix variables A¥, k = 1,...,m — 1. The sizes
of § are as follows:

1. Number and sizes of LMIs. S contains m LMIs Bg(A,A) > 0 of row sizes Sy = |Ji/,
k=1,..,m.

2. Number of additional variables. Let dy = iy — i1, kK = 1,...,m. Clearly, step k& > 2 of
(AR EARIEDY)
2

our construction adds V;, = additional variables, and step £ = 1 does
not add new variables. Thus, the total number of additional variables is

V= i ([ k| = di) (| Jk| — di + 1)

k=2 2

Example: staircase structure. Before ending this subsection, we present an example for
positive semidefinite staircase matrices to illustrate the result established in Theorem 3.2.

Let d = (doy,du,...,d,) be a staircase structure - collection of integers with dy > 0 and
di,...,d, > 0, and let |d| = do + ... + dj,. Collection d defines the subspace Sld of d-staircase
symmetric matrices in S!% which is comprised of (114 1) x (14 1) block matrices [A,J]f’ j=o With
d; x dj blocks A;; such that A = AT and Ajj=0for0<i<yj—1:

Agp | Aoy | Ao ... Aoy Ao

Aesiloan |2 (Ao o) A

T T
AO,u—l Au—Z,u—l Aufl,ufl Aufl,u

T T
Ao A1 App |

In view of the definition of simple sparsity structure, we easily see that A € Sl iff 4 € SO,
where v is a simple sparsity structure defined as

d —i, i<do
k+1

k—1 k
Edj_i, Zdj<’i§2djf0rk:1,---,’u,—1
Vi =N j=0 =0 j=0

u—1
i T d<i<ld
]:



k+1
We also see that there are m = p — 1 elements i; < ... < 4y, in I given by i = ) d; for
§j=0

k=1,---,m. Using Theorem 3.2, we immediately have the following result.

Proposition 3.3 A d-staircase matrizc A = [Aij]észo is positive semidefinite if and only if there
ezists

; ; —2
P R I VR N N G ) '
Ay Jr[ag, )T T i
such that
h2 1]
Aop = 2 Ao | Ao | Aoz = A
J= = 0
A0T,1 A1 A1 -
ATo — (A5 [ A, | Az — A3, |
. - o
Ag),o Ag),1 AO,j+1 - Afm
—T1 —T
[A%,l 1" A{,l Ajit = 0,7=2,..,u—2
AG i = (AT | AT | Ajragn — A

n—2 u—2
A0,0 A0 1 AO,/.L

p=21T p=2

[AG17] AV [ Aup = 0
T T

AO,u Aufl,u AN,N i

3.2 Positive semidefinite completion of matrices from S

The cone ng) of positive semidefinite matrices from S(*) is the intersection of the positive
semidefinite cone S”} and the linear subspace S() ¢« 8", Since this subspace clearly intersects the
interior of S}, the cone C®) of matrices from S which is dual to Sg?) w.r.t. the Frobenius inner
product is exactly the cone of matrices Z from S(*) admitting positive semidefinite completion,
that is, those Z which can be made positive semidefinite by replacing “hard zero” entries ij
(those with j > ¢ 4+ v; or i > j 4+ v;) with appropriately chosen nonzero entries. Proposition 3.1

implies the following result.

Proposition 3.4 A matriz Z = [Zij];-ﬂjzl c s belongs to c®) if and only if all matrices
(Zijli jess B =1,2,...;m, are = 0.

Proof. By Proposition 3.1, Z € C® if and only if the optimal value in the optimization

problem
min {Tr <Z Z]ij[i,jeJk> } (P)
k=1

{]ij li,jes, =037,

is > 0. Since the problem clearly is strictly feasible and homogeneous, this is so if and only if
the semidefinite dual of (P) is feasible, that is, if and only if

k
HZ = Zjiliges, = OYiy D T((Z1IBE]) = Te(Z Y 1Bfjlijer),
k=1

10



where = holds true identically is {[Bf; = Bf]i ez, }i,, which is equivalent to Z; = Zf,

i,j € Jx, k= 1,...,m. In other words, Z € C if and only if [Z;]ijes, = 0,k =1,...,m. u

Remark 3.1 The result stated in Proposition 3.4 can be obtained, with a moderate effort, from
the results of [4] on necessary and sufficient conditions for a partially defined symmetric matriz
to admit positive semidefinite completion.

Corollary 3.1 For A € S® one has

Amax(4) = m}z}x{’I‘r(AY) LY € 8O, Te(Y) = 1,[V;] =0,k=1,2,.,m}.  (14)

Indeed, for A € S™ we have Apax(A4) = mgx{Tr(AY) :Y €87, Tr(Y) = 1}; when A € SO,
the latter formula clearly can be rewritten as Amax(A) = max {Tr(AY) Y € CW Tx(Y) = 1}.
Invoking Proposition 3.4, we arrive at (14).

Before ending this subsection, we give an example on positive semidefinite completion of

staircase matrices from Sl4 to illustrate the result established in Proposition 3.4.

Proposition 3.5 Let d be a staircase structure with > 1, and Cl¥ be the cone of d-staircase

matrices B admitting positive semidefinite completion. Then, a matriz B € S belongs to Cl
if and only if

Boo | Bo; | Boj+
By, | Bjj | Bijr1 | =0,j=1,..,p—1 (15)
Bii1 | Bl | Bisrgti

4 Using the representations

In this section, we will use the representations presented in Subsections 3.1 and 3.2 to refor-
mulate some large-scale SDP problems into saddle point problems. The saddle point problem
reformulations for a class of SDPs, and SDP relaxations of Lovasz capacity and MAXCUT
problems are given in Subsections 4.1, 4.2 and 4.3, respectively.

4.1 Semidefinite programs with well-structured sparse constraint matrices

Let v be a simple sparsity pattern. Consider semidefinite program
Opt = max {CTJ; cx € X, Alz] = O} , (16)

where X is a “simple” (see below) convex compact set in RY and A[z] is affine matrix-valued
function on X taking values in S(*).
Throughout this subsection, we make the following assumptions:

A.1. We know a point T € X such that A[z] > 0;
A.2. We are given a finite upper bound, Opt"P, on the optimal value Opt in (16);
A.3. We are given a finite upper bound, p, on the quantity

max {Tr(Alz]) : z € X, Alz] > 0}.

11



Given a point Z mentioned in A.1, let
v = max {t : A[z] = tK}. (17)
We start with the following simple fact (a kind of “exact penalty” statement):

Lemma 4.1 Let Y = {Y = {Y* = [V}}]; jes, }iey - YF = 0, Te(Y*) < 1}. Given T > 0, let
k

us associate with (16) the saddle point problem

wcHREn, T ) o)
m
Fr(z,A) = min [Tz + T Y Tr(Y*B(A[z], A))
Yey k=1
(for the definition of A,, see (13)). Assume that
1
T > ~(Opt - c'z). (19)
If (ze € X, A¢) is an e-solution to (18), then the point
1 v max[0, —Amin(A[ze], A¢)]
€
= € ; = ) 2
x 1+7$ +1+7m 0l » (20)

is a feasible e-solution to (16).

Proof. We clearly have
Fr(z,A) = ¢’z 4+ T min[Amin (A[z], A), 0].

Further, by Theorem 3.2, A[z] with z € X is = 0 if and only if max Amin(A[z], A) > 0; thus,
p

when 1z is feasible for (16), we have sup Fr(z,A) > cl'z, so that the optimal value of (18) is
A€A,

> Opt. Consequently, e-optimality of z. for (18) implies that
Fr(ze, A) = ¢z + Tmin[Amin(Az], Ac),0] > Opt — €. (21)

It is possible that Amin(A[z¢], A¢) > 0; then z, is feasible for (16) by Theorem 3.2, z¢ = z., and
(21) says that z€ is e-optimal solution to (16). Now let Amin(A[zc], Ac) = =X < 0, so that v = 2.
Then (21) implies that

> Opt —e+TA+vc'zZ = Opt(l+7v) — e+ AT — y[Opt — ¢’ 7]
= Opt(1+7) — e+ A[T — v~ 1[Opt — ']
> Opt(l+7v)—c¢

e+ ’ycT:T:

(we have used (19)), whence ¢! z¢ > Opt—e. It remains to note that Az.] = —AK by Proposition
3.2, while A[Z] > vK; it follows that

A
Alz] = (1+7) M (Alad +7A[z) = (1 +)7" [—Aic + ;I/IC] — 0. .
Lemma 4.1 combines with the results of [6] to yield the following

12



Theorem 4.1 Consider problem (16) satisfying Assumptions A.1 — A.3, and let X be either
(a) the Euclidean ball {x € RN : ||z|]s < R}, or the intersection of this ball with nonnegative
orthant,
or
(b) the boz {x € RY :||z||e0 < R},
or
(c) the || - ||1-ball {z € RN : ||z||; < R}, or the simplez {x € RN : 0 < T,y z; < R}, or the
7

simplez {r ¢ RN : 0 < z,> z; = R}.
i

Assume that we are given an upper bound x on the norm of the homogeneous part of Al]
considered as a linear mapping from (RN, |- ||x) to (S, ||-1|), where ||-||x is ||-||2 in the cases
of (a), (b), and is || - |1 in the case of (c), while || - || is the standard matriz norm (the largest
singular value).

Under the outlined assumptions, for every e > 0 one can find a feasible e-solution ¢ to (16)
(so that Alz¢] = 0 and ¢!z < Opt + €) in no more than

u _ [XR + pvInn], case of (a)
N(e) = 0(1)[0pt P—claVinn [XBVN + pvInn), caseof (b) ,  (22)

ve [xR\/In(N) + pv/Inn], case of (c)

steps, with computational effort per step dominated by the necessity

e to compute A[z], for a given z;

e to compute, given m symmetric matrices of the row sizes |Ji|, k = 1,...,m, the eigenvalue
decompositions of the matrices.
Above, O(1) is an absolute constant, N = dimz, n is the row dimension of A[-], and v is given
by (17).
P _ OptuP—cT;E . . . . .
roof. Let T' = ~“~———. By Lemma 4.1, an e-solution to (16) is readily given by e-solution
to the saddle point problem (18) with 7" we have just defined. Now, problem (18) is of the form

u:(w,gl)%))((xAp Y lin(u,Y) + T(A(z) + D(A),Y)], (23)

where
e lin(u,Y) is an appropriate affine function of u,Y,
oY =Diag{Y!,..,.Y"}, Yk = [)’i’;]i’jeJk, k=1,...,m, S is the linear space of all block-diagonal
matrices Y of the indicated block-diagonal structure, and Y ={Y € S: 0 XY, Tr(Y) < 1};
e A(-) is the linear mapping from R” into S defined as follows. Given z € R", we compute the
homogeneous part A = A(z) = A[z] — A[0] of the mapping A[] at x. k-th diagonal block A*(z)
in A(z), k = 1,...,m, is the contribution of A to Bi(A[z], A), see (11);
e D(-) is the linear mapping from the space S of block-diagonal matrices A = Diag{A!,...,A™ 1},
Af = [Afj]i,je Ty into S defined as follows: k-th diagonal block D¥(A) in D(A) is the contri-
bution of A to Bi(A[z],A), see (11);
e A, is the set of all positive semidefinite matrices from S with trace < p
e finally, (-,-) is the Frobenius inner product on S.
Now, as shown in [6], the Mirror-Prox algorithm from [6] solves problem (23) within any given
accuracy € > 0 in no more than

N(e) = O(l)TLXY\/ Ox Oy -Eir Lay+v/OaABy

13



steps of the complexity indicated in Theorem 4.1, where

R?, case (a)
©x =<{ R’N, case (b) , Oy =Inn, Op = p?lnn,
R%InN, case (c)

Lxy is the norm of the linear mapping A considered as a mapping from (RY, |-|/x) to (S, -],
and Lay is the norm of the linear mapping D considered as the mapping from (,§ o] - 11) to
(S, - ||), where |Al; is the sum of modulae of eigenvalues of A € S. It remains to evaluate
Lxy and Lay. Let z € RY satisfy ||z]x < 1, and let A = A(z), so that ||A|| < x. Invok-
ing (11), it is immediately seen that A¥(z), for every k, is a “border” in A: there exist two
principal submatrices in A embedded one into another such that A¥(z) is obtained from the
larger submatrix by replacing the entries belonging to the smaller one by zeros. By Eigenvalue
Interlacement Theorem, both submatrices are of norm < y, so that the “border” is of norm
< 2y, whence | A(z)|| < 2x. Thus, Lxy < 2x. Now let us bound Lay. The extreme points
of the unit | - |;-ball D in S are block-diagonal matrices with just one nonzero diagonal block,
which is a symmetric rank 1 matrix of the corresponding size with the only nonzero singular
value equal to 1, or, which is the same, is a rank 1 matrix of the Frobenius norm equal to 1. For
such a matrix A, it follows immediately from (11) that the Frobenius (and then — the matrix)
norm of every block in D(A) is at most 2. Since La, is the maximum of the quantities || D(A)||
over the extreme points A of D, we conclude that Loy < 2. Combining our observations, we
arrive at (22). =

We have presented a rather general approach to solving SDPs by reducing them to saddle
point problems which are further solved by the O(¢~!)-converging Mirror-Prox algorithm from
[6]. In the sequel, we apply this scheme to the problems of computing Lovasz capacity of a graph
and to MAXCUT, with emphasis on utilizing favourable sparsity patterns of the underlying
graphs.

4.2 Computing Lovasz capacity for a graph with a favourable sparsity pattern

Let v = (v1,v1, ..., up41)7 € R™! be a simple sparsity structure with v; = n, and let G be an

undirected graph with n nodes, indexed 2, 3, ...,n+1, and the set of arcs E such that if (i,7) € E
and 7 < 7, then j < ¢+ v;. Let

= ki(i,7) — k_(i,5) +1]. 24

p 2Si§r§{?§i§w[ +(4,9) (,7) +1] (24)

Note that 4 is exactly the maximum, over nonzero entries ij, j > i > 2, of matrices from S(®),

number of those k = 1, ..., m for which i,j € J.
Consider the Lovasz capacity problem

9(G) = min {)\ M, —eeT — X =0,(i,j) ¢ E=X; 1, 1= 0}

X,
| et

T (25)
h %}? ' \/Ee‘AIn—X

t O, (7',.7) ¢ E = Xz'—l,j—l = 0}

where e € R" is the vector of ones and v > 0 is a parameter. Note that the equivalence of the
two optimization problems in (25) is given by the Schur Complement Lemma. Let M be the

14



v | el
Ve | Z

affine subspace in S(*) comprised of all matrices of the form [ ] with Z constrained

by the requirements
Zn =12y = . =Zpy; (1<j & (i,j) ¢ E) = Zi-1;-1=0.
We equip S (and thus M) with the Euclidean structure given by the inner product
(A,B); = (C\2ALY? /2Bl

where (P, Q) is the Frobenius inner product and £ = Diag{{é‘l/z(i,i) ?;11} (cf. (3)). The

norm on S(*) corresponding to the inner product (-,-), will be denoted || - ||c. We denote by P
the orthogonal projector of S(*) onto M, so that for any A € S(*) one has

v | el ]

P(A) =
(4) l Ve ‘ y(A)I, + A
n+1 n+1 -1 ~
where v(4) = ( S, z)Au) ( S, z)) and the matrix A is obtained from the South-
i=2 i=2

Eastern n xn angular block of A by replacing all diagonal entries and all entries 75 with (i,7) ¢ FE
with zeros.

Given an upper bound 8 < n on the Lovasz capacity, consider the following optimization
problem:

Opt = min {)\(B) +T||S(B) —P(S(B))|lc :

Bk t O,k‘ = 1,...,777,
B={By=B[=[BElijes, i,

S° Tx(B2) < R?
k=1

m
S(B) = ]EIB’“, B* =1BE i je,

n+1 n+1

-1
AB) = (S 60EE)) (T 60) =PSB0 5 =23+ 1,
=2 =2
R = \/gg(n + 2Card(E)) + v? + 2vn,

(26)
where T > 1.
Observe that
Opt < 9(@). (27)
Indeed, let X, be the X-component of the optimal solution to (25). Then the matrix Y, =

v | Vel
Vve | 9(G) I, — X,
certain B* € B with components B} = 0. From the latter fact and (5) it follows 3 || Bf[|% <
k

is > 0 and belongs to S(*); by Proposition 3.1, this matrix is S(B*) for

|Ya||%2 < R2, with the latter inequality readily given by the fact that |(X.)i| < 9(G) due to
Y, = 0. Thus, B* is feasible for (26); at this feasible solution, the objective of (26) clearly is
equal to A(B*) = 9(G), and (27) follows.

Observe also that (26) is nothing but the saddle point problem

i F(B,Y
BV D) )
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where
B = {BEB:By>=0,k=1,...m,Y ||Bel|%2 < R?}
k

Yy = {Yes:|yl. <1} (29)
F(B,Y) = XB)+T{Y,S(B)—P(S(B)))c
Note that by (6) the norm of the linear part of the affine mapping
B~ Q(B) = §(B) - P(S(B)),

m
treated as the mapping from the space B equipped with the norm ||B||r =,/ > ||Bg[|% to the
k=1

space S() equipped with the norm || - ||z is < 1.
Since the mapping Q is of norm < 1, from the results of [6] the saddle point problem (28)
can be solved within accuracy € > 0 in no more than

TR

(30)

steps, with the computational effort per step dominated by the necessity to find eigenvalue de-
compositions of m symmetric matrices of the sizes Card(Jy), ..., Card(J,,). Thus, computational
effort per step does not exceed

m
C =0(1))_ Card®(J). (31)
k=1
Assume that we have found an e-solution B = {B;}7, to (28), so that
A
A(B) +T || 8(B) —=P(8(B)) || < Opt +e. (32)
3

and By, > 0 for all k, whence S(B) = 0. Observe that
~ v | el
= B)) =

where X is of the structure required in (25). Since ||A|z = ~||E1/2A[,1/2||F = J, we have
LY2ALY? < 61,1, whence A < §£~'. This combined with S(B) ¥ 0 results in C' &= —6L£~".
We see that if 4 = max £(i,), then

2<i<n+1

v+ mb/% | Vel .0
Vve | ANB)+u0, -X |77

whence

v | Vel
\/lje ‘ u—l—n;l/25[)\(§) +M1/25]In _ u—l—n;l/MX

Thus, a feasible e-solution B to (28) can be easily converted to a feasible solution (A, X =
”J”mTI/Q‘sX) to (25) with the value of the objective

= 0. (33)

X o= wmEAN(B) 4 2]
< ""’mfl/% [Opt +e— (T - u1/2)(5] [see (32)]
< el (y(G) 4 e~ (1~ 23] see (27)] e

HG) +e+4 [% —(T _Ml/z)wrmfl/z,s]

16



We arrive at the following result:

Proposition 4.1 Let p = max ¥(i,i), and let

2<i<n+1

1/2
TZM1/2+m (191(/G)+€). (35)

Then e-solution to (29) induces a feasible e-solution to (25). The number of steps required to
get such a solution can be bounded by (30), (26), while the computational effort per step can be
bounded by (31).

Corollary 4.1 Given an upper bound 8 on YG), let us set

1/2p —
d(v) = (#1/2 + ’m70> \/92(71 +2Card(E)) + v2 + 2un

and 125
~ 0
p=argming(v), T=u"?+"—7

v>0

(36)

With T = f, the outlined procedure allows, for every e, 0 < e < o — @), to find a feasible
e-solution to (25) in no more than

steps, with the complexity of a step given by (31).

Corollary 4.2 Let Card(E) > n. Then, setting

v = min [aleard(E), 6>Card(E)n |,

-~

0y/mCard(FE)

€

one gets

N(e) < 0O(1)

~

Indeed, with v in question, we clearly have \/52(77, +2Card(E)) + v? 4 2vn < O(1)0/Card(E).
Consequently,

. 1/2 ml/2n, R
< 0(1)8y/Card(E)( 12 m _ )<010,/ Card(E).
#(v) < O(1)0y/ Card( )<&T72+max[¢@T(E)’ocard(E)] < O()fymCard(B). =
<m ~ ~ RS -~ _

B <1 <m1/2

Example: staircase structure. Let m, p be positive integers, and n = p(m + 1). Assume
that the incidence matrix of the graph is from S!%, where d € R™*! with d; = p fori =0, -- -, m.
Then, from (25), we see that

n+1, 1<i<2+p
itvi={ 1+(k+1p, 24+ ((k-1p<i<2+4kp, k=2,...m
1+(m+1p, 24+mp<i<n+1

17



In the preceding notation, we have iy, = 1+(k+2)p, k = 1,...,m—1, p = m—1, Card(Jy) = 3p+1,
Card(E) < O(1)mp?. Thus,

1/2
C=01)mp’, $(v) <O(1) <m1/2 + m79> (521) m+v? + upm)w;

Setting U = 5pm1/2, we get
. ~ o\ 1/2
$(D) < O(1)m'/? (azp m+p m3/29) & < O(1)6pm (1 +m1/29_1) / .

Since the stability number of the corresponding graph clearly is at least O(m), we have ¢(7) <
O(1)0pm. Consequently, computing Lovasz capacity within accuracy e costs at most

Om 0
O(1) == x mp® = 0(1) =

operations. For comparison:

1. Saddle point approach, similar to the above one, as applied to computing Lovasz capacity
for a general pm-node graph G with O(p?m) arcs and 9(G) < 6, results in the bound

O(l)M W’ see [6];

2. The arithmetic cost of a single interior point iteration in the problem of computing Lovasz
capacity of a general pm-node graph is as large as O(1)p®m®, and is at least pSm3 even in
the case of graph possessing the structure in question.

4.3 The MAXCUT problem on a graph with a favourable sparsity pattern
Consider a MAXCUT-type problem

Opt = max {Tr(VX) : X = 0,diag(X) = e} (37)

where diag(A) is the diagonal of a square matrix A and e is the vector of ones. Assume that
V € S for a given simple sparsity structure v. By Proposition 3.4 problem (37) is equivalent
to

Opt = mgg{) {Te(VX) : diag(X) = &, X*(X) = [Xijlijes, = 0, k=1,.,m}.  (38)

Xesw
Let X = {X € 8@ : |Xy| < 1Vi,j, Xy = Wi}, Y = {Y = {Y* = V] en i, : YF =
0,3 Tr(Y*) < 1}. Consider the saddle point problem
k

Opt* = max (X) = min | Tr(VX) + T i ’I‘r(Xk(X)Yk)] , (39)
k=1

where T > 0 is a parameter. Observe that the optimal value in (39) is > Opt. Indeed, if X,
is an optimal solution to (38), then clearly X, € X, and ®(X,) = Tr(VX,). Now let X be an
e-solution to (39), so that X € X and

_ > T _e> _
Tr(VX)-TX\ z Opt € > Opt — ¢, (40)

A = max]0, —Amin(X1(X)), ooy —Amin (X™(X))].

18



It is possible that A = 0, that is, X is feasible for (38); in this case, X is a feasible e-solution to
the latter problem. Now consider the case when A > 0, and let X = (1 + A)"Y(X + AI). Clearly,
X is feasible for (38). Setting X = X + A\I, we have

Tr(VX) = Tr(VX)+ ATe(V) > Opt — € + A\[Te(V) + T
= Tr(VX) > (1+A)71Opt— €+ A[Te(V) + T > Opt — e + (1 + A)"*A[T + Tr(V) — Opt]

We see that if
T > Opt — Tr(V), (41)

then X is a feasible e-solution to (38). This observation suggests the following scheme for solving
(38): given an upper bound Opt"? on Opt, we set T'= Opt"P — Tr(V) and solve saddle point
problem (39) within accuracy €, and then convert, in the just presented fashion, the resulting

X into a feasible e-solution to (38).

By [6], generating e-solution to (39) costs O(l)T—Vdimes(v) Vinn
effort per step dominated by the necessity to find eigenvalue decompositions of m matrices
Xk(X), k=1,...,m, where X € X. We arrive at the following result:

steps, with the computational

Proposition 4.2 Let an upper bound Opt"P on the optimal value in (37) be given. For every
e > 0, and e-solution to problem (37) with V € S®) can be found in no more than

[Opt"™ — Tr(V)]VInny/>r (1 + ;)

N(e) =0() 6

(42)

m
steps of Mirror-Proz algorithm [6], with O(1) Y. Card®(Ji) operations per step.
k=1

Remark 4.1 When V is a diagonal-dominated matriz: Vi; > E |Vij| (as it is the case in the

true MAXCUT problem), one clearly has Tr(V) < Opt < 2Tr(V). In this case, one can set
Opt"P = 2Tx(V), thus converting (42) into the bound N (e) < O(1 )Opt Vinn /30 (1 +v;).

Example: staircase structure. Let m, p be positive integers, and n = p(m + 1). Consider
the staircase structure d = (p,...,p) € R™"!, and assume that we are given an n-node graph
G with incidence matrix belonging to S!%. Given a matrix A of nonnegative weights of arcs

—Aij, i F#]
in G, let V;; = Z /Z]’ i =4 » so that (37) becomes the standard MAXCUT problem

associated with (A, G). By Remark 4.1, the outlined scheme allows to solve the latter problem

within any accuracy € > 0 at the arithmetic cost of O(1 )Opt p*m?/2,/In(pm) operations. Note
that the arithmetic cost of a single interior point iteration as applied to the “most economical”
dual reformulation of (37), is O(1)p*m3. It follows that when a “moderate” relative accuracy
¢/Opt, say, ¢/Opt = 0.01 is sought and m3/2 >> p./In(pm), the Mirror-Prox algorithm as
applied to the MAXCUT problem by far outperforms Interior Point techniques. The difference
becomes even more significant when we compare the complexity bound for Mirror-Prox with

the theoretical complexity bound of O(1),/pmIn (Opt) p3>m? operations for IPMs (the factor

O(1)y/pmIn (@) is the theoretical bound on the number of IPM iterations required to get

e-solution).
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5 Numerical implementation

In this section, we present the results of numerical experiments with the Lovasz capacity prob-
lem (25) and the (semidefinite relaxation of the) MAXCUT problem (37). These problems
were solved by the first order Mirror-Prox algorithm from [6] as applied to the saddle point
reformulations (28), respectively, (39), of the problems.

In our experiments, the incidence matrix has staircase structure with d = (p, ...,p) € R™*!

with dense p X p blocks allowed by the structure. Note that the number of nodes in such a
p2(5m—1)—p(m+1)
5 :

graph is n = (m + 1)p, while the number of arcs is For our computations,
we generated graphs with p = 2,3,---,6 and n ranging from about 10,000 to about 80,000
(so that the number of arcs varied from about 50,000 to about 1,100,000). We terminate the
computations when the relative error, as given by valid on-line inaccuracy bounds generated
by the Mirror-Prox algorithm, became less than 1% for both problems. All computations are
performed on Supermicro dual-2.66GHz Intel Xeon server with 2GB RAM.

Lovasz capacity problem. When solving this problem according to the scheme developed in
section 4.2, one needs an a priori upper bound 6 on ¥(G). Using the well-know result that Lovasz
capacity number of a graph G is bounded above by the chromatic number of the complement
graph, it easy to see that for the graphs we are generating one can take 6 = m, and these
were the upper bounds used in our computations. The results are presented in Table 1. In
the table, the first three columns report the sizes of our generated graphs. The fourth and the
fifth columns present the valid upper, respectively, lower bounds on ¥(G) as reported by the
Mirror-Prox algorithm. The last two columns report the number of steps and the CPU time.

Semidefinite relaxation of MAXCUT. The graphs used in our experiments have the same
structure as in the case of Lovasz capacity problems. The weights of the arcs were picked at
random from the uniform distribution in [1,11]. The results are presented in Table 2; the
structure of this Table is identical to the one of Table 1.
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‘ (m, p) ‘ Nodes ‘ Edges ‘ LwBnd ‘ UpBnd ‘ Tter ‘ CPU ‘
(4999,2) | 10000 | 44988 | 2.497e3 | 2.516e3 | 11757 | 3"55'16"
(9999, 2) | 20000 | 89988 | 4.996e3 | 5.045e3 | 17238 | 11750'58"

(14999, 2) | 30000 | 134988 | 7.484e3 | 7.545e3 | 30162 | 32"58'22"
(19999, 2) | 40000 | 179988 | 9.952e3 | 1.004e4 | 34833 | 51749'3"
(3333,3) | 10002 | 69987 | 1.660e3 | 1.676e3 | 10770 | 4722741"
(6666, 3) | 20001 | 139980 | 3.329e3 | 3.358e3 | 20097 | 167284
(9999, 3) | 30000 | 209973 | 4.998e3 | 5.046e3 | 24615 | 33"522"
(13333, 3) | 40002 | 279987 | 6.643e3 | 6.708e3 | 29154 | 5172'55"
(2499,4) | 10000 | 94952 | 1.249e3 | 1.259e3 | 8313 | 4711/37"
(4999,4) | 20000 | 189952 | 2.491e3 | 2.514e3 | 17412 | 17"52/14"
(7499, 4) | 30000 | 284952 | 3.747e3 | 3.784e3 | 21315 | 34"10'7"
(9999, 4) | 40000 | 379952 | 4.972e3 | 5.022e3 | 28737 | 61711'53"
(1999,5) | 10000 | 119925 | 9.970e2 | 1.001e3 | 9792 | 5743/27"
(3999,5) | 20000 | 239925 | 1.995e3 | 2.013e3 | 13041 | 157292
(5999, 5) | 30000 | 359925 | 2.989e3 | 3.016e3 | 23625 | 42"46'4"
(7999, 5) | 40000 | 479925 | 3.990e3 | 4.022e3 | 27381 | 75"41'56"
(1666,6) | 10002 | 144921 | 8.301e2 | 8.382¢2 | 9999 | 6"56/21"
(3333,6) | 20004 | 289950 | 1.659e3 | 1.676e3 | 14205 | 20727'42"
(4999,6) | 30000 | 434892 | 2.496e3 | 2.517e3 | 17403 | 46"12742"
(6666,6) | 40002 | 579921 | 3.331e3 | 3.364e3 | 21621 | 62733'58"
Table 1: Computational result for the Lovasz capacity problem
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‘ (m,p) ‘ Nodes ‘ Edges ‘ LwBnd ‘ UpBnd ‘ Tter ‘ CPU ‘
(4999,2) | 10000 44988 | 1.921e5 | 1.940e5 | 2604 51/22"
(9999,2) | 20000 89988 | 3.859¢5 | 3.898¢e5 | 3711 | 2720740”

(14999,2) | 30000 | 134988 | 5.775e5 | 5.833e5 | 3963 3"50'19"
(19999,2) | 40000 | 179988 | 7.725e5 | 7.802e5 | 4137 5h10746"
(39999,2) | 80000 | 359988 | 1.545e6 | 1.560e6 | 5622 1353719”
(3333,3) | 10002 69987 | 2.862e5 | 2.891e5 | 3447 | 1729'56"
(6666,3) | 20001 | 139980 | 5.717e5 | 5.775e5 | 3765 3h14'50"
(9999, 3) | 30000 | 209973 | 8.574e5 | 8.660e5 | 4536 5" 58/23"
(13333,3) | 40002 | 279987 | 1.146e6 | 1.157e6 | 5355 9h4’41"
(26666, 3) | 80001 | 559980 | 2.291e6 | 2.314e6 | 7260 24"24'51"
(2499,4) | 10000 94952 | 3.783e5 | 3.821e5 | 2673 | 1721'31"
(4999,4) | 20000 | 189952 | 7.585e5 | 7.660e5 | 3531 3"36'46"
(7499,4) | 30000 | 284952 | 1.137e6 | 1.148e6 | 4317 6"49'26"
(9999,4) | 40000 | 379952 | 1.515e6 | 1.530e6 | 4773 9742'54"
(19999,4) | 80000 | 759952 | 3.028e6 | 3.058¢e6 | 6393 25"5339"
(1999,5) | 10000 | 119925 | 4.703e5 | 4.750e5 | 3012 1753749
(3999,5) | 20000 | 239925 | 9.423¢5 | 9.517ch | 3177 | 3753726"
(5999,5) | 30000 | 359925 | 1.417e6 | 1.431e6 | 3741 9hg’1"
(7999,5) | 40000 | 479925 | 1.885e6 | 1.904e6 | 4338 10"32'40"
(15999,5) | 80000 | 959925 | 3.771e6 | 3.809¢e6 | 5508 26"32'50"
(1666,6) | 10002 | 144921 | 5.645e5 | 5.701e5 | 2487 1h44'37"
(3333,6) | 20004 | 289950 | 1.127e6 | 1.138e6 | 3153 4h23"17"
(4999,6) | 30000 | 434892 | 1.694e6 | 1.711e6 | 3558 9h42734"
(6666,6) | 40002 | 579921 | 2.257e6 | 2.279e6 | 4263 11753'27"
(13333,6) | 80004 | 1159950 | 4.514€e6 | 4.559¢6 | 5619 31"17'50"

Table 2: Computational results for the MAXCUT problem
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