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Abstract

The Multidimensional Assignment Problem (MAP) is a higher-dimensional version of the Linear
Assignment Problem that arises in the areas of data association, target tracking, resource allocation,
etc. This paper elucidates the question of asymptotical behavior of the expected optimal value of the
large-scale MAP whose assignment costs are independent identically distributed random variables
with a prescribed probability distribution. We demonstrate that for a broad class of continuous dis-
tributions the limiting value of the expected optimal cost of the MAP is determined by the location
of the left endpoint of the support set of the distribution, and construct asymptotical bounds for the
expected optimal cost.

Keywords: multidimensional assignment problem, random assignment problem, expected optimal
value, asymptotical analysis, asymptotical bounds

1 Introduction

The Multidimensional Assignment Problem (MAP) is a higher dimensional version of the two-
dimensional, or Linear Assignment Problem (LAP) [32]. If a classical textbook formulation of the Linear
Assignment Problem is to find an optimal assignment of “N jobs to M workers,” then, for example, the
3-dimensional Assignment Problem can be interpreted as finding an optimal assignment of “N jobs to
M workers in K time slots,” etc. In general, the objective of the MAP is to find tuples of elements
from given sets, such that the total cost of the tuples is minimized. The MAP was first introduced by
Pierskalla [34], and since then has found numerous applications in the areas of data association [5, 25],
image recognition [39], multisensor multitarget tracking [35, 36, 24], tracking of elementary particles
[38], etc. For a discussion of the MAP and its applications see, for example, [7, 9, 8] and references
therein.
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A d-dimensional “axial” MAP with equal number n of elements in each dimension has the form

min
n∑

i1=1

· · ·

n∑
id=1

ci1··· id xi1··· id (1)

s.t.
n∑

i2=1

· · ·

n∑
id=1

xi1··· id = 1, i1 = 1, . . . , n,

n∑
i1=1

· · ·

n∑
ik−1=1

n∑
ik+1=1

· · ·

n∑
id=1

xi1··· id = 1, k = 2, . . . , d − 1, ik = 1, . . . , n,

n∑
i1=1

· · ·

n∑
id−1=1

xi1··· id = 1, id = 1, . . . , n,

xi1··· id ∈ {0, 1}n
d
.

An instance of the MAP with different numbers of elements in each dimension, n1 ≥ n2 ≥ . . . ≥ nd , is
reducible to form (1) by introduction of dummy variables.

Problem (1) admits the following geometric interpretation: given a d-dimensional cubic matrix, find
such a permutation of its rows and columns that the sum of the diagonal elements is minimized (which
explains the term “axial”). This rendition leads to an alternative formulation of the MAP (1) in terms of
permutations π1, . . . , πd−1 of numbers 1 to n, i.e., one-to-one mappings πi : {1, . . . , n} 7→ {1, . . . , n},

min
π1,...,πd−1∈5n

n∑
i=1

ci,π1(i),...,πd−1(i),

where 5n is the set of all permutations of the set {1, . . . , n}. A feasible solution to the MAP (1) can be
conveniently described by specifying its cost,

z = ci (1)1 ··· i (1)d
+ ci (2)1 ··· i (2)d

+ . . .+ ci (n)1 ··· i (n)d
, (2)

where
(
i (1)j , i (2)j , . . . , i (n)j

)
is a permutation of the set {1, 2, . . . , n} for every j = 1, . . . , d . In contrast

to the LAP that represents a d = 2 special case of the MAP (1) and is polynomially solvable [7, 32], the
MAP with d ≥ 3 is generally NP-hard, a fact that follows from a reduction of the 3-dimensional matching
problem (3DM) [14]. Although a number of exact and heuristic algorithms for the MAP [1, 6, 10, 33]
have been developed in the literature, only small-to-moderate-sized instances of the MAP can be solved
routinely as of today due to immense complexity of the problem.

If one denotes the optimal value of an instance of the MAP (1) with d dimensions and n elements per
dimension as z∗d,n , then it is of interest to determine the (asymptotical) behavior of z∗d,n when either d or n
is large: n � 1 or d � 1. Evidently, such an analysis would require certain assumptions on the behavior
of the assignment costs of the MAP. This is facilitated by assuming that the cost coefficients ci1··· id

in (1) are independent identically distributed (iid) random variables from some prescribed continuous
distribution. This reduces the question at hand to asymptotical analysis of the expected optimal value
E
[
z∗d,n

]
of random instances of the MAP, which is denoted throughout the paper as Z∗d,n .

During the last two decades, expected optimal values of random assignment problems have been studied
intensively in the context of random LAP. Perhaps, the most widely known result in this area is the
conjecture by Mézard and Parisi [22] that the expected optimal value E[Ln] = Z∗2,n of an LAP of size
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n with iid uniform or exponential with mean 1 cost coefficients satisfies limn→∞ E[Ln] = ζ(2) = π2

6 ,
where ζ(·) is Riemann’s zeta function. In fact, this conjecture was preceded by an upper bound on the
expected optimal value of the LAP with uniform (0,1) costs: lim supn→∞ Ln ≤ 3 due to Walkup [40],
which was soon improved by Karp [18]: lim supn→∞ Ln ≤ 2. A lower bound on the limiting value of Ln

was first provided by Lazarus [19, 20]: lim infn→∞ Ln ≥ 1 + e−1
≈ 1.37, and then has been improved

to 1.44 by Goemans and Kodilian [15] and 1.51 by Olin [27]. Experimental evidence in support of the
Mézard-Parisi conjecture was provided by Pardalos and Ramakrishnan [30]. Recently, Aldous [3] has
shown that indeed limn→∞ E[Ln] = π2

6 , thereby proving the conjecture (in an earlier paper [2] the author
has established the existence of the limit of Ln). Another conjecture due to Parisi [31] stating that the
expected optimal value of a random LAP of finite size n with exponentially distributed iid costs is equal
to E[Ln] = Z∗2,n =

∑n
i=1 i−2 has been proven independently in [21] and [26].

This paper contributes to the existing literature on random assignment problems by establishing the lim-
iting value and asymptotic behavior of the expected optimal cost Z∗d,n of random Multidimensional As-
signment Problem with iid cost coefficients for a broad class of continuous distributions. We demonstrate
that, unlike the 2-dimensional LAP, the MAP with d ≥ 3 has an expected optimal value that depends on
the location of the left endpoint of the support set of the costs’ distribution. In particular, the expected
optimal value of an MAP with exponentially distributed cost coefficients approaches zero when either d
or n approaches infinity. The presented analysis is constructive in the sense that it allows for deriving
asymptotical lower and upper bounds for Z∗d,n that are converging when the support of distribution is
bounded from below, as well as to estimate the rate of convergence for Z∗d,n when the left endpoint of the
support is located at the origin.

The rest of the paper is organized as follows. The next section introduces the concept of the index graph
representation of the MAP that our approach is based upon. Using the structure of the index graph,
we construct simple expressions for the upper and lower bounds of the expected optimal cost Z∗d,n of
the MAP. In Section 3 we establish the main result of the present endeavor by determining the limiting
values of large-scale random MAPs for a wide spectrum of continuous distributions. Section 4 discusses
asymptotical bounds on the expected optimal cost of random MAPs and presents the corresponding
numerical results.

2 Index graph representation of the MAP and related lemmata

Our approach to determining the asymptotic behavior of the expected optimal cost Z∗d,n of an MAP (1)
with random cost coefficients is based on analysis of a directed graph that can be constructed to represent
the set of feasible solutions of the MAP. It is a variation of the index tree introduced by Pierskalla [34], a
tree structure in which each path from the root node to a leaf node corresponds to a feasible solution of
the MAP. For the purposes of current development, it is convenient to consider a directed index graph,
such that feasible solutions of the MAP are represented by directed paths in this graph.

The index graph G = (V, E) of the MAP (1) has a set of vertices V that is partitioned into n levels1 and
a distinct root node. A node at level j of the graph represents an assignment (i1, . . . , id) with i1 = j
and cost c j i2 ··· id . Thus, each level contains κ = nd−1 nodes. Root node disregarded, the index graph is
n-partite, with directed arcs connecting nodes at level j to nodes at level ( j + 1), j = 1, . . . , n − 1. The

1In general, MAP may have n1 elements in dimension 1, n2 elements in dimension 2, and so on, so that in assignment
(i1, i2, . . . , in) one has 1 ≤ ik ≤ nk , k = 1, . . . , d . In this case, the index graph would contain n1 levels.
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set E of arcs in the index graph is constructed in such a way that any feasible solution of the MAP (1)
can be represented as a directed path connecting the root node to a leaf node at level n (we call such a
directed path a feasible path).

Namely, the root node is connected to all nodes at level 1. Node
(
1, i (r)2 , . . . , i (r)n

)
at level 1 is connected

to (or, is a parent to) node
(
2, i (s)2 , . . . , i (s)n

)
at level 2 if and only if i (r)l 6= i (s)l , l = 2, . . . , n. Clearly, a

node at level 1 is a parent to (n − 1)d−1 nodes at level 2, and any arc connecting a node at level 1 to a
node at level 2 belongs to some feasible path. Similarly, each node at level j = 1, . . . , n − 1 is a parent
to (n− 1)d−1 nodes at level j + 1. However, only (n− j)d−1 of these descendent nodes are feasible with
respect some node at level 1, i.e., only (n − j)d−1 of arcs connecting a node at level j to nodes at level
j + 1 belong to feasible paths. In this way, the index tree contains (n!)d−1 feasible paths, by the number
of feasible solutions of the MAP (1).

The index graph representation of MAP aids in constructing of lower and upper bounds for the expected
optimal cost of MAP (1) with random iid costs via the following lemmas [16].

Lemma 1 Given the index graph G = (V, E) of d ≥ 3, n ≥ 3 MAP whose assignment costs that are iid
random variables from an absolutely continuous distribution, construct setA ⊂ V by randomly selecting
α different nodes from each level of the index graph. Then, A is expected to contain a feasible solution
of the MAP if

α =

⌈
nd−1

n!
d−1

n

⌉
. (3)

Lemma 2 For a d ≥ 3, n ≥ 3 MAP whose cost coefficients are iid random variables from an absolutely
continuous distribution F with existing first moment, define

Z∗d,n := nEF
[
X(1|κ)

]
and Z

∗

d,n := nEF
[
X(α|κ)

]
, (4)

where X(i |κ) is the i-th order statistic of κ = nd−1 iid random variables with distribution F, and α is
determined as in (3). Then, Z∗d,n and Z

∗

d,n constitute lower and upper bounds for the expected optimal
cost Z∗d,n of the MAP, respectively: Z∗d,n ≤ Z∗d,n ≤ Z

∗

d,n .

Above, by an absolutely continuous distribution we mean any continuous distribution whose c.d.f. F(·)
is representable as F(x) =

∫ x
−∞

f (y) dy, where f (·) is the (continuous) density of the distribution.

Proofs of the lemmas are based on the probabilistic method [4] and can be found in [16]. In particular,
the proof of Lemma 2 considers set Amin that is constructed by selecting from each level of the index
graph α nodes with the smallest costs among the κ nodes at that level. The continuity of distribution F
ensures that assignment costs in the MAP (1) are all different almost surely, hence locations of the nodes
that comprise the set Amin are random with respect to the array of nodes in each level of G(V, E). In the
remainder of the paper, we always refer to α and κ as defined above.

As the problem size of an instance of MAP (1) is governed by two parameters, the number d of “di-
mensions,” and number n of elements in each dimension, asymptotic analysis of the expected optimal
value Z∗d,n of large-scale instances of the MAP (1) involves two cases: n → ∞ while d is fixed, and

d → ∞ for a fixed n. Throughout the paper, we use notation κ
n
−→ ∞ and κ

d
−→ ∞, respectively,

to address these two situations. If a certain statement holds for both cases of n → ∞ and d → ∞, we
indicate this by κ

n,d
−→ ∞. The rationale behind the proposed notation is that an increase in either n or
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d entails polynomial or exponential growth in the number κ of nodes in each level of the index graph:
κ = nd−1

→∞.

The behavior of quantity α (3) in the cases κ
n
−→ ∞ and κ

d
−→ ∞ is more contrasting. When the

number of dimensions d stays constant, and the number n of elements in each dimension increases
indefinitely, α approaches a finite limiting value,

α→ α∗ := ded−1
e, κ

n
−→∞, (5)

while in the case of fixed n and unbounded d it increases exponentially:

α ∼ κγn , κ
d
−→∞, where γn = 1−

ln n!
n ln n

. (6)

The range of values that parameter γn takes for different n is specified by the following

Lemma 3 For all n ≥ 3, the coefficient γn in (6) satisfies 0 < γn <
1
2 .

Proof: We start with establishing a simple inequality

n + 1 ≥
(
1+ 1

n

)n
, n ≥ 2, (7)

that is easily validated by the induction argument. Indeed, observe that (7) holds for n = 2. Then, assume
that (7) holds for some n, which, due to the fact that 1

n ≥
1

n+1 , further implies

n + 1 ≥
(
1+ 1

n+1

)n
. (8)

Multiplying both sides of inequality (8) by
(
1+ 1

n+1

)
we obtain

n + 2 = (n + 1)
(
1+ 1

n+1

)
≥
(
1+ 1

n+1

)n+1
,

which verifies (7) for n + 1. Now, to obtain the statement of the Lemma, it is convenient to represent γn

as

γn = 1−
1
n

n∑
r=1

ln r
ln n

. (9)

Evidently, since 0 < ln r
ln n < 1 for r = 2, . . . , n − 1, the second term in (9) satisfies 0 < 1

n

∑n
r=1

ln r
ln n < 1.

Hence, 0 < γn < 1 for n ≥ 3. The upper bound γn <
1
2 for n ≥ 3 is established by showing that

n∑
r=1

ln r >
n
2

ln n, n ≥ 3. (10)

Direct evaluation confirms that (10) holds for n = 3. Then, following the induction argument, we
demonstrate that (9) holds for some fixed n + 1, provided that it holds for n. For n + 1 the right-hand
side of (10) equals to

n + 1
2

ln(n + 1) =
n
2

ln n +
1
2

ln(n + 1)+
n
2

ln
(
1+ 1

n

)
,
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hence, to prove that (10) holds for n + 1 it suffices to show that

ln(n + 1) ≥
1
2

ln(n + 1)+
n
2

ln
(
1+ 1

n

)
.

The last inequality is equivalent to (7), which proves the Lemma. �

The reader has already noticed that the presented lemmata addresses only MAPs with d ≥ 3, n ≥ 3.
Before proceeding further, we comment shortly on two special cases of the MAP (1) when d = 2 or
n = 2. The case d = 2 represents, as noted earlier, the Linear Assignment Problem, whose asymptotic
behavior is distinctly different from that of MAPs with d ≥ 3 (see Sections 3 and 4). It can be shown that
in the case of d = 2 Lemmas 1 and 2 produce only trivial bounds that are rather inefficient in determining
the asymptotic behavior of the expected optimal value of the LAP within the presented approach.

When n = 2, the costs of feasible solutions to the MAP (1) have the form

z = ci (1)1 ··· i (1)d
+ ci (2)1 ··· i (2)d

, where i (1)j , i (2)j ∈ {1, 2}, i (1)j 6= i (2)j ,

and consequently are iid random variables with distribution F2, which is the convolution of F with itself:
F2 = F ∗ F [17]. Then, obviously, the expected optimal value of a random MAP with n = 2 can be
expressed as expectation of the minimum order statistic of (2!)d−1 iid variables with distribution F2:

Z∗d,2 = EF∗F
[
X(1|2d−1)

]
, (11)

which simplifies the analysis of the expected optimal cost as compared to the general case of n ≥ 3 that
necessitates the use of the lower and upper bounds (4).

3 Main result

In this section we derive the limiting values of the expected optimal cost Z∗d,n of a random MAP (1) with
iid cost coefficients drawn from a broad class of continuous distributions, when one of the dimension
parameters n or d of the problem increases indefinitely. First we lay out preliminary considerations that
make a foundation for more intricate analysis presented below.

According to Lemma 2, the upper bound on the expected optimal cost Z∗d,n of a random MAP with iid
cost coefficients from an absolutely continuous distribution F is given by Z

∗

d,n = n EF
[
X(α|κ)

]
, where

X(α|κ) is the α-th order statistic among κ independent F-distributed random variables. It is well-known
(see, e.g., [11]) that order statistics have distributions of beta type; for instance, the distribution of X(α|κ)

is given by

P[X(α|κ) ≤ x ] =
κ!

(α − 1)! (κ − α)!

∫ F(x)

0
tα−1 (1− t)κ−α dt.

Then, assuming that the interior of the support set of distribution F has the form (a, b), where

a = inf { x | F(x) > 0 }, b = sup { x | F(x) < 1 },

the upper bound Z
∗

d,n can be represented as

Z
∗

d,n =
n 0(κ + 1)

0(α) 0(κ − α + 1)
Iα,κ , (12)
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with Iα,κ being the integral of the form

Iα,κ =
∫ b

a
x [F(x)]α−1[1− F(x)]κ−α dF(x) =

∫ 1

0
F−1(u) uα−1(1− u)κ−α du. (13)

In the last equality, F−1(·) denotes the inverse of the c.d.f. F(x) of distribution of assignment costs in
the MAP (1). While it is practically impossible to evaluate integral (13) exactly in the general case, the
asymptotic behavior of (13) for large n and d can be determined for a wide range of distributions F . In
particular, it will be seen that the asymptotic value of Iα,κ , and, consequently, that of Z∗d,n for n, d � 1
depends on the location of the left endpoint a of the support of F .

The exposition of the results in the sequel assumes familiarity with the foundations of asymptotical
analysis and theory of special functions. For example, the asymptotic properties of integrals of type (13)
for large values of n and d can be quantified in terms of the Beta and Gamma functions,

B(x, y) =
∫ 1

0
t x−1(1− t)y−1 dt =

0(x) 0(y)
0(x + y)

, 0(z) =
∫
∞

0
e−t t z−1 dt. (14)

Although we make extensive use of these and other related special functions, we do not discuss herein
their numerous properties that are used to derive the majority of the results of this paper. Instead, we
refer the reader to an excellent treatise on special functions edited by Erdélyi [13]; also, a comprehensive
collection of facts and formulae on special functions is available at [41]. Text by Olver [28] is another
excellent reference to both asymptotical analysis and the theory of special functions.

3.1 Distributions with a finite left endpoint of the support

The asymptotic analysis of the expected optimal value of the random MAPs with continuous distributions
is facilitated by means of the following lemma, which provides asymptotic series representation on a
scale of Beta functions for integrals of type (13).

Lemma 4 Let function h(u) have the following asymptotic expansion at 0+,

h(u) ∼
∞∑

s=0

asu(s+λ−µ)/µ, u → 0+, (15)

where λ,µ > 0. Then for any positive integer m one has∫ 1

0
h(u) uα−1(1− u)κ−α du =

m−1∑
s=0

as φs(κ)+O
(
φm(κ)

)
, κ

n, d
−→∞, (16)

where φs(κ) = B
( s+λ
µ
+ α − 1, κ − α + 1

)
, s = 0, 1, . . ., provided that the integral is absolutely

convergent for κ = α = 1.

Proof: First we demonstrate that the sequence of functions {φs(κ)}
∞

s=0 represents a scale [28] in both

cases of large n and d , i.e., φs+1(κ) = o
(
φs(κ)

)
, κ

n, d
−→∞. The ratio of φs+1(κ) and φs(κ) has the form

φs+1(κ)

φs(κ)
=
0
( s+1+λ

µ
+ α − 1

)
0
( s+λ
µ
+ α − 1

) · 0(κ + s+λ
µ

)
0
(
κ + s+1+λ

µ

) .
7



Using a well-known expansion for the quotient of the Gamma functions [13]

0(z + a)
0(z + b)

= za−b
(

1+O
(
z−1)), z →∞, (17)

we obtain that for a fixed d and n →∞,

φs+1(κ)

φs(κ)
∼
0
( s+1+λ

µ
+ α∗ − 1

)
0
( s+λ
µ
+ α∗ − 1

) κ−1/µ
→ 0, κ

n
−→∞, µ > 0.

Similarly, for d →∞ and n fixed, by virtue of Lemma 3 one has

φs+1(κ)

φs(κ)
∼
κγn/µ

κ1/µ
= κ

γn−1
µ → 0, κ

d
−→∞, µ > 0.

Now we show that expansion (16) holds. For any non-negative integer m, let

h(u) =
m−1∑
s=0

asu(s+λ−µ)/µ + ϕm(u), 0 < u < 1. (18)

Substituting the above equality in the left-hand side of (16), one obtains∫ 1

0
h(u) uα−1(1− u)κ−α du

=

m−1∑
s=0

asB
( s+λ
µ
+ α − 1, κ − α + 1

)
+

∫ 1

0
ϕm(u) uα−1(1− u)κ−α du. (19)

To estimate the remainder term in (19), observe that ϕm(u) = O
(
u(m+λ−µ)/µ

)
for u → 0+, in accordance

with the definition of asymptotic expansion (15). Consequently, there exist um ∈ (0, 1) such that Cm =

sup
u ∈ (0, um ]

∣∣ϕm(u) u−(m+λ−µ)/µ
∣∣ is finite, whence

∣∣∣∣∫ um

0
ϕm(u) uα−1(1− u)κ−α du

∣∣∣∣ ≤ Cm B
(m+λ

µ
+ α − 1, κ − α + 1

)
. (20)

Since integral (16) is absolutely convergent for κ = α = 1, the integral
∫ 1

um
ϕm(u) du is absolutely

convergent too, which implies absolute convergence of
∫ 1

um
ϕm(u) u−M du for any M > 0:∫ 1

um

∣∣ϕm(u)
∣∣ du ≤

∫ 1

um

∣∣ϕm(u) u−M
∣∣ du ≤ u−M

m

∫ 1

um

∣∣ϕm(u)
∣∣ du.

For M =
m+λ
µ
+ 1 denote 4m = sup

τ∈ [um , 1]

∣∣ξm(τ )
∣∣, where ξm(τ ) =

∫ τ
um
ϕm(u) u−M du. Integrating the

remainder term in (19) by parts, we have∫ 1

um

ϕm(u) uα−1(1− u)κ−α du = −(α + M − 1)
∫ 1

um

ξm(u) uα+M−2(1− u)κ−α du

+ (κ − α)

∫ 1

um

ξm(u) uα+M−1(1− u)κ−α−1 du, (21)
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which implies that the first integral in (21) is bounded as∣∣∣∣∫ 1

um

ϕm(u) uα−1(1− u)κ−α du
∣∣∣∣ < 24m

0(α + M) 0(κ − α + 1)
0(κ + M)

. (22)

Considering the behavior of the right-hand side of (22) with respect to φm(κ) for large κ ,

0(α + M) 0(κ − α + 1)
0(κ + M)

·
0
(
κ + m+λ

µ

)
0
(
α + m+λ

µ
− 1

)
0(κ − α + 1)

,

we see that their ratio is of order of κ−1 when κ
n
−→ ∞, and is O

(
κ2γn−1

)
if κ

d
−→ ∞. Hence, by

Lemma 3 we have that∣∣∣∣∫ 1

um

ϕm(u) uα−1(1− u)κ−α du
∣∣∣∣ = o

(
B
(m+λ

µ
+ α − 1, κ − α + 1

))
, κ

n,d
−→∞. (23)

Combining (19), (20), and (23) we arrive at the sought equality (16). �

With the help of Lemma 4 it is now straightforward to derive the limiting value of the expected optimal
cost of MAP with random iid cost coefficients that have a continuous p.d.f. with a finite left endpoint of
the support.

Theorem 1 Consider a d ≥ 3, n ≥ 3 MAP (1) with cost coefficients that are iid random variables from
an absolutely continuous distribution with existing first moment. Let (a, b), where a ∈ R, b ∈ (a,+∞],
be the interior of the support set of this distribution. Further, assume that the inverse F−1(x) of the c.d.f.
F(x) of the distribution is such that

F−1(x) = a +O
(
xβ
)
, x → 0+, β > 0. (24)

Then, for a fixed n and d →∞, or a fixed d and n →∞, the expected optimal value Z∗d,n satisfies

lim
d→∞

Z∗d,n = na, lim
n→∞

Z∗d,n =


+∞, a > 0,

0, a = 0,
−∞, a < 0.

(25)

Proof: According to the aforesaid, an upper bound on the expected optimal value of a random MAP
whose assignment costs are iid random variables with distribution F is obtained via (12)–(13). Existence
of the first moment of F ensures the existence of its order statistics, as well as absolute integrability
of F−1(·) on the interval (0, 1). Given the asymptotic behavior (24) of function F−1(u) at u = 0+,
application of Lemma 4 to integral Iα,κ (13) produces

Iα, κ = a
0(α) 0(κ − α + 1)

0(κ + 1)
+O

(
0(α + β) 0(κ − α + 1)

0(κ + β + 1)

)
, κ

n,d
−→∞,

which, upon substitution into (12), leads to

Z
∗

d,n = na +O
(

n
0(α + β) 0(κ + 1)
0(α) 0(κ + β + 1)

)
, κ

n,d
−→∞. (26)
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By asymptotic expansion (17) the second term in (26) vanishes as κ
n,d
−→ ∞, yielding that the upper

bound Z
∗

d,n satisfies the relations (25). On the other hand, since a is the left endpoint of the support set
of distribution F , the cost z of a feasible solution (2) of the MAP is bounded from below by inf z = na.
It is easy to see that inf z does also satisfy equalities (25), which, by virtue of inequality

inf z ≤ Z∗d,n ≤ Z
∗

d,n,

proves the statement (25) of the Theorem. �

The conditions of Theorem 1 are quite general: it is only required that function F−1(·) is absolutely
integrable on (0, 1) and there exists β > 0 such that

lim
x→0+

∣∣x−β(F−1(x)− a
)∣∣ <∞.

The case when distribution F is such that the rate of convergence of F−1(x) − a as x → 0+ is slower
than that of xβ , for some β > 0, can be considered similarly, based on the particular form of F−1(·).

The proved theorem evidences that the asymptotic behavior of the expected optimal value of a random
MAP whose distribution has a bounded from below support is quite dissimilar in cases of d � 1 and
n � 1. Indeed, for a fixed d and n → ∞, the expected optimal value Z∗d,n of a random MAP with
corresponding distribution F is finite only when the left endpoint of the support of F is located at the
origin: a = 0. On the contrary, limd→∞ Z∗d,n for a fixed n is finite as long as a is finite.

Trivially, finiteness of the left endpoint a of the support of the distribution implies finiteness of the
function F−1(·) at the origin: F−1(0) = a ∈ R. If the support of distribution F has infinite left endpoint,
a = −∞, the inverse F−1(x) of the distribution’s c.d.f. necessarily has a singularity at x = 0+:

lim
x→0+

F−1(x) = −∞.

The next subsection contains an analysis of the expected optimal value of MAP with iid cost coefficients
drawn from a continuous distribution whose support has infinite left endpoint.

3.2 Distributions with infinite left endpoint of the support

The case of a continuous distribution with infinite left endpoint of the support set is more cumbersome as
different singularities of F−1(x) at x = 0+ require differing approaches to their treatment. To this end,
we consider two most common singularities of F−1(0+) encountered in applications: a power singularity
and a logarithmic singularity.

We say that F−1(x) has a power singularity at x = 0+ if F−1(x) ∼ −νx−β, x → 0+, where ν and β
are positive constants. It is easy to see that for function F−1(x) to be integrable over the interval (0, 1),
the range of values for parameter β must be limited to 0 < β < 1. The next theorem addresses this case.

Theorem 2 Consider a d ≥ 3, n ≥ 3 MAP (1) with cost coefficients that are iid random variables from
an absolutely continuous distribution whose expectation exits. Let (−∞, b), where b ∈ (−∞,+∞],
be the support set of this distribution. Further, assume that the inverse F−1(x) of the c.d.f. F(x) of the
distribution has an asymptotic expansion at x → 0+

F−1(x) ∼ −νx−β, x → 0+, 0 < β < 1, ν > 0. (27)

10



Then, for a fixed n and d → ∞, or a fixed d and n → ∞, the expected optimal value Z∗d,n of the MAP
is unbounded from below:

lim
d→∞

Z∗d,n = lim
n→∞

Z∗d,n = −∞. (28)

Proof: Essentially the same as that of Theorem 1. �

Now we examine the case of the inverse F−1(x) of distribution F(·) having a (weaker) logarithmic
singularity at zero, F−1(x) ∼ −ν

(
ln 1

x

)β
, x → 0+, where ν and β are again positive numbers. Similarly,

in this case the expected optimal value of MAP is also unbounded from below. A key element of the
subsequent analysis is the asymptotical valuation of the integral∫ 1

0
uα+δ−1(1− u)κ−α ln 1

u du, (29)

where δ > 0, for large values of n and d . By differentiating the identity for the Beta function (see (14))∫ 1

0
uα+δ−1(1− u)κ−α du =

0(α + δ) 0(κ − α + 1)
0(κ + δ + 1)

with respect to α, one has∫ 1

0
uα+δ−1(1− u)κ−α ln 1

u du = −
1

0(κ + δ + 1)
∂

∂α

[
0(α + δ) 0(κ − α + 1)

]
−

∫ 1

0
uα+δ(1− u)κ−α ln(1− u) du. (30)

Given that ln(1−u) = −u+O
(
u2
)
, u → 0+, the asymptotic value of the last integral in (30) is obtained

by application of Lemma 4 as∫ 1

0
uα+δ(1− u)κ−α ln(1− u) du = O

(
0(α + δ + 1) 0(κ − α + 1)

0(κ + δ + 2)

)
.

Next, the first term in the right-hand side of (30) can be rewritten using the logarithmic derivative of the
Gamma function ψ(z) = 0′(z)/0(z) in the form

0(α + δ) 0(κ − α + 1)
0(κ + δ + 1)

[
ψ(κ − α + 1)− ψ(α + δ)

]
.

Employing the asymptotic expansion of ψ(z) for large values of argument [13],

ψ(z) = ln z −
1
2z
+O

(
z−2), z →∞, (31)

we arrive at the sought asymptotical expressions for integral (29). In the case n →∞, we have∫ 1

0
uα+δ−1(1− u)κ−α ln 1

u du =
0(α∗ + δ)

κα∗+δ
ln κ

(
1+O

(
1

ln κ

))
, κ

n
−→∞. (32)

11



In case d →∞ integral (29) equals to∫ 1

0
uα+δ−1(1− u)κ−α ln 1

u du =
0(κγn + δ) 0(κ − κγn + 1)

0(κ + δ + 1)

{
(1− γn) ln κ +O

(
κ−γn

)}
, κ

d
−→∞.

(33)

By use of the expansion

0(κγn + δ)

0(κ + δ + 1)
=

eκ−κ
γn
κ (1−3γn)/2

κκ−γnκγn κ−(1−γn)(δ+1)
(

1+O
(
κ−γn

))
, κ

d
−→∞, (34)

expression (33) can be transformed to∫ 1

0
uα+δ−1(1− u)κ−α ln 1

u du = Rκγn
κ−(1−γn)(δ+1) (1− γn) ln κ

(
1+O

(
κ−γn

))
, κ

d
−→∞, (35)

where Rκγn
stands for

Rκγn
= 0(κ − κγn + 1) eκ−κ

γn
κ−κ+γnκ

γn+(1−3γn)/2. (36)

Now we are ready to prove the main result of this subsection.

Theorem 3 Consider a d ≥ 3, n ≥ 3 MAP (1) with cost coefficients that are iid random variables from
an absolutely continuous distribution F whose expectation exits. Let (−∞, b), where b ∈ (−∞,+∞],
be the interior of the support set of F, and assume that the inverse F−1(x) of the c.d.f. F(x) of the
distribution has a logarithmic singularity at x → 0+,

F−1(x) ∼ −ν
(
ln 1

x

)β
, x → 0+, where β > 0, ν > 0. (37)

Then, for a fixed n and d → ∞, or a fixed d and n → ∞, the expected optimal value Z∗d,n of the MAP
is unbounded from below:

lim
d→∞

Z∗d,n = lim
n→∞

Z∗d,n = −∞. (38)

Proof: As before, the proof is based on examining the asymptotical behavior of the upper bound Z
∗

d,n ,
which in the case of a logarithmic singularity (37) of F−1(x) at x = 0+ comes down to asymptotic
evaluation of the integral ∫ 1

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du (39)

for large values of n and d . The asymptotical properties of this integral as n or d approach infinity are
determined by the behavior of the integrand in the vicinity of 0; in particular, for any β > 0 one has∫ 1

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du =

∫ 1/e

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du +O

(
0(α) 0(κ − α + 1)

0(κ + 1)

)
, (40)

for κ
n,d
−→ ∞. Indeed, observe that 1

e ≤ u ≤ 1 implies that 0 ≤
(
ln 1

u

)β
≤ 1 for β > 0, therefore the

following integral is bounded as∫ 1

1/e
uα−1(1− u)κ−α

(
ln 1

u

)β
du ≤

∫ 1

1/e
uα−1(1− u)κ−α du ≤

∫ 1

0
uα−1(1− u)κ−α du = B(α, κ − α + 1),

12



which entails the following asymptotic expression that verifies equality (40):∫ 1

1/e
uα−1(1− u)κ−α

(
ln 1

u

)β
du = O

(
0(α) 0(κ − α + 1)

0(κ + 1)

)
, κ

n,d
−→∞. (41)

The choice of constant 1/e that splits the integration interval in (40) is merely due to our convenience; a
similar decomposition can be obtained for any small enough positive number between 0 and 1. Following
[12], to estimate the asymptotical behavior of integral∫ 1/e

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du = J (α, κ − α + 1, β), (42)

that enters the right-hand side of decomposition (40), we employ the functional equation

1
0(%)

∫
∞

0
z%−1 J (α + z, ~, β) dz = J (α, ~, β − %), α, β, ~, % > 0, (43)

which is easily derivable by plugging (42) into the left-hand side of (43) and interchanging the order
of integration. First we consider the case of 0 < β < 1. For % ∈ (0, 1) let β = 1 − %, then integral
J (α, κ − α + 1, β) (42) can be written as a sum of two other integrals, J1 and J2,

J (α, κ − α + 1, 1− %) =
1

0(%)

(∫ ζ

0
+

∫
∞

ζ

)
z%−1 J (α + z, κ − α + 1, 1) dz = J1 + J2, (44)

where ζ > 0 is a positive number. With interchange of the order of integration, J2 reduces to

J2 =
1

0(%)

∫ 1/e

0
uα+ζ (1− u)κ−α ln 1

u du
∫
∞

ζ

z%−1uz−ζ dz. (45)

Since 0 ≤ u ≤ 1
e , the inner integral in (45) is a bounded function of u,∫

∞

ζ

z%−1uz−ζ dz =
∫
∞

ζ

z%−1e−(z−ζ ) ln u dz ≤
∫
∞

ζ

z%−1e−(z−ζ ) dz,

hence, J2 can be estimated as

J2 = O
(∫ 1/e

0
uα+ζ−1(1− u)κ−α ln 1

u du
)

κ
n,d
−→∞. (46)

Next, consider integral J1 in (44):

J1 =
1

0(%)

∫ ζ

0
z%−1 dz

∫ 1/e

0
uα+z−1(1− u)κ−α ln 1

u du. (47)

By means of decomposition (40), the inner integral in (47) can be represented as∫ 1/e

0
uα+z−1(1− u)κ−α ln 1

u du

=

∫ 1

0
uα+z−1(1− u)κ−α ln 1

u du +O
(
0(α + z) 0(κ − α + 1)

0(κ + z + 1)

)
, κ

n,d
−→∞. (48)
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Further treatment of integrals J1 and J2 depends on the rate with which κ approaches infinity, i.e., which
of the parameters n and d is fixed and which is infinitely increasing. We structure the remainder of the
proof of the theorem in the following steps.

Step 1: κ
n
−→∞. If n goes to infinity and d is fixed, we have by (5) that α→ α∗ ∈ R. In accordance to

the derived asymptotic expansion (32), the integral in the right-hand side of (48) equals to∫ 1

0
uα+z−1(1− u)κ−α ln 1

u du =
0(α∗ + z)
κα∗+z

ln κ
(

1+O
(

1
ln κ

))
, κ

n
−→∞.

Similarly, the last term in (48) admits representation

0(α + z) 0(κ − α + 1)
0(κ + z + 1)

= O
(
κ−α

∗
−z
)
, κ

n
−→∞.

On inserting the last two equalities in (48) we obtain

J1 =
1

0(%) κα∗

{(
ln κ +O(1)

) ∫ ζ

0
z%−10(α∗ + z) κ−z dz +

∫ ζ

0
z%−1O

(
κ−z) dz

}
. (49)

Now, consider the first integral in the right-hand side of (49). Since 0(α∗+z) = 0(α∗)+O(z), z → 0+,
this integral can be restated as∫ ζ

0
z%−10(α∗ + z) κ−z dz = 0(α∗)

∫ ζ

0
z%−1 κ−z dz +O

(∫ ζ

0
z% κ−z dz

)
. (50)

The first integral in the right-hand side of (50) can be expressed in terms of the incomplete Gamma
function 0(a, ζ ) =

∫
∞

ζ
e−t ta−1 dt [13]:∫ ζ

0
z%−1 κ−z dz =

0(%)

(ln κ)%
−
0(%, ζ ln κ)
(ln κ)%

. (51)

Using the following asymptotic relation for the incomplete Gamma function [13]

0(a, ζ x)
xa

= O
(

e−ζ x

x

)
, x →∞, a > 0, (52)

the integrals in (50) can be evaluated as∫ ζ

0
κ−zz%−1 dz =

0(%)

(ln κ)%
+O

(
1

κζ ln κ

)
, O

(∫ ζ

0
z% κ−z dz

)
= O

(
(ln κ)−%−1) , κ

n
−→∞,

which yields the asymptotic value of (50) in the form∫ ζ

0
z%−10(α∗ + z) κ−z dz =

0(α∗) 0(%)

(ln κ)%

(
1+O

(
1

ln κ

))
, κ

n
−→∞.

On substitution of the last expression for integral (50) into representation (49) for J1 we have

J1 =
0(α∗)

κα∗
(ln κ)β

(
1+O

(
1

ln κ

))
, κ

n
−→∞,
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and, invoking expansions (46) and (32) with ζ large enough, we obtain∫ 1

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du =

0(α∗)

κα∗
(ln κ)β

(
1+O

(
1

(ln κ)β

))
, κ

n
−→∞. (53)

To derive the counterpart of equality (53) for the case κ
d
−→∞, one has to take a slightly different route.

Step 2: κ
d
−→∞. In the case of d increasing and n fixed, we have that both α and κ are increasing, such

that α ∼ κγn , κ → ∞, where 0 < γn <
1
2 , according to (6) and Lemma 3. By virtue of representation

(35), the integral in the right-hand side of (48) has the form∫ 1

0
uκ

γn+z−1(1− u)κ−κ
γn ln 1

u du = Rκγn
κ−(1−γn)(z+1)(1− γn) ln κ

(
1+O

(
κ−γn

))
, κ

d
−→∞.

Similarly, (34) yields

O
(
0(κγn + z) 0(κ − κγn + 1)

0(κ + z + 1)

)
= Rκγn

κ−(1−γn) O
(
κ−(1−γn)z

)
, κ

d
−→∞.

Combining the above two equalities, we have∫ 1/e

0
uκ

γn+z−1(1− u)κ−κ
γn ln 1

u du

= Rκγn
κ−(1−γn)

{
(1− γn) ln κ

(
1+O

(
κ−γn

))
κ−(1−γn)z +O

(
κ−(1−γn)z

)}
, κ

d
−→∞.

By substituting the last expression in (48) we reduce integral J1 to the form

J1 =
Rκγn

0(%)
κ−(1−γn)

{
(1− γn) ln κ

(
1+O

(
κ−γn

)) ∫ ζ

0
κ−(1−γn) zz%−1 dz +

∫ ζ

0
z%−1O

(
κ−(1−γn) z) dz

}
.

(54)

Similarly to the above, we represent the integrals in (54) in terms of the incomplete Gamma function as

∫ ζ

0
κ−(1−γn) zz%−1 dz =

0(%)[
(1− γn) ln κ

]% − 0
(
%, ζ(1− γn) ln κ

)
[
(1− γn) ln κ

]% ,

and use asymptotic expansion (52) to obtain∫ ζ

0
κ−(1−γn) zz%−1 dz =

0(%)[
(1− γn) ln κ

]% +O( 1
κζ(1−γn) ln κ

)
, κ

d
−→∞.

Substituting this result in (54) and choosing ζ large enough, we find the asymptotic value of J1 for
d � 1:

J1 =
0(κγn ) 0(κ − κγn + 1)

0(κ + 1)
(1− γn)

β (ln κ)β
(

1+O
(

1
ln κ

))
, κ

d
−→∞.

Using (35), J2 can be evaluated as

J2 = O
(
0(κγn + ζ ) 0(κ − κγn + 1)

0(κ + ζ + 1)
ln κ

)
,
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which finally yields the sought asymptotic representation of integral (39) for d →∞ and β ∈ (0, 1):∫ 1

0
uα−1(1− u)κ−α

(
ln 1

u

)β
du

=
0(κγn ) 0(κ − κγn + 1)

0(κ + 1)
(1− γn)

β (ln κ)β
(

1+O
(
(ln κ)−β

))
, κ

d
−→∞.

(55)

Step 3. Now we use the developed expansions (53) and (55) to prove the unboundedness of the expected
optimal value z∗ of MAP when F−1(·) has a logarithmic singularity (37) with 0 < β < 1. Upon
substitution of the asymptotic relation (37) into integral Iα,κ (13) one has

Iα,κ ∼ −ν
∫ 1

0
uα−1(1− u)κ−α

(
ln 1

u

)β du, κ
n,d
−→∞.

Using the derived expressions (53) and (55) for the above integral, the upper bound z̄∗ of the expected
optimal value z∗ of the MAP can be asymptotically evaluated as

Z
∗

d,n = −ν$nn(ln κ)β +O(n), κ
n,d
−→∞,

where $n = 1 for κ
n
−→ ∞, and $n = (1 − γn)

β if κ
d
−→ ∞. From the last equality it immediately

follows that Z
∗

d,n is unbounded from below for large n and d , which validates the assertion (38) of the
theorem: limd→∞ Z∗d,n = limn→∞ Z∗d,n = −∞ for 0 < β < 1.

Step 4. To extend the last result to values of β ≥ 1 in (37), we recall that by virtue of decomposition
(40) the main contribution to the asymptotic value of integral (39) is made by the first integral in the
right-hand side of (40). For any β ≥ 1, this integral is majorized as

−ν

∫ 1/e

0
uα−1(1− u)κ−α

(
ln 1

u

)β du ≤ −ν
∫ 1/e

0
uα−1(1− u)κ−α

(
ln 1

u

)β0 du, (56)

where 0 < β0 < 1. From the above results it follows that the right-hand side of (56) approaches −∞
when κ

n,d
−→∞. Thus, we conclude that Z

∗

d,n → −∞, and, consequently, Z∗d,n → −∞ when κ
n,d
−→∞

and β ≥ 1 in (37). �

It is easy to see that Theorems 2 and 3 can be applied to deal with situations when F−1(x) has a singu-
larity of the form F−1(x) ∼ −νx−β1

(
ln 1

x

)β2
, x → 0+, where ν, β2 > 0, and 0 < β1 < 1. In such a

case, again, one has limd→∞ Z∗d,n = limn→∞ Z∗d,n = −∞.

To finalize the presented analysis of the expected optimal value of the MAP, we consider the special case
of a random MAP (1) with n = 2, which has been omitted from the preceding discussion. Recall that the
expected optimal cost Z∗d,2 of a random d ≥ 3, n = 2 MAP can be calculated explicitly by (11), which,
in turn, may be rewritten in the form

Z∗d,2 = κ
∫ 1

0
F−1

2 (u) (1− u)κ−1 du = κ
∫
∞

0
F−1

2

(
1− e−v

)
e−κv dv. (57)

Here κ = 2d−1 and F−1
2 (·) is the inverse of the c.d.f. of distribution F2 = F ∗ F . Since F ∗ F represents

the distribution of a sum of two independent F-distributed random variables, the interior of the support
of F2 has the form (2a, 2b), where we adopt the usual convention of

n(±∞) = ±∞, n ∈ N\{0}. (58)
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Using techniques similar to those employed in Lemma 4, it can be shown that the optimal expected value
of a random MAP with n = 2 satisfies limd→∞ Z∗d,2 = 2a if a ∈ R and F−1

2 (·) has an asymptotic
expansion of the form (24), i.e., F−1

2 (u) = 2a + O(uβ), u → 0+, for some β > 0 (see Olver [28]).
In the same way, the arguments of Theorem 3 in application to (57) yield that limd→∞ Z∗d,2 = −∞
when a = −∞ and F−1

2 (·) conforms to the conditions of Theorems 2 or 3. Next we illustrate the
correspondence between the asymptotical behavior of F−1

2 (x) at x = 0+ and that of F−1(x).

In the case of a finite a, the convolution representation of F2 produces for x � 1

F2(2a + x) =
∫ a+x

a
F
(
a + x − (y − a)

)
dF(y) ≤ F(a + x)

∫ a+x

a
dF(y) = F2(a + x),

and

F2(2a + x) ≥
∫ a+ x

2

a
F
(
a + x − (y − a)

)
dF(y) ≥ F

(
a + x

2

) ∫ a+ x
2

a
dF(y) = F2(a + x

2

)
,

which by inversion implies that F−1(
√

x) − a ≤ F−1
2 (x) − 2a ≤ 2

(
F−1(

√
x) − a

)
for a sufficiently

small positive x . Dividing the last inequalities by xβ/2 and taking into account (24) we obtain that the
ratio

(
F−1

2 (x) − 2a
)/

xβ/2 is bounded for x → 0+, which means that F−1
2 (x) is equal to 2a + O(xβ/2)

in the vicinity of x = 0+, and therefore complies with the conditions of Theorem 1.

In the case of a = −∞, the function F2(x) for −x � 1 can be bounded from above as

F2(2x) =
(∫ x

−∞

+

∫ b

x

)
F
(
x − (y − x)

)
dF(y) ≤

∫ x

−∞

1 · dF(y)+ F(x)
∫ b

x
dF(y) ≤ 2F(x),

whereas a lower bound is computable in the form

F2(x) ≥
∫ x

−∞

F(x − y) dF(y) ≥ F(0)F(x).

Inverting the derived bounds, we have 2F−1
( x

2

)
≤ F−1

2 (x) ≤ F−1
( x

F(0)

)
, x → 0+. Applying the same

reasoning as above, we obtain that F−1
2 (x) has an asymptotical expansion of the form (27) for x → 0+,

provided that F−1(·) satisfies (27). If F−1(·) has asymptotic representation (37) in the vicinity of 0, the
derived bounds on F−1

2 (·) can be used to show that limd→∞ Z∗d,2 = −∞ in this case as well.

Using the convention (58), we can summarize the developed results in the following theorem.

Theorem 4 (Expected Optimal Value of the MAP) Consider a d ≥ 3, n ≥ 2 MAP (1) with cost co-
efficients that are iid random variables from an absolutely continuous distribution F with existing first
moment. Let (a, b), where a and b are finite or infinite, be the interior of the support set of this distribu-
tion. If the distribution F satisfies conditions of either of Theorems 1, 2, or 3, the expected optimal value
of the MAP satisfies

Z∗d,n → na, n →∞ or d →∞.

The foregoing analysis is constructive in the sense that it allows for deriving practically useful bounds for
the expected optimal value of random MAP. The next section discusses this issue in detail and presents
experimental evidence on the goodness of the developed bounds.
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4 Asymptotical bounds and rate of convergence for the expected optimal
value of MAP

Although the primary focus of the preceding sections has been on determining the limiting value of the
expected optimal cost of “infinitely large” random MAPs, the obtained results can be readily employed to
construct upper and lower asymptotical bounds for the expected optimal value of MAP when one of the
parameters n or d is large but finite. The lower and upper bounds Z∗d,n and Z

∗

d,n introduced in Lemma 2
are especially useful when the support of distribution F of the MAP’s cost coefficients has a finite left
endpoint. The following statement is a special case of Lemma 4 and Theorem 1.

Lemma 5 Consider a d ≥ 3, n ≥ 3 MAP (1) with cost coefficients that are iid random variables from
an absolutely continuous distribution with existing first moment. Let (a, b), where a ∈ R, b ∈ (a,+∞],
be the interior of the support set of this distribution, and assume that the inverse F−1(u) of the c.d.f.
F(u) of the distribution is such that

F−1(u) ∼ a +
∞∑

s=1

asus/µ, u → 0+, µ > 0. (59)

Then, for any integer m ≥ 1, lower and upper bounds Z∗d,n, Z
∗

d,n (4) on the expected optimal cost Z∗d,n
of the MAP can be asymptotically evaluated as

Z∗d,n = an +
m−1∑
s=1

as

n 0(κ + 1) 0
( s
µ
+ 1

)
0
(
κ + s

µ
+ 1

) +O
(

n
0(κ + 1) 0

(m
µ
+ 1

)
0
(
κ + m

µ
+ 1

) )
, κ

n,d
−→∞, (60a)

Z
∗

d,n = an +
m−1∑
s=1

as

n 0(κ + 1) 0
( s
µ
+ α

)
0(α) 0

(
κ + s

µ
+ 1

) +O(n
0(κ + 1) 0

(m
µ
+ α

)
0(α) 0

(
κ + m

µ
+ 1

)) , κ
n,d
−→∞. (60b)

It can be shown that the lower and upper bounds defined by (60) are convergent, i.e.,

|Z
∗

d,n − Z∗d,n| → 0, κ
n,d
−→∞,

whereas the corresponding asymptotical bounds for the case of distributions with support unbounded
from below may be divergent in the sense that |Z

∗

d,n − Z∗d,n|9 0 when κ
n,d
−→∞.

Asymptotical representations (60) for the bounds Z∗d,n and Z
∗

d,n are simplified when the inverse F−1(·)

of the c.d.f. of the distribution has a regular power series expansion in the vicinity of zero. Assume, for
example, that function F−1(·) can be written as

F−1(u) = a + a1u +O(u2), u → 0+. (61)

The asymptotic expressions (60) for the lower and upper bounds Z∗d,n and Z
∗

d,n for the expected optimal
cost Z∗d,n then take the form

Z∗d,n ∼ na +
a1

nd−2
, κ

n,d
−→∞, (62a)

Z
∗

d,n ∼ na + a1
ded−1

e

nd−2
, k

n
−→∞, (62b)

Z
∗

d,n ∼ na + a1nγn(d−1)−(d−2), κ
d
−→∞. (62c)
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It is of interest to note that if a = 0 in (61) then for n � 1 and d fixed the expected optimal value of the
MAP is asymptotically bounded as

a1

nd−2
+O

(
1

nd−1

)
≤ Z∗d,n ≤

a1ded−1
e

nd−2
+O

(
1

nd−1

)
, k

n
−→∞, (63)

which immediately yields the rate of convergence to zero for Z∗d,n as n approaches infinity:

Lemma 6 Consider a d ≥ 3, n ≥ 3 MAP (1) with cost coefficients that are iid random variables from
an absolutely continuous distribution with existing first moment. Let (0, b), where b ∈ (0,+∞], be the
interior of the support set of this distribution, and assume that the inverse F−1(u) of the c.d.f. F(u) of
the distribution satisfies (61) with a = 0. Then, for a fixed d and n → ∞ the expected optimal value
Z∗d,n of the MAP converges to zero as O

(
n−(d−2)

)
.

Furthermore, inequalities (63) allow one to conjecture that the expected optimal value of a random MAP
with an absolutely continuous distribution F , which satisfies (61) with a = 0, has the form

Z∗d,n =
C

nd−2
+O

(
1

nd−1

)
, n � 1,

where constant C > 0 is such that a1 ≤ C ≤ a1ded−1
e.

We illustrate the tightness of the developed bounds (60) by comparing them to the computed expected
optimal values of MAPs with coefficients ci1, ..., id drawn from the uniform U (0, 1) distribution and expo-
nential distribution with mean 1. The p.d.f. of the uniform distribution is given by fU (0,1)(x) = 1[0,1](x),
and that of exponential with mean 1 distribution is fexpo(1)(x) = e−x 1[0,+∞)(x), where 1A(x) is the indi-
cator function of a set A ⊆ R. It is elementary that the inverse functions F−1(·) of the c.d.f.’s for both
these distributions are representable in the form (61) with a = 0, a1 = 1, thereby reducing the general
expressions (60) for the lower and upper bounds Z∗d,n and Z

∗

d,n to the form (62).
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Figure 1: Expected optimal value Z∗d,n , lower and upper bounds Z∗d,n, Z
∗

d,n of an MAP with fixed d = 3
(left) and d = 5 (right) for uniform U (0, 1) and exponential(1) distributions.

The numerical experiments involved solving multiple instances of randomly generated MAPs with the
number of dimensions d ranging from 3 to 10, and the number n of elements in each dimension running
from 3 to 20. To solve the problems to optimality, we used a branch-and-bound algorithm that navigated
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Figure 2: Expected optimal value Z∗d,n , lower and upper bounds Z∗d,n, Z
∗

d,n of an MAP with fixed n = 3
(left) and n = 5 (right) for uniform U (0, 1) and exponential(1) distributions.

through the index tree representation of the MAP.2 Figures 1 and 2 display the obtained expected optimal
values of MAP with uniform and exponential iid cost coefficients when d is fixed at d = 3 or 5 and
n = 3, . . . , 20, and when n = 3 or 5 and d runs from 3 to 10. This “asymmetry” in reporting of the
results is explained by the fact that the implemented branch-and-bound algorithm based on index tree is
more efficient in solving “shallow” MAPs, i.e., instances that have larger n and smaller d . The solution
times varied from several seconds to 20 hours on a 2GHz PC.

Figures 1 and 2 suggest that MAPs with exponentially and uniformly distributed costs and the same
dimensionality possess very close expected optimal values. This observation is in complete agreement
with the presented above theoretical findings: indeed, we argue that the asymptotical behavior of large-
scale random MAPs is determined by the properties of the inverse F−1(x) of the c.d.f. F(·) at x = 0.
In the considered case of uniformly and exponentially distributed random MAPs, the inverse functions
F−1(·) of c.d.f.’s of these two distributions share the first two terms of their asymptotical expansions at
zero, which leads to similar numerical values of the expected optimal cost.

The conducted numerical experiments also suggest that the constructed lower and upper bounds for the
expected optimal cost of random MAPs are quite tight, with the upper bound Z

∗

d,n being tighter for the
case of fixed n and large d (see Figs. 1–2).

Conclusions

In this paper we have conducted asymptotical analysis of the expected optimal value of the Multidi-
mensional Assignment Problem where the assignment costs are iid random variables drawn from a con-
tinuous distribution. It has been demonstrated that asymptotical behavior of the expected optimal cost
of a random MAP in the case when one of the problem’s dimension parameters approaches infinity is
determined by the location of the left endpoint a of the support [a, b] of the distribution. Namely, the
expected optimal cost of a d-dimensional random MAP with n elements in each dimension approaches
the limiting value of na when one of the parameters n or d is fixed and the other increases infinitely.

2The index tree representation of MAP [34] differs from the introduced in Section 2 index graph in that every path from the
root node to a leaf node of the tree represents a feasible solution to the MAP. As a result, each level of the index tree contains
more nodes than the corresponding level of the index graph.
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This statement has been proven to hold true for a broad class of continuous distributions with a finite or
infinite left endpoint of the support. The presented analysis is constructive in the sense that it allows for
derivation of lower and upper asymptotical bounds for the expected optimal value of the problem for a
prescribed probability distribution. If the distribution’s support set has a finite left endpoint, these bounds
are converging.
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[8] Burkard, R. E., and E. Çela (1999) Linear assignment problems and extensions, In: D.-Z. Du
and P. M. Pardalos (Eds.), Handbook of Combinatorial Optimization, Vol. 4, Kluwer Academic
Publishers, Dordrecht.
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[23] Mézard, M., and G. Parisi (1987) On the solution of the random link matching problems, Journal
de Physique, 48(9), 1451–1459.

[24] Murphey, R., Pardalos, P., and L. Pitsoulis (1998a) A greedy randomized adaptive search procedure
for the multitarget multisensor tracking problem, In: DIMACS Series Vol. 40, American Mathemat-
ical Society, 277–302.

[25] Murphey, R., Pardalos, P. M., and L. S. Pitsoulis (1998b) A Parallel GRASP for the Data Associ-
ation Multidimensional Assignment Problem, In: Parallel Processing of Discrete Problems, The
IMA Volumes in Mathematics and its Applications, Vol. 106, Springer, Berlin, 159–180.

[26] Nair, C., Prabhakar, B., and M. Sharma (2003) A Proof of the Conjecture due to Parisi for the Finite
Random Assignment Problem, Working Paper.

[27] Olin, B. (1992) Asymptotic properties of the random assignment problem, Ph.D. thesis, Division
of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology,
Stockholm, Sweden.

[28] Olver, F. W. (1997) Asymptotics and Special Functions, 2nd edition, AK Peters Ltd, Wellesley,
MA.

22



[29] Pardalos, P. and Pitsoulis, L., Eds. (2000) Nonlinear Assignment: Problems, Algorithms and Appli-
cations, Kluwer Academic Publishers, Dordrecht.

[30] Pardalos, P. M., and K. G. Ramakrishnan (1993) On the expected optimal value of random as-
signment problems: Experimental results and open questions, Computational Optimization and
Applications, 2, 261–271.

[31] Parisi, G. (1998) A conjecture on random bipartite matching, Physics e-Print archive, http://
xxx.lang.gov/ps/cond-mat/9801176.

[32] Papadimitrou, C. H., and K. Steiglitz (1998) Combinatorial Optimization: Algorithms and Com-
plexity, Dover, New York.

[33] Pasiliao, E. L. (2003) Algorithms for Multidimensional Assignment Problems, PhD thesis, Depart-
ment of Industrial and Systems Engineering, University of Florida.

[34] Pierskalla, W. (1968). The multidimensional assignment problem, Operations Research, 16, 422–
431.

[35] Poore, A. B. (1994a) Multidimensional assignment formulation of data association problems arising
from multitarget and multisensor tracking, Computation Optimization and Applications, 3, 27–54.

[36] Poore, A. B. (1994b) A numerical study of some data association problems arising in multitarget
tracking, In: W. W. Hager, D. W. Hearn, P. M. Pardalos (Eds.) Large Scale Optimization: State of
the Art, Kluwer Academic Publishers, Dordrecht, 339–361.

[37] Poore, A. B., Rijavec, N., Liggins, M., and V. Vannicola (1993) Data association problems posed
as multidimensional assignment problems: problem formulation, In: O. E. Drummond (Ed.) Signal
and Data Processing of Small Targets, SPIE, Bellingham, WA, 552–561.

[38] Pusztaszeri, J., Rensing, P. E., and T. M. Liebling (1995) Tracking elementary particles near their
primary vertex: a combinatorial approach, Journal of Global Optimization, 16, 422–431.

[39] Veenman, C. J., Hendriks, E. A., and M. J. T. Reinders (1998) A fast and robust point tracking
algorithm, Proceedings of the Fifth IEEE International Conference on Image Processing, 653–657,
Chicago, USA.

[40] Walkup, D. W. (1979) On the expected value of a random assignment problem, SIAM Journal on
Computation, 8, 440–442.

[41] Wolfram Research, Inc. http://functions.wolfram.com

23


