Mathematical Programming manuscript No.
(will be inserted by the editor)

Michal Kocvara- Michael Stingl

On the solution of large-scale SDP problems by the
modified barrier method using iterative solvers

—-2nd revision—

Dedicated to the memory of Jos Sturm

Received: date / Revised version: date

Abstract. The limiting factors of second-order methods for large-scalmidefinite optimization are the
storage and factorization of the Newton matrix. For a paldicalgorithm based on the modified barrier
method, we propose to use iterative solvers instead of thenedyused direct factorization techniques. The
preconditioned conjugate gradient method proves to be devédternative for problems with a large number
of variables and modest size of the constrained matrix. Wadugropose to avoid explicit calculation of the
Newton matrix either by an implicit scheme in the matrix-vectaduct or using a finite-difference formula.
This leads to huge savings in memory requirements and, foricgntablems, to further speed-up of the
algorithm.

1. Introduction

The currently most efficient and popular methods for solgageral linear semidefinite
programming (SDP) problems

znél]lRI}I ffz st A(z) <0 (A:R" —-8S™)
are the dual-scaling [2] and primal-dual interior-poirgtriques [1,10,17,22]. These
techniques are essentially second-order algorithms: olvesa sequence of uncon-
strained minimization problems by a Newton-type methodcdimpute the search di-
rection, it is necessary to construct a sort of “Hessian"rixand solve the Newton
equation. Although there are several forms of this equatiahoose from, the typical
choice is the so-called Schur complement equation (SCH) aviymmetric and posi-
tive definite Schur complement matrix of ordex n. In many practical SDP problems,
this matrix is dense, even if the data matrices are sparse.

Recently, an alternative method for SDP problems has besoped in [12]. It is
based on a generalization of the augmented Lagrangianiteehand termed modified
barrier or penalty/barrier method. This again is a secan@romethod and one has to
form and solve a sequence of Newton systems. Again, the Memsdrix is of order
n X n, symmetric, positive definite and often dense.

The Schur complement or the Newton equations are most fnélgusolved by rou-
tines based on the Cholesky factorization. As a result, ppéeability of the SDP codes

Michal Kogvara: Institute of Information Theory and Automation, Acayeof Sciences of the Czech Re-
public, Pod vodrenskou & 4, 18208 Praha 8, Czech Republic and Czech Technical UitiyeFaculty of
Electrical Engineering, Techniék2, 166 27 Prague, Czech Republic, e-niaktvara@utia.cas.cz

Michael Stingl: Institute of Applied Mathematics, Univeysbf Erlangen, Martensstr. 3, 91058 Erlangen,
Germany, e-mailstingl@am.uni-erlangen.de

2 Michal Kotvara, Michael Sting|

is restricted by the memory requirements (a need to storé a fu n matrix) and the
complexity of the Cholesky algorith?®/3. In order to solve large-scale problems
(with n larger than a few thousands), the only option (for intedoint or modified
barrier codes) is to replace the direct factorization methyp an iterative solver, like a
Krylov subspace method.

In the context of primal-dual interior point methods, thigtion has been proposed
by several authors with ambiguous results [5, 14, 26]. Thia midficulty is that, when
approaching the optimal point of the SDP problem, the Neyooi$C) matrix becomes
more and more ill-conditioned. In order to solve the systgna iterative method, it
is necessary to use an efficient preconditioner. Howevereasant to solve a general
SDP problem, the preconditioner should also be generalitAaidell-known that there
is no generahnd efficient preconditioner. Consequently, the use of iteeathethods
in interior-point codes seems to be limited to solving peohd with just (very) low
accuracy.

A new light on this rather pessimistic conclusion has beaua $h the recent papers
by Toh and Kojima [24] and later by Toh in [23]. In [23], a symtme quasi-minimal
residual method is applied to an augmented system equiviale®CE that is further
transformed to a so-called reduced augmented systemhivvgrsthat if the SDP prob-
lem is primal and dual nondegenerate and strict complemrignkelds at the optimal
point, the system matrix of the augmented reduced systena lisinded condition
number, even close to the optimal point. The use of a diagaeaionditioner enables
the authors to solve problems with more than 100 000 vassablth a relatively high
accuracy.

A promising approach has been also studied by Fukuda et]aTtj& authors pro-
pose a Lagrangian dual predictor-corrector algorithmagisite BFGS method in the
corrector procedure and the conjugate gradient methochéosolution of the linear
system. The conjugate gradient method uses as precoratition BFGS matrix from
the predictor procedure. Although this approach deliveosnising results for medium
size examples, it remains unclear whether it can be prdigtieficient for large scale
problems.

In this paper, we investigate this approach in the contexhefmodified barrier
method from [12]. Similar to the primal-dual interior-pbimethod from [23], we face
highly ill-conditioned dense matrices of the same sizeoAisilarly to [23], the use of
iterative solvers (instead of direct ones) brings greadsantage when solving prob-
lems with very large number of variables (up to one hundredishnd and possibly
more) and medium size of the constrained matrix (up to onasdwad). Despite of these
similarities there are a few significant differences. Fitsé Schur complement equa-
tion has a lot of structure that is used for its further refolation and for designing the
preconditioners. Contrary to that, the Newton matrix inniedified barrier method is
just the Hessian of a (generalized) augmented Lagrangid@ssuch has no intrinsic
structure. Further, the condition number of the Hessiaglifits bounded close to the
optimal point, provided a standard constraint qualifiaattrict complementarity and
a standard second order optimality sufficient conditiordtiot the SDP problem. We
also propose two “Hessian-free” methods. In the first one Hbssian-vector product
(needed by the iterative solver) is calculated by an imfgimula without the need to
explicitly evaluate (and store) the full Hessian matrixtia second one, we use approx-

Large-scale SDP and iterative solvers 3

imate Hessian calculation, based on the finite differencmdita for a Hessian-vector
product. Both approaches bring us large savings in memayinements and further
significant speed-up for certain classes of problems. Lstshdt least, our method can
also be applied to nonconvex SDP problems [11,13].

We implemented the iterative solvers in the code PENNON §i2] compare the
new versions of the code with the standard linear SDP versitded PENSDPworking
with Cholesky factorization. Because other parts of theesaate identical, including
stopping criteria, the tests presented here give a cleturpiof advantages and disad-
vantages of each version of the code.

The paper is organized as follows. In Section 2 we presettabie modified barrier
algorithm and some details of its implementation. Sectioff&s motivation for the use
of iterative solvers based on complexity estimates. IniGeet we present examples of
ill-conditioned matrices arising in the algorithm and ottuce the preconditioners used
in our testing. The results of extensive tests are present&action 5. We compare
the new codes on four collections of SDP problems with diffitrbackgrounds. In
Section 6 we demonstrate that the use of iterative solvegs dot necessarily lead to
reduced accuracy of the solution. We conclude our paperdhd®er.

We use standard notatiof™ is the space of real symmetric matrices of dimension
m x m. The inner product o8™ is defined by(A, B) := trace(AB). NotationA < B
for A, B € S™ means that the matri® — A is positive semidefinite.

2. The algorithm

The basic algorithm used in this article is based on the neali rescaling method
of R. Polyak [20] and was described in detail in [12]. Here wiefty review it and
emphasize points that will be needed in the rest of the paper.
Our goal is to solve optimization problems with a linear alijge function subject
to a linear matrix inequality as a constraint:
. T
mn e
subject to 1
A(z) < 0;

heref € R™ andA : R™ — S™ is a linear matrix operatad(z) := Ag + >, z;4;,
A, €S™i=0,1,...,n.

The algorithm is based on a choice of a smooth penalty/bdmetion®, : S™ —
S™ that satisfies a number of assumptions (see [12]) guaragteaiparticular, that

A(z) < 0 < &,(A(z)) < 0.

Thus for anyp > 0, problem (1) has the same solution as the following “augedht
problem
: T
el
subject to)

@, (A(@)) < 0.

1 See www.penopt.com.

4 Michal Kotvara, Michael Sting|

The Lagrangian of (2) can be viewed as a (generalized) aughdragrangian
of (1):

F(z,U,p) = fTa + (U, 2, (A()))s,, ; ®3)

hereU < S is a Lagrangian multiplier associated with the inequaldpstraint.
The algorithm below can be seen as a generalization of then&ated Lagrangian
method.

Algorithm 1 Letz! and U! be given. Lep! > 0. For & = 1,2,... repeat until a
stopping criterion is reached:

(7) 2F*1 = argmin F(z, U*, p*)
TeR™

(i) UM = D@, (A1) U]
(i53) p*tt < pP.

Here D®(X)[Y] denotes the directional derivative &fwith respect taX in direction
Y.

By imposing standard assumptions on problem (1), it can tespkthat any cluster
point of the sequencf(xy, Uy)}, ., generated by Algorithm 1 is an optimal solution
of problem (1). The proof is based on extensions of resultddyak [20]; for the full
version we refer to [21]. Let us emphasize a property thahigoirtant for the purpose
of this article. Assuming the standard constraint qualiiicg strict complementarity
and a standard second order optimality sufficient conditiold at the optimal point,
there exist® such that the minimum eigenvalue of the Hessian of the Lagaan(3)
is bounded away from zero for gl < p and all(z,U) close enough to the solution
(x*,U*); see [21]. An analogous result has been proved in [20] in ¢timtext of stan-
dard inequality constrained nonlinear programming pnuisle

Details of the algorithm were given in [12]. Hence, in thddaling we just recall
facts needed in the rest of the paper and some new featurles afgorithm. The most
important fact is that the unconstrained minimization ie5(i) is performed by the
Newton method with line-search. Therefore, the algorithmsisentially aecond-order
method at each iteration we have to compute the Hessian of the bhggm (3) and
solve a linear system with this Hessian.

2.1. Choice ofp,
The penalty functior®,, of our choice is defined as follows:

Dp(A(2)) = —p*(Alz) — pI) ™" = pI. (4)

The advantage of this choice is that it gives closed formfdashe first and second
derivatives of?,,. Defining

2(z) = —(A(z) —pI)~" ()

Large-scale SDP and iterative solvers 5

we have (see [12]):

A = 7 2(0) 25 D 20 ©
2 X x 2 x
8938@ Pp(A()) = 9" 2 () (agﬂgz)Z(m) aglﬂgj) * gaj(‘)(mj)
+ ag;j)z@)ag‘s)) Z(x). W

2.2. Multiplier and penalty update, stopping criteria

For the penalty functiow, from (4), the formula for update of the matrix multipligr
in Step (ii) of Algorithm 1 reduces to

Uk+1 — (pk)QZ(l‘k—H)UkZ(ka'_l) (8)

with Z defined as in (5). Note that whéf is positive definite, so i57*1. We setl/!
equal to a positive multiple of the identity, thus all the aepgmations of the optimal
Lagrangian multipliel/ remain positive definite.

Numerical tests indicate that big changes in the multiplghrould be avoided for
the following reasons. Big change Gfmeans big change of the augmented Lagrangian
that may lead to a large number of Newton steps in the subsedeeation. It may
also happen that already after few initial steps, the mligtip become ill-conditioned
and the algorithm suffers from numerical difficulties. Toecsome these, we do the
following:

1. Calculatd/*+! using the update formula in Algorithm 1.
2. Choose a positives < 1, typically 0.5.

A
3. Compute\y = min (,L"AnU'A| lv HF

=07) -

4. Update the current multiplier by
ynew — Uk 4)\A(Uk:+1 o Uk:)

Given an initial iterater!, the initial penalty parameter' is chosen large enough
to satisfy the inequality
Pl — A(zt) = 0.

Let Apax (A(zF11)) € (—o0, p¥) denote the maximal eigenvalue dfz*+1), 7 < 1
be a constant factor, depending on the initial penalty patamp! (typically chosen
betweer).3 and0.6) andz..s be a feasible point. Ldtbe set to 0 at the beginning of
Algorithm 1. Using these quantities, our strategy for thegly parameter update can
be described as follows:

1. If p¥ < peps, S€ty = 1 and go to 6.

2. Calculate),ax (A(xF1)).

3. If mpF > Apax (A(2F1)), sety = 7,1 = 0 and go to 6.

4. If1 < 3, sety = (Amax(A(a*T1)) + p*) /2p*, setl :== I + 1 and go to 6.

6 Michal Kotvara, Michael Sting|

5. Lety =, find A € (0, 1) such, that
Amax (A(/\mk+1 + (1 -)\)xfeas>) < kav

setzFt = \xF+1 4 (1 — N)@geas andl := 0.
6. Update current penalty parameterfdy ! = ~p*.

The reasoning behind steps 3 to 5 is as follows: As long asdgpiality
Amax (A1) < mp” (9)

holds, the values of the augmented Lagrangian in the neatiib@ remain finite and we
can reduce the penalty parameter by the predefined fadtmmpare step 3). However,
as soon as inequality (9) is violated, an update usimgpuld result in an infinite value
of the augmented Lagrangian in the next iteration. Theeetloe new penalty parameter
should be chosen from the intern@,,. (A(z*1)), p*). Because a choice close to the
left boundary of the interval leads to large values of thenagigted Lagrangian, while
a choice close to the right boundary slows down the algorithenchoosey such that

k+1 AmaX(A(xk+1)) "‘pk
P 2

(compare step 4). In order to avoid stagnation of the pematgmeter update process
due to repeated evaluations of step 4, we redeffité using the feasible poinkgeas
whenever step 4 is executed in three successive iterationgp@re step 5); this is con-
trolled by the parametdr If no feasible point is yet available, Algorithm 1 is stoppe
and restarted from the scratch with a different choice dfahmultipliers. The para-
meterp,, is typically chosen a30~°. In case we detect problems with convergence
of Algorithm 1, p,s is decreased and the penalty parameter is updated agalrthant
new lower bound is reached.

The unconstrained minimization in Step (i) is not perfornegectly but is stopped
when

0
—F(z,U.
5, (@ Usp)
wherea = 0.01 is a good choice in most cases. Also herds decreased if we en-
counter problems with accuracy.

To stop the overall Algorithm 1, we have implemented two gwf criteria.
Firstly, the algorithm is stopped if both of the followingeiqualities hold:

Tk_F kUk T, .k _ ¢£T,.k—1
f AR Vit ey S I a1
1+ [fTak| 1+ |fTak]|
Secondly, we have implemented the DIMACS criteria [16]. &fink these criteria, we
rewrite our SDP problem (1) as

<a, (10)

: T
mip 1"
subject to 12)

Large-scale SDP and iterative solvers 7

whereC(z) —Cy = A(x). Recall thalJ is the corresponding Lagrangian multiplier and
let C*(-) denote the adjoint operator €-). The DIMACS error measures are defined
as

1) — £l

e = ———~———

! L+ f]l

)\min(U)} { 7>\min(c(x) - CO)}

erp = max 40, ———= err = max < 0,

’ { L+ £l ! 1+ [[Coll

_ fT —

e - (CoU) —fTx L (€)~CyU)

L+ [(Co, U)| + [fTx| L+ [(Co, U)| + |f 7|

Here, erf represents the (scaled) norm of the gradient of the Lagaaners and ery
is the dual and primal infeasibility, respectively, andseand erg measure the duality
gap and the complementarity slackness. Note that, in oue,ce@ = 0 by defini-
tion; also erg that involves the slack variable (not used in our problermigation) is
automatically zero.

In the code we typically require that (11) is satisfied with 10~* and, at the same
time,

er, < dpmacs, k€ {1,4,5,6}. (13)

With dpacs = 1077,

2.3. Complexity

As mentioned in the Introduction, every second-order netioo SDP problems has
two bottlenecks: evaluation of the Hessian of the augmebéepiangian (or a similar
matrix of similar size) and the solution of a linear systertiwtiis matrix. What are the
complexity estimates in our algorithm?

The complexity of Hessian assembling, when working with ftiection @, from
(4) is O(m>n + m?2n?) for dense data matrices ad{m? + K?n?) for sparse data
matrices, wherdy is the maximal number of nonzeros iy, i = 1,...,n; here we
used the sparse techniques described in [7].

In the standard implementation of the algorithm (code PERBMe use Cholesky
decomposition for the solution of the Newton system (as bothér second-order SDP
codes). The complexity of Cholesky algorithm(¢n?) for dense matrices ar@d(n*),

1 < k < 3 for sparse matrices, wheredepends on the sparsity structure of the matrix,
going from a diagonal to a full matrix.

As vast majority of linear SDP problems lead to dense Hesdjaven if the data
matricesA; are sparse), in the rest of the paper we will concentrateisrsituation.

3. lterative solvers

In step (i) of Algorithm 1 we have to approximately solve arcamstrained minimiza-
tion problem. As already mentioned before, we use the Newietihod with line-search

8 Michal Kotvara, Michael Sting|

to this purpose. In each iteration step of the Newton methedalve a system of linear
equations
Hd=—g (14)

where H is the Hessian ang the gradient of the augmented Lagrangian (3). In the
majority of SDP software (including PENSDP) this (or simjilaystem is solved by

a version of the Cholesky method. In the following we willaiss an alternative ap-
proach of solving the linear system by an iterative algonith

3.1. Motivation for iterative solvers

Our motivation for the use of iterative solvers is two-fdkirstly we intend to improve
the complexity of the Cholesky algorithm, at least for certends of problems. Sec-
ondly, we also hope to improve the complexity of Hessianrastiag.

3.1.1. Complexity of Algorithm 1 summarized@he following table summarizes the
complexity bottlenecks of Algorithm 1 for the case of lin&DP problems. Recall that
K is the maximal number of nonzerosih, i = 1, ..., n. Note further that we assume
A(x) to be dense.

Hessian computation
dense data matrices O(m3n + m?n?)
sparse data matrices O(m? + K2n?)

Cholesky method
dense Hessian O(n?)
sparse Hessian O(n")

wherel < x < 3 depends on the sparsity pattern. This shows that, for denbéems,
Hessian computation is the critical issue wher(size of 4;) is large compared te
(number of variables). On the other hand, Cholesky algaritikes the most time when
n is (much) larger tham.

3.1.2. Complexity: Cholesky versus iterative algorithn#s this moment, we should
be more specific in what we mean by an iterative solver. Ingkseaf the paper we will
only consider Krylov type methods, in particular, the caigite gradient (CG) method.

From the complexity viewpoint, the only demanding step iea @G method is a
matrix-vector product with a matrix of dimensian(when applied to our system (14)).
For a dense matrix and vector, it negd&:?) operations. Theoretically, in exact arith-
metics, the CG method needsterations to find an exact solution of (14), hence it is
equally expensive as the Cholesky algorithm. There areehierytwo points that may
favor the CG method.

First, it is well known that the convergence behavior of tHeé @ethod depends
solely on the spectrum of the matriX and the right-hand side vector. In particular,
it is given by the condition number and the possible clustedf the eigenvalues; for
details, see, e.g., [19]. In practice it means that if thespe is “favorable”, we may
need much smaller number of steps tharo obtain a reasonably exact solution. This

Large-scale SDP and iterative solvers 9

fact leads to a very useful idea of preconditioning whenteiad of (14), we solve a
“preconditioned” system

M~ 'Hd=-M"'yg

with a matrixA/ chosen in such a way that the new system maitfix' H has a “good”
spectrum. The choice dff will be the subject of the next section.

The second, and very important, point is that we actually oioneed to have an
exact solution of (14). On the contrary, a rough approxioratf it will do (compare
[9, Thm. 10.2]). Hence, in practice, we may need just a few @@&iions to reach the
required accuracy. This is in contrast with the Choleskyhmétwhere we cannot con-
trol the accuracy of the solution and always have to compheekact one (within the
machine precision). Note that we always start the CG methtidinitial approxima-
tion dy = 0; thus, performing just one CG step, we would obtain the ststeglescend
method. Doing more steps, we improve the search directiwartbthe Newton direc-
tion; note the similarity to the Toint-Steihaug method [19]

To summarize these two points: when using the CG algorithenmay expect to
need jusO(n?) operations, at least for well-conditioned (or well-preditioned) sys-
tems.

Note that we are still talking about dense problems. The fiskeoCG method is
a bit nonstandard in this context—usually it is preferableléoge sparse problems.
However, due to the fact that we just need a very rough appratidn of the solution,
we may favor it to the Cholesky method also for medium-sizexkse problems.

3.1.3. Complexity: explicit versus implicit versus appmexte Hessian Our second
goal is to improve the complexity of Hessian computation. Whelving (14) by the
CG method (and any other Krylov type method), the Hessianlisreeeded in a matrix-
vector product of the typélv := V2F(z*)v. Because we only need to compute the
products, we have two alternatives to explicit Hessianuatmon—an implicit, opera-
tor, formula and an approximate finite-difference formula.

Implicit Hessian formula Instead of computing the Hessian matrix explicitly and then
multiplying it by a vectorv, we can use the following formula for the Hessian-vector
multiplicatior?

VQF(xk)U = A" ((pk)zz(mk)UkZ(xk)A(U)Z(xk)) , (15)

whereA(v) = >, v;A;. Hence, in each CG step, we only have to evaluate matrices
A(v) (which is simple),Z(z*) and Z(«*)U* Z(2*) (which are needed in the gradient
computation, anyway), and perform two additional matriatrix products. The result-
ing complexity formula for one Hessian-vector product issth(m? + Kn).

Additional (but very important) advantage of this approectme fact that we do not
have to store the Hessian in the memory, thus the memoryresgents (often the real
bottleneck of SDP codes) are drastically reduced.

2 We are grateful to the anonymous referee for suggesting isro

10 Michal Kotvara, Michael Sting|

Approximate Hessian formulaWe may use a finite difference formula for the approx-
imation of this product

VF(zF + hv) — VF(aF)
h

V2F(z*)w ~ (16)
with b = (1 + ||z¥||2v/€,.,); See [19]. In generak,, is chosen so that the formula is
as accurate as possible and still not influenced by roundradfs. The “best” choice is
obviously case dependent; in our implementation, weepise= 10~¢. Hence the com-
plexity of the CG method amounts to the number of CG iterattimes the complexity
of gradient evaluation, which is of ordér(m? + Kn). This may be in sharp contrast
with the Cholesky method approach by which we have to conmpetéull Hessiarand
factorize it. Again, we have the advantage that we do not tagtore the Hessian in
the memaory.

Both approaches may have their dark side. With certain SBBl@ms it may hap-
pen that the Hessian computation is not much more expersrethe gradient eval-
uation. In this case the Hessian-free approaches may ber réathe-consuming. In-
deed, when the problem is ill-conditioned and we need manyt€@tions, we have to
evaluate the gradient many (thousand) times. On the othmt, lmehen using Cholesky
method, we compute the Hessian just once.

At a first glance, the implicit approach is clearly prefeeatd the approximate one,
due to the fact that it is exact. Note, however, that our firtall gs to solve nonlinear
SDPs. In this case it may happen that the second order paetightives of4 are ex-
pensive to compute or not available at all and thus the int@pproach is not applica-
ble. For this reason we also performed testing with the flifference formula, to see
how much is the behavior of the overall algorithm influencedhe use of approximate
Hessian calculation.

3.2. Preconditioned conjugate gradients

We use the very standard preconditioned conjugate gradietiiod. The algorithm is
given below. Because our stopping criterion is based ondsiduum, one consider an
alternative: the minimum residual method. Another altémeas the QMR algorithm
that can be favorable even for symmetric positive definitgeans thanks to its robust-
ness.

We solve the systeniid = —g with a symmetric positive definite and, possibly,
ill-conditioned matrix H. To improve the conditioning, and thus the behavior of the
iterative method, we will solve a transformed systéfiT ' HC—1)(Cd) = —C~lg
with C' symmetric positive definite. We define the preconditioheby M = C? and
apply the standard conjugate gradient method to the tremsfibsystem. The resulting
algorithm is given below.

Algorithm 2 (Preconditioned conjugate gradients) Given M, setdy = 0, rqg = g,
solveM zy = rg and setpg = —zg.

Large-scale SDP and iterative solvers 11

For k =0,1,2... repeat until convergence:
TTZk
(Z) Qp = k
pr Hpr,
(i) dry1 = dp + appy
(i) TRy =7+ apHpy

(iv) solveM z11 = 111
T
Tja1”Rk+1
('U) /6k+1 = ;”‘—TZ
k ~k
(vi) Prt+1 = —Tkt1 + Bry1pk

From the complexity point of view, the only expensive paiftshe algorithm are
the Hessian-vector products in steps (i) and (iii) (note timdy one product is needed)
and, of course, the application of the preconditioner ip §it8.

The algorithm is stopped when the scaled residuum is smailgin

[1Hdx + gll/llgll < €cc

in practice, when
Irell/llgll < €ca -
In our tests, the choice.. = 5 - 102 was sufficient.

4. Preconditioning
4.1. Conditioning of the Hessian

It is well known that in context of penalty or barrier optiration algorithms the biggest
trouble with iterative methods is the increasing ill-cdamating of the Hessian when we
approach the optimum of the original problem. Indeed, inagemethods the Hessian
may even become singular. The situation is not much betteuiirtase, i.e., when we
use Algorithm 1 for SDP problems. Let us demonstrate it omgptes.

Consider first problertheta2 from the SDPLIB collection [3]. The dimension of
this problem isn = 498. Figure 1 shows the spectrum of the Hessian at the initial and
the optimal point of Algorithm 1 (note that we use logaritierstaling in the vertical
axes). The corresponding condition numbers afe = 394 andropy = 4.9 - 107,
respectively. Hence we cannot expect the CG method to beeffagtive close to the
optimum. Indeed, Figure 2 presents the behavior of theuwasid Hd + g||/||g|| as a
function of the iteration count, again at the initial and tgimal point. While at the
initial point the method converges in few iterations (duéotw condition number and
clustered eigenvalues), at the optimal point one obsemtesmaely slow convergence,
but still convergence. The zig-zagging nature of the latteve is due to the fact that CG
method minimizes the norm of the error, while here we plotrtbiam of the residuum.
The QMR method offers a much smoother curve, as shown in &iguteft), but the
speed of convergence remains almost the same, i.e., sleveedond picture in Figure 3

12 Michal Kotvara, Michael Sting|

Fig. 1. Exampletheta2 : spectrum of the Hessian at the initial (left) and the optitnght) point.

o 100 200 300 400 500 600 700 800 900 1000

Fig. 2. Exampletheta2 : CG behavior at the initial (left) and the optimal (right) pbi

shows the behavior of the QMR method with diagonal precamdiig. We can see that
the convergence speed improves about two-times, whichillis)gt very promising.
However, we should keep in mind that we want just an approténaf d and typically
stop the iterative method when the residuum is smaller ¢h@sy in this case it would
be after about 180 iterations.

The second example, problecontrol3 from SDPLIB withn = 136, shows
even a more dramatic picture. In Figure 4 we see the spectfuhediessian, again
at the initial and the optimal point. The condition numbertloése two matrices is
Kini = 3.1 - 108 andropt = 7.3 - 10'2, respectively. Obviously, in the second case, the
calculations in the CG method are on the edge of machinegioacind we can hardly
expect convergence of the method. And, indeed, Figure 5 sltioat while atr;,; we
still get convergence of the CG methodyat, the method does not converge anymore.
So, in this case, an efficient preconditioner is a real négess

4.2. Conditions on the preconditioner

Once again, we are looking for a preconditioner—a matrixc S’} —such that the
systemM ~'Hd = —M~'g can be solved more efficiently than the original system

Large-scale SDP and iterative solvers 13

7 . . L L L L . . .
7 L L L L L L L L L 0 100 200 300 400 S0 600 700 80 900 4png
0 100 200 300 400 500 600 700 800 900 1000

Fig. 3. Exampletheta2 : QMR behavior at the optimal (right) point; without (left) @mith (right) precon-
ditioning.

Fig. 4. Examplecontrol3 : spectrum of the Hessian at the initial (left) and the optitnight) point.

Hd = —g. Hence
(i) the preconditioner should be efficient

in the sense that the spectrumidt—' H is “good” for the CG method. Further,
(ii) the preconditioner should be simple.

When applying the preconditioner, in every iteration of th@ @lgorithm we have to
solve the system

Mz = p.

Clearly, the application of the “most efficient” preconditer M = H would return us
to the complexity of the Cholesky method applied to the ordgjsystem. Consequently
M should be simple enough, so thetz = p can be solved efficiently.

The above two requirements are general conditions for asggmditioner used
within the CG method. The next condition is typical for ouphigation within opti-
mization algorithms:

(iii) the preconditioner should only use Hessian-vectardarcts.

14 Michal Kotvara, Michael Sting|

:

(] 100 200 300 400 500 600 700 800 900 1000

Fig. 5. Examplecontrol3 : CG behavior at the initial (left) and the optimal (right) pbi

This condition is necessary for the use of the Hessian-fegsion of the algorithm.
We certainly do not want the preconditioner to destroy thedtn-free nature of this
version. When we use the CG method with exact (i.e. computed3ildn, this condition
is not needed.
Finally,
(iv) the preconditioner should be “general”.

Recall that we intend to solve general SDP problems withaytaapriori knowledge
about their background. Hence we cannot rely on specialgsgrpreconditioners, as
known, for instance, from finite-element discretizatioh®DEs.

4.3. Diagonal preconditioner

This is a simple and often-used preconditioner with
M = diag (H).

It surely satisfies conditions (ii) and (iv). On the other datmough simple and general,
it is not considered to be very efficient. Furthermore, itsloet really satisfy condition
(iii), because we need to know the diagonal elements of th&side. It is certainly
possible to compute these elements by Hessian-vector giodtor that, however, we
would needn gradient evaluations and the approach would become toly.cost

4.4. Symmetric Gauss-Seidel preconditioner

Another classic preconditioner with
M=(D+L)"DY(D+L) where H=D—-L-L"

with D andL being the diagonal and strictly lower triangular matribspectively. Con-
sidered more efficient than the diagonal preconditiones, aso slightly more expen-
sive. Obviously, matrix{ must be computed and stored explicitly in order to calculate
M. Therefore this preconditioner cannot be used in connegtith formula (16) as it
does not satisfy condition (jii).

Large-scale SDP and iterative solvers 15

4.5. L-BFGS preconditioner

Introduced by Morales-Nocedal [18], this preconditioneiiritended for application
within the Newton method. (In a slightly different contetkte (L-)BFGS preconditioner
was also proposed in [8].) The algorithm is based on limiteztnory BFGS formula
([19]) applied to successive CG (instead of Newton) itersi

Assume we have a finite sequence of vectdrand gradientg(x?),i = 1,... k.
We define the correction paitg’, y*) as

th =2t — gt y' = g(z) — g(z), 1=1,...,k—1.

Using a selectiow of i pairs from this sequence, such that
1< <o <. <opi=k—1

and an initial approximation

(t7e)Tyow

(v)Ty

we define the L-BFGS approximatid# of the inverse off; see, e.g. [19]. To compute
a product of with a vector, we use the following algorithm of complexity.

Algorithm 3 (L-BFGS) Givenasetof pair§t”:,y’i},i = 1,2,..., u, and avectod,
we calculate the produet= Wd as

Wy =

b

(i) q=d
(44) fori=p,pu—1,...,1, put
_ (t7)7q _ o
Q= o) Tte q=q—ay

(#i) r = Woq
(iv) fori=1,2,...,pu, put

)"
= e

o'i)T
r=r+t7a; — 5).

The idea of the preconditioner is the following. Assume watita solve the un-
constrained minimization problem in Step (i) of Algorithmbg the Newton method.
At each Newton iterate:("), we solve the Newton systet (z(9)d) = —g(z(®).
The first system at(®) will be solved by the CG method without preconditioning. The
CG iterationsz'”, g(w,g))), k =1,..., Ko will be used as correction pairs to build a
preconditioner for the next Newton step. If the number of @BattionsKj is higher
than the prescribed number of correction pairsve just select some of them (see the
next paragraph). In the next Newton step, the correction pairs are used to build an
approximationi? () of the inverse offf (2(1)) and this approximation is used as a pre-
conditioner for the CG method. Note that this approximatsnot formed explicitly,
rather in the form of matrix-vector produet= W p —just what is needed in the
CG method. Now, the CG iterations in the current Newton stepuged to form new

16 Michal Kotvara, Michael Sting|

correction pairs that will build the preconditioner for thext Newton step, and so on.
The trick is in the assumption that the Hessian at the old Newtep is close enough to
the one at the new Newton step, so that its approximation&ae s a preconditioner
for the new system.

As recommended in the standard L-BFGS method, we used 1@&+8tion pairs,
when available. Often the CG method finished in less itematiand in that case we
could only use the available iterations for the correctiairg If the number of CG it-
erations is higher than the required number of correctiors pathe question is how to
select these pairs. We have two options: Either we take #ig lpairs or an “equidis-
tant” distribution over all CG iterations. The second opti®slightly more complicated
but may be expected to deliver better results. The followAtgprithm 4 gives a guide
to such an equidistant selection.

Algorithm 4 Given an even number, sety = 1 andP = (). Fori = 1,2, ... do:

Initialization

Ifi<p

— insert{t!, 4’} in P

Insertion/subtraction

If i can be written ag = (5§ + ¢ — 1)27 for somef € {1,2,..., 5} then
set index of the subtraction pair &s= (2¢ — 1)27~!
subtract{t*, y*} from P
insert{t’, v’} in P
—ifl=15sety=~+1

The L-BFGS preconditioner has the big advantage that it nebds Hessian-vector
products and can thus be used in the Hessian-free approd@hedke other hand, it
is more complex than the above preconditioners; also owidtseare not conclusive
concerning the efficiency of this approach. For many prokl@émworked satisfactorily,
for some, on the other hand, it even lead to higher number okte@s than without
preconditioner.

5. Tests

For testing purposes we have used the code PENNON, in partitsiversion for linear
SDP problems called PENSDP. The code implements Algorithfarithe solution of
the Newton system we use either the LAPACK routine DPOTRIEthas Cholesky de-
composition (dense problems) or our implementation ofsp@&holesky solver (sparse
problems). In the test version of the code we replaced thexdgolver by conjugate
gradient method with various preconditioners. The resgltiodes are called

PEN-E-PCGfreq) with explicit Hessian calculation
PEN-I-PCGpreg with implicit Hessian calculation (15)
PEN-A-PCGprec) with approximate Hessian calculation (16)

whereprecis the name of the particular preconditioner. In two lattases, we only
tested the BFGS preconditioner (and a version with no prtioning). All the other

Large-scale SDP and iterative solvers 17

preconditioners either need elements of the Hessian oruatetqo costly with this
respect.

Few words about the accuracy. It has already been mentitia¢the conditioning
of the Hessian increases as the optimization algorithmaeser to the optimal point.
Consequently, a Krylov-type iterative method is expecteldave more and more diffi-
culties when trying to reach higher accuracy of the solutibiine original optimization
problem. This was indeed observed in practice [23,24]. Theonditioning may be
so severe that it does not allow to solve the problem withaisoaable accuracy at all.
Fortunately, this was not observed in the presented apiprdsle explain this by the
fact that, in Algorithm 1, the minimum eigenvalue of the Hassof the Lagrangian is
bounded away from zero, even if we are close to the solutiarihé same time, the
penalty parameter (affecting the maximum eigenvalue of the Hessian) is notitgu
when it reaches certain lower boupg,s; see Section 2.

For the tests reported in this section, we set the stoppiteyierin (11) and (13) as
e = 107* anddpuacs = 1073, respectively. At the end of this section we report what
happens when we try to increase the accuracy.

The conjugate gradient algorithm was stopped when

1Hd+gll/llgll < €ca

wheree.. = 5 - 10~2 was sufficient. This relatively very low accuracy does ngt si
nificantly influence the behavior of Algorithm 1; see alsoT&m. 10.2]. On the other
hand, it has the effect that for most problems we need a venynlanber of CG iter-
ations at each Newton step; typically 4-8. Hence, when sglproblems with dense
Hessians, the complexity of the Cholesky algorittin?) is replaced by) (xn?) with
k < 10. We may thus expect great savings for problems with langer

In the following paragraphs we report the results of ouringsfor four collections
of linear SDP test problems: the SDPLIB collection of lin8&Ps by Borchers [3]; the
set of various large-scale problems collected by Hans Mittan and called here HM-
problems [15]; the set of examples from structural optirdzacalled TRUSS collec-
tion%; and a collection of very-large scale problems with rekdtivsmall-size matrices
provided by Kim Toh and thus called TOH collection [23].

5.1. SDPLIB

Let us start with a comparison of preconditioners for thisaeproblems. Figure 6
presents a performance profile [6] on three preconditionagonal, BFGS, and sym-
metric Gauss-Seidel. Compared are the CPU times neededvtoZd selected prob-
lems of the SDPLIB collection. We used the PEN-E-PCG versibthe code with

explicit Hessian computation. The profile shows that thegnéitioners deliver virtu-

ally identical results, with SGS having slight edge. Beeatle BFGS preconditioner
is the most universal one (it can also be used with the "|” aivtiversion of the code),

it will be our choice for the rest of this paragraph.

3 Available at http://www2.am.uni-erlangen.dé{ocvara/pennon/problems.html

18 Michal Kotvara, Michael Sting|

Performance profile on various preconditioners

-

Performance
° ° ° ° °
o > N © ©
T

IS
»
T

o
w

o
N

diag —
BFGS
——————— SGS B

o
s

o

=)
o
o
-
-
o
N

25

Fig. 6. Performance profile on preconditioners; SDPLIB problems

Table 2 gives a comparison of PENSDP (i.e., a code with Ckglsslver), PEN-
E-PCG(BFGS) (with explicit Hessian computation), PENG@&BFGS) (with implicit
Hessian computation) and PEN-A-PCG(BFGS) (approximatsesida computation).
Not only the CPU times in seconds are given, but also time&Np®rton iteration and
number of CG steps (when applicable) per Newton iteratiomhéie chosen the form
of a table (contrary to a performance profile), because wik this important to see the
differences between the codes on particular examplesethdehile for most examples
the PCG-based codes are about as fast as PENSDP, in a feviteasage significantly
faster. These examplethéta =, thetaG =*) are typical of a high ratio ofi to m. In
such situation, the complexity of the solution of the Newsgatem is much higher than
the complexity of Hessian computation and PCG versionsettde are expected to
be efficient (see Table 3 and the text below). In (almost)takkoproblems, most time is
spent on Hessian computation and thus the solver of the Mesystem does not effect
the total CPU time. In a few problemsdntrol =+, truss8), PEN-*-PCG(BFGS)
were significantly slower than PENSDP; these are the vemoitiditioned problems
when the PCG method needs many iterations to reach evenirecturacy required.

Looking at PEN-I-PCG(BFGS) results, we see even strondectethe higher the
ration to m, the more efficient code”. In all examples, this code is fatbten the other
Hessian-free code PEN-A-PCG(BFGS); in some cases PEN-BG(BEGS) even failed
to reach the required accuracy (typically, it failed in timelsearch procedure when the
search direction delivered by inexact Hessian formulautatons was not a direction
of descent).

The results of the table are also summarized in form of théopgaance profile in
Figure 7. The profile confirms that while PENSDP is the fastesie in most cases,
PEN-I-PCG(BFGS) is the best performer in average.

Large-scale SDP and iterative solvers 19

Table 1.Dimensions of selected SDPLIB problems.

dimensions

problem n m

arch8 174 335
control7 666 105
equalG11l | 801 801
equalG51 | 1001 1001
gpp250-4 250 250
gpp500-4 501 500
maxG11 800 800
maxG32 | 2000 2000
maxG51 1000 1000
mcp250-1| 250 250
mcp500-1| 500 500
qap9 748 82
qapl0 1021 101
gpG51 1000 2000
ss30 132 426
theta3 1106 150
theta4 1949 200
theta5 3028 250
theta6 4375 300
thetaG11 | 2401 801
truss8 496 628

Performance

0.9

o
)

o
3

o
o

o
o

o
>
T

o
w

o
N

0.1F

Performance profile on various solvers

r ———— PENSDP
- = == PEN-E-PCG(BFGS) 4
PEN-I-PCG(BFGS)

[PEN-A-PCG(BFGS) 4

0.5 1 15 2 25 3 35 4

Fig. 7. Performance profile on solvers; SDPLIB problems

Table 3 compares the CPU time spent in different parts ofltfeighm for different
types of problems. We have chosen typical representativpsoblems withn ~ m
(equalG11) andn/m > 1 (thetad4). For all four codes we show the total CPU time
spent in the unconstrained minimization, and cumulativee of function and gradient
evaluations, Hessian evaluation, and solution of the Newystem. We can clearly see

20

Michal Kotvara, Michael Sting|

Table 2. Results for selected SDPLIB problems. CPU times in secondd/iEfime per a Newton iteration;
CGlit—average number of CG steps per Newton iteration. 32@ntium 4 with 1GB DDR400 running

Linux.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it| CPU CPU/it CG/it| CPU CPU/it CG/it| CPU CPU/it CGlit
arch8 6 0.07 7 0.07 16 10 0.11 20 30 0.29 39
control7 72 0.56| 191 1.39 357| 157 0.75 238| 191 2.45 526
equalG11 49 1.58 66 2.00 10 191 5.79 10| 325 9.85 13
equalG51 | 141 276 174 3.55 8| 451 9.20 8| 700 14.29 10
gpp250-4 2 0.07 2 0.07 4 4 0.14 4 4 0.14 4
gpp500-4 15 0.42 18 0.51 5 32 0.91 5 45 1.29 6
hinf15 421 9.57| 178 2.83 8 22 0.40 7 44 0.76 13
maxG11l 13 0.36 12 0.33 11 46 1.24 12 66 1.83 12
maxG32 132 4.13| 127 3.74 18| 634 18.65 18 failed
maxG51 91 1.82 98 1.78 8| 286 5.20 8| 527 9.58 9
mcp250-1 1 0.03 1 0.03 5 2 0.07 6 4 0.10 7
mcp500-1 5 0.14 5 0.13 7 10 0.26 7 14 0.39 7
gap9 3 0.09 29 0.22 60 26 0.08 55 48 0.57 273
gapl0 9 0.20 34 0.67 67 18 0.24 98 failed
gpG11 49 1.36 46 1.31 10| 214 6.11 10| 240 6.86 11
qpG51 181 431 191 4.34 3| 323 7.34 3| 493 11.20 4
ss30 15 0.26 15 0.28 5 10 0.19 5 11 0.20 6
theta3 11 0.22 8 0.14 8 3 0.05 8 5 0.08 10
thetad 40 0.95 30 0.50 12 8 0.14 9 11 0.20 11
theta5 153 3.26 74 1.23 8 14 0.22 7 23 0.40 11
theta6 420 9.55| 178 2.83 8 21 0.38 7 44 0.76 13
thetaG11 218 2.63| 139 1.70 11| 153 1.72 13| 359 3.86 26
truss8 9 0.12 23 0.27 115 36 0.40 130 failed

that in thethetad example, solution of the Newton system is the decisive parile
in equalG11 itis the function/gradient/Hessian computation.

Table 3. Cumulative CPU time spent in different parts of the codes: énvthole unconstrained minimization
routine (CPU); in function and gradient evaluation (f+g)Hessian evaluation (hess) ; and in the solution of
the Newton system (chol or CG).

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) | PEN-A-PCG(BFGS)
problem CPU f+g hess chol CPU f+g hess CG| CPU f+g CG| CPU
thetad 40.1 0.8 105 28.7] 30.0 16 145 137 74 15 57| 108
equalG1l| 44.7 275 140 1.8/ 60.2 431 146 2.3 1856 42.6 1426/ 3199 3183

5.2. HM collection

Table 4 lists a selection of large-scale problems from the ¢dMection, together with
their dimensions and number of nonzeros in the data matrices
The test results are collected in Table 5, comparing agaMS?H with PEN-E-
PCG(BFGS), PEN-I-PCG(BFGS) and PEN-A-PCG(BFGS). Contrarthe SDPLIB
collection, we see a large number of failures of the PCG baselts, due to ex-
ceeded time limit of 20000 seconds. This is the case evenrfiblgms with large
n/m. These problems, all generated by SOSTOOLS or GLOPTIPOleY typified

Large-scale SDP and iterative solvers 21

Table 4.Dimensions of selected HM-problems.

problem m n nzs blocks
cancerl00 570 10470 10569 2
checkerl.5 | 3971 3971 3,970 2
cnhill0 221 5005 24310 2
cnhil8 121 1716 7260 2
cphill0 221 5005 24310 2
cphil12 364 12376 66429 2
foot 2209 2,209 2440944 2
G40.mb 2001 2000 2003000 2
G40mc 2001 2000 2000 2|
G48mc 3001 3000 3000 2
G55mc 5001 5000 5000 2
G59mc 5001 5000 5000 2
hand 1297 1297 841752 2
neosfbr20 363 7201 309624 2
neul 255 3003 31880 2
neulg 253 3002 31877 2
neu2c 1256 3002 158098 15
neu2 255 3003 31880 2
neu2g 253 3002 31877 2
neu3 421 7364 87573 3
rabmo 6827 5004 60287 2
rosel3 106 2379 5564 2
tahala 1681 3002 177420 5
tahalb 1610 8007 107373 g
yalsdp 301 5051 1005250 4

by high ill-conditioning of the Hessian close to the solatiavhile in the first few
steps of Algorithm 1 we need just few iterations of the PCGhuoeét in the later
steps this number becomes very high and the PCG algorithomeseffectively non-
convergent. There are, however, still a few problems withda /m for which PEN-
I-PCG(BFGS) outperforms PEN-E-PCG(BFGS) and this, in,tatearly outperforms
PENSDP:cancer _100, cphil *, neosfbr20, yalsdp . These problems are
“good” in the sense that the PCG algorithm needs, on aveeagery low number of
iterations per Newton step. In other problems with this prop(like theG+ problems),

n is proportional tan and the algorithm complexity is dominated by the Hessian-com
putation.

5.3. TRUSS collection

Unlike the previous two collections of problems with diféet background and of dif-
ferent type, the problems from the TRUSS collection arefathe same type and differ
just by the dimension. Looking at the CPU-time performana#ile on the precondi-
tioners (Figure 8) we see a different picture than in the ipressparagraphs: the SGS
preconditioner is the winner, closely followed by the diagbone; BFGS is the poorest
one now. Thus in this collection we only present results oNHEPCG with the SGS
preconditioner.

The results of our testing (see Table 6) correspond to oue@apions based on
complexity estimates. Because the size of the constrairsgdamsm is larger than the

22

Michal Kotvara, Michael Sting|

Table 5. Results for selected HM-problems. CPU times in seconds; GRldfe per a Newton iteration;
CGlit—average number of CG steps per Newton iteration. 32@ntium 4 with 1GB DDR400 running
Linux; time limit 20 000 sec.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it| CPU CPU/it CGlit| CPU CPU/it CG/it| CPU CPU/it CGlit
cancer100 4609 112.41| 818 18.18 8 111 2.47 8 373 6.32 19
checkerl.5 1476 20.22| 920 15.59 7| 2246 39.40 6| 3307 58.02 7
cnhill0 664 18.44| 3623 77.08 583 703 13.78 477| 1380 30.67 799
cnhilg 43 1.13| 123 2.62 52 30 0.67 116 87 2.23 280
cphill0 516 18.43| 266 9.50 16 15 0.56 17 22 0.79 19
cphill2 5703 219.35| 1832 73.28 21 71 2.63 17 92 3.41 19
foot 1480 26.43| 2046 33.54 4| 3434 57.23 4| 4402 73.37 4
G40.mb 987 21.00| 1273 26.52 10| 4027 83.90 10| 5202 110.68 11
G40mc 669 13.94| 663 13.26 8| 1914 38.28 8| 3370 67.40 8
G48mc 408 12.75| 332 10.38 1 330 10.31 1 381 11.91 1
G55mc 6491 150.95| 6565 139.68 9| 18755 416.78 8 timed out
G59mc 9094 185.59| 8593 175.37 8 timed out timed out
hand 262 5.95| 332 7.38 6 670 14.89 5| 1062 23.60 7
neosfbr20 4154 67.00| 4001 57.99 109 884 13.19 137 1057 16.02 131
neul 958 11.01 timed out timed out timed out
neulg 582 10.78 | 5677 68.40 1378 1548 20.92 908 timed out
neu2c 2471 27.46 timed out timed out timed out
neu2 1032 10.98 timed out timed out timed out
neu2g 1444 10.78 timed out timed out timed out
neu3 14402 121.03 timed out timed out timed out
rabmo 1754 18.66 timed out timed out timed out
rosel3 77 1.88| 862 19.59 685 668 3.01 492| 1134 8.86 1259
tahala 1903 24.40| 5976 74.70 1207| 6329 72.75 1099 13153 137.01 1517
tahalb 7278 72.06 timed out 9249 79.73 835 timed out
yalsdp 1817 38.62| 2654 54.16 7 29 0.59 7 37 0.77 8

number of variables, we may expect most CPU time to be spent in Hessian evaluation
Indeed, for both PENSDP and PEN-E-PCG(SGS) the CPU time paitdth step is
about the same in most examples. These problems have dittored Hessians close

to the solution; as a result, with the exception of one exampEN-A-PCG(BFGS)
never converged to a solution and therefore it is not inallidehe table.

Table 6. Results for selected TRUSS problems. CPU times in seconds/itSide per a Newton iteration;
CGlit—average number of CG steps per Newton iteration. 32@ntium 4 with 1GB DDR400 running
Linux; time limit 20 000 sec.

PENSDP PEN-PCG(SGS)
problem n m CPU CPU/it| CPU CPU/it CGlit
buck3 544 1186 42 0.27 92 0.46 32
buck4 1200 2546 183 1.49 421 2.60 40
buck5 3280 6802| 3215 15.46| 10159 27.02 65
trto3 544 866 14 0.13 17 0.18 6
trto4 1200 1874 130 0.78 74 0.52 12
trto5 3280 5042| 1959 8.86| 1262 8.89 5
vibra3 544 1186 39 0.27 132 0.35 10
vibrad 1200 2546 177 1.50 449 1.98 11
vibra5 3280 6802| 2459 15.56 timed out
shmup3 420 2642 271 3.15 309 3.81 6
shmup4 800 4962 | 1438 15.63| 1824 20.49 10
shmup5 | 1800 11042| 10317 83.20| 16706 112.88 6

Large-scale SDP and iterative solvers 23

Performance profile on various preconditioners

0.9 o o o —
ogt !
0.7F
0.6

05

Performance

0.4F
0.3F
0.2

0.1r

Fig. 8. Performance profile on preconditioners; TRUSS problems

5.4. TOH collection

As predicted by complexity results (and as already seenvierabexamples in the pre-
vious paragraphs), PCG-based codes are expected to beffivtstEfor problems with
largen and (relatively) smalt. The complexity of the Cholesky algorith@(n?) is re-
placed byO(10n?) and we may expect significant speed-up of the resulting ilhgor
This is indeed the case of the examples from this last catlect

The examples arise from maximum clique problems on randgeherated graphs
(theta =*) and maximum clique problems from the Second DIMACS Impletaton
Challenge [25].

The dimensions of the problems are shown in Table 7; the dargeample has
almost 130000 variables. Note that the Hessians of all taenples aralense so to
solve the problems by PENSDP (or by any other interior-palgorithm) would mean
to store and factorize a full matrix of dimension 130 000 b@ @80. On the other hand,
PEN-I-PCG(BFGS) and PEN-A-PCG(BFGS), being effectivaigtforder codes, have
only modest memory requirements and allow us to solve tlagge problems within a
very reasonable time.

We first show a CPU-time based performance profile on the deE&SDP, PEN-
E-PCG, PEN-I-PCG, and PEN-A-PCG,; see Figure 9. All itemtiwdes used the BFGS
preconditioner. We can see dominance of the Hessian-fréesowith PEN-I-PCG as
a clear winner. From the rest, PEN-E-PCG is clearly fastan iRENSDP. Note that,
due to memory limitations caused by explicit Hessian caliboh, PENSDP and PEN-
E-PCG were only able to solve about 60 per cent of the examples

Table 8 collects the results. As expected, larger problemsat solvable by the
second-order codes PENSDP and PEN-E-PCG(BFGS), due to mpdimitations.
They can be, on the other hand, easily solved by PEN-I-PCG@®Fand PEN-A-
PCG(BFGS): to solve the largest problem from the collectibetal62 ,these codes

Michal Kotvara, Michael Sting|

24
Table 7.Dimensions of selected TOH problems.

problem n m
ham7.5_6 1793 128
ham9.8 2305 512
ham8.3_4 16129 256
ham9.5_6 53761 512
theta42 5986 200
theta6 4375 300
theta62 13390 300
theta8 7905 400
theta82 23872 400
theta83 39862 400
thetal0 12470 500
thetal02 37467 500
thetal03 62516 500
thetal04 87845 500
thetal2 17979 600
thetal23 90020 600
thetal62 127600 800
keller4 5101 171
sanr200-0.7 6033 200

Performance profile on various solvers

0.8

0.7F

0.6

0.5

Performance

0.4

0.3F

0.2

0.1F

1 T
’I
0.9 !
_I

- - PEN-A-PCG(BFGS) 4

PENSDP
- PEN-E-PCG(BFGS) 4
PEN-1-PCG(BFGS)

Fig. 9. Performance profile on codes; TOH problems

needed just 614 MB of memory. But not only memory is the litiota of PENSDP.
In all examples we can see significant speed-up in CPU timaggoom PENSDP to
PEN-E-PCG(BFGS) and further to PEN-I-PCG(BFGS).
To our knowledge, aside from the code described in [23], tilg available code
capable of solving problems of this size is SDPLR by Burerldodteiro ([4]). SDPLR
formulates the SDP problem as a standard NLP and solvesyladitst-order method
(Augmented Lagrangian method with subproblems solvedrigdd memory BFGS).
Table 9 thus also contains results obtained by SDPLR; thppatg criterion of SDPLR
was set to get possibly the same accuracy as by the other. &vtide thehamming *

Large-scale SDP and iterative solvers 25

problems can be solved very efficiently, SDPLR needs coreide more time to solve
thetheta problems, with the exception of the largest ones. This istdwevery high
number of L-BFGS iterations needed.

Table 8. Results for selected TOH problems. CPU times in seconds; €Ridie per a Newton iteration;

CGlit—average number of CG steps per Newton iteration. AMBPe@m 250/2.4GHz with 4GB RAM; time
limit 100 000 sec.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it| CPU CPU/t CG/it| CPU CPU/it CG/it| CPU CPU/it CGlit
ham.7.5_6 34 0.83 9 0.22 2 1 0.02 2 1 0.02 2
ham9_8 100 2.13 44 1.02 2 33 0.77 2 38 0.88 2
ham8.3_4 17701 431.73| 1656 39.43 1 30 0.71 1 30 0.71 1
ham9.5.6 memory memory 330 7.17 1 333 7.24 1
theta42 1044 23.20| 409 7.18 16 25 0.44 9 33 0.61 12
theta6 411 9.34| 181 2.97 8 24 0.44 7 69 1.15 17
theta62 13714 253.96| 1626 31.88 9 96 1.88 10 62 1.27 5
theta8 2195 54.88| 593 9.88 8 93 1.55 10 124 2.07 12
theta82 memory memory 457 7.62 14 664 12.53 23
theta83 memory memory 1820 26.00 21| 2584 43.07 35
thetalO 12165 217.23| 1947 29.95 13 227 3.07 10 265 4.27 12
thetal02 memory memory 1299 16.44 13| 2675 41.80 35
thetal03 memory memory 2317 37.37 12| 5522 72.66 24
thetal04 memory memory 11953 140.62 25/ 9893 164.88 30
thetal2 27565 599.24| 3209 58.35 7 254 4.62 8 801 10.01 17
thetal23 memory memory 10538 140.51 23| 9670 163.90 27
thetal62 memory memory 13197 173.64 13| 22995 365.00 30
keller4 783 14.50| 202 3.42 12 19 0.32 9 62 0.72 23
sanr200-0.7| 1146 23.88| 298 5.32 12 30 0.55 12 a7 0.87 18

6. Accuracy

There are two issues of concern when speaking about podsityaccuracy of the
solution:

— increasing ill-conditioning of the Hessian of the Lagrargivhen approaching the
solution and thus decreasing efficiency of the CG method;

— limited accuracy of the finite difference formula in the A-B@lgorithm (approxi-
mate Hessian-matrix product computation).

Because the A-PCG algorithm is outperformed by the I-PCGigarwe neglect the

second point. In the following we will thus study the effetttioe DIMACS stopping
criteriondpmacs ON the behavior of PEN-I-PCG.

We have solved selected examples with several valués,@f .5, namely
Obivacs = 10_1, 10_37 107°.

We have tested two versions of the coda@notoneand anonmonoton®ne.

26 Michal Kotvara, Michael Sting|

Table 9. Results for selected TOH problems. Comparison of codes PEQRG{BFGS) and SDPLR. CPU
times in seconds; CPU/it-time per a Newton iteration; CGvigrage number of CG steps per Newton itera-
tion. AMD Opteron 250/2.4GHz with 4GB RAM; time limit 100 000cse

PEN-I-PCG(BFGS) SDPLR
problem CPU CPUJ/it CGlit| CPU iter
ham7.5.6 1 0.02 2 1 101
ham9_8 33 0.77 2 13 181
ham8.3.4 30 0.71 1 7 168
ham9.5.6 330 7.17 1 30 90
thetad42 25 0.44 9 92 6720
theta6 24 0.44 7| 257 9781
theta62 96 1.88 10| 344 6445
theta8 93 1.55 10| 395 6946
theta82 457 7.62 14| 695 6441
theta83 1820 26.00 21| 853 6122
thetal0 227 3.07 10| 712 6465
thetal02 1299 16.44 13| 1231 5857
thetal03 2317 37.37 12| 1960 7168
thetal04 11953 140.62 25 2105 6497
thetal2 254 4.62 8| 1436 7153
thetal23 10538 140.51 23| 2819 6518
thetal62 13197 173.64 13| 6004 16845
keller4 19 0.32 9 29 2922
sanr200-0.7 30 0.55 12 78 5547

Nonmonotone strategyThis is the strategy used in the standard version of the code
PENSDP. We set, the stopping criterion for the unconstrained minimizat(0), to a
modest value, say0~2. This value is then automatically recomputed (decreasaejw
the algorithm approaches the minimum. Hence, in the firshtilens of the algorithm,

the unconstrained minimization problem is solved very agipnately; later, it is solved
with increasing accuracy, in order to reach the requiredraay. The decrease afis
based on the required accuracsinddpacs (See (11), (13)). To make this a bit more
transparent, we set, for the purpose of testing,

a =min{1072, Spuracs} -

Monotone strategy In the nonmonotone version of the code, already the firsa-ter
tions of the algorithm obtained withy, .5 = 10~ differ from those obtained with
domiacs = 1072, due to the different value af from the very beginning. Sometimes
it is thus difficult to compare two runs with different accoyatheoretically, the run
with lower accuracy may need more time than the run with higbgquired accuracy.
To eliminate this phenomenon, we performed the tests wigH'tihonotone” strategy,
where we always set

a=10"",

i.e., to the lowest tested value &f,;1cs- BY this we guarantee that the first iterations of
the runs with different required accuracy will always beshee. Note that this strategy
is rather inefficient when low accuracy is required: the cgalends too much time in the
first iterations to solve the unconstrained minimizatioolgpem more exactly than it is
actually needed. However, with this strategy we will besiee the effect of decreasing
dpmiacs ON the behavior of the (A-)PCG code.

Large-scale SDP and iterative solvers 27

Note that fordpmacs = 1075 both, the monotone and the nonmonotone version
coincide. Further, in the table below we only show the DIMA&®or measures arr
(optimality conditions) and egr(primal feasibility) that are critical in our code; all the
other measures were always well below the required value.

In Table 10 we examine, for selected examples, the effectapéasing Hessian ill-
conditioning (when decreasing;.cs) on the overall behavior of the code. We only
have chosen examples for which the PCG version of the codignsfisantly more
efficient than the Cholesky-based version, i.e., problertls lkarge factorn/m. The
table shows results for both, the monotone and nonmonotcesiegy.

We draw two main conclusions from the table: the increasediracy does not
really cause problems; and the nonmonotone strategy idychedvisable in practice. In
the monotone strategy, to reach the accuradpof, one needs at most 2—3 times more
CG steps than for0~!. In the nonmonotone variant of the code, the CPU time inereas
is more significant; still it does not exceed the factor 5 whie consider reasonable.

Note also that the actual accuracy is often significantlyelbb¢han the one required,
particularly ford,acs = 1071, This is due to the fact that the primal stopping criterion
(11) withe = 10~ is still in effect.

7. Conclusion and outlook

In the framework of a modified barrier method for linear SDBlgbems, we propose to
use iterative solvers for the computation of the searclctoe, instead of the routinely
used factorization technique. The proposed algorithmemtde be more efficient than
the standard code for certain groups of examples. The exarfga which the new code
is expected to be faster can be assigned a priori, based arothplexity estimates
(namely on the ratio of the number of variables and the sizh@tonstrained matrix).
Furthermore, using an implicit formula for the Hessianteegroduct or replacing it
by a finite difference formula, we reach huge savings in thenorg requirements and,
often, further speed-up of the algorithm.

Inconclusive is the testing of various preconditionersafpears that for different
groups of problems different preconditioners are recontable. While the diagonal
preconditioner (considered poor man'’s choice in the coatpmirtal linear algebra com-
munity) seems to be the most robust one, BFGS preconditisrtbe best choice for
many problems but, at the same time, clearly the worst onthé&TRUSS collection.

AcknowledgementsThis research was supported by the Academy of Sciences oftheh@epublic through
grant No. A1075402. The authors would like to thank Kim Toh iooviding them with the collection of
“largen smallm” problems. They are also indebted to three anonymous refereemny valuable comments
and suggestions.

References

1. F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primaialdinterior—point methods for semidefi-
nite programming : Convergence rates, stability and numerésallts. SIAM Journal on Optimizatign
8:746-768, 1998.

28 Michal Kotvara, Michael Sting|

Table 10.Convergence of PEN-I-PCG(BFGS) on selected problems ukingibnotone (mon=Y) and non-
monotone (mon=N) strategy. Shown are the cumulated CPU timeconds, number of Newton steps and
number of CG iterations and the DIMACS error measures. AMD @pt250/2.4GHz running Linux.

dpmvacs | mon [CPU Nwt CG ery erry objective
theta42
1.0E-01 Y 37 64 856 4.0E-07 1.6E-03 23.931571
1.0E-03 Y 37 64 856 4.0E-07 1.6E-03 23.931571
1.0E-05 Y 77 71 1908 3.8E-07 3.3E-05 23.931708
1.0E-01 N 15 48 303 9.7E-04 3.7E-02 23.93177¢7
1.0E-03 N 19 54 398 2.8E-04 1.8E-03 23.931564
1.0E-05 N 77 71 1908 3.8E-07 3.3E-05 23.931708
theta6
1.0E-01 Y 39 71 657 1.5E-07 4.1E-03 63.476509
1.0E-03 Y 39 71 657 1.5E-07 4.1E-03 63.476509
1.0E-05 Y 100 81 1901 2.0E-07 1.1E-05 63.477087
1.0E-01 N 18 52 243 3.4E-03 3.5E-02 63.476054
1.0E-03 N 26 60 413 9.6E-05 4.1E-03 63.476483
1.0E-05 N 100 81 1901 2.0E-07 1.1E-05 63.477087
cancer-100
1.0E-01 Y 280 62 850 4.4E-05 7.1E-03 27623.143
1.0E-03 Y 291 64 885 7.7E-05 1.2E-03 27623.292
1.0E-05 Y 666 74 2209 6.8E-06 1.1E-05 27623.302
1.0E-01 N 129 42 353 2.6E-02 0.0E+00 27624.890
1.0E-03 N 181 47 528 3.2E-04 0.0E+00 27623.341
1.0E-05 N 666 74 2209 6.8E-06 1.1E-05 27623.302
keller4
1.0E-01 Y 36 72 1131 3.8E-06 2.1E-04 14.012237
1.0E-03 Y 36 72 1131 3.8E-06 2.1E-04 14.012237
1.0E-05 Y 38 74 1257 5.9E-07 1.9E-05 14.012242
1.0E-01 N 12 58 346 1.8E-03 5.4E-04 14.0124Q00
1.0E-03 N 17 60 500 1.9E-05 1.3E-04 14.012248
1.0E-05 N 38 74 1257 5.9E-07 1.9E-05 14.012242
hamming-9-8
1.0E-01 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-03 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-05 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-01 N 32 43 66 6.1E-06 5.0E-04 224.00016
1.0E-03 N 37 50 75 1.4E-05 5.6E-04 224.00011
1.0E-05 N 38 52 79 4.2E-08 4.7E-05 223.99992
neosbfr20
1.0E-01 Y | 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-03 Y | 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-05 Y | 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-01 N 758 67 7258 2.9E-03 4.2E-06 238.56109
1.0E-03 N | 1056 75 10135 4.8E-04 9.3E-06 238.56094
1.0E-05 N | 3149 95 30678 3.0E-07 3.3E-06 238.56085

2. S.J.Benson, Y. Ye, and X. Zhang. Solving large-scalesgpsemidefinite programs for combinatorial
optimization.SIAM Journal on Optimizatiqril0:443-462, 2000.

3. B. Borchers. SDPLIB 1.2, a library of semidefinite progranmtiest problemsOptimization Methods
and Softwarell & 12:683-690, 1999. Available http://www.nmt.edu/"borchers/ .

4. S. Burer and R.D.C. Monteiro. A nonlinear programming atgar for solving semidefinite programs
via low-rank factorizationMathematical Programming (series B95(2):329-357, 2003.

5. C. Choi and Y. Ye. Solving sparse semidefinite programs usiagiual scaling algorithm with an
iterative solver. Working paper, Computational Optimizati@boratory, university of lowa, lowa City,
1A, 2000.

Large-scale SDP and iterative solvers 29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. D. Dolan and J.J. Mér Benchmarking optimization software with performance pesfiMathemat-
ical Programming 91:201-213, 2002.

. K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsityprimal-dual interior-point method for

semidefinite programmingviathematical Programming79:235-253, 1997.

. M. Fukuda, M. Kojima, and M. Shida. Lagrangian dual intepoint methods for semidefinite programs.

SIAM J. Optimization12:1007-1031, 2002.

. C. Geiger and C. KanzowNumerische Verfahren zurdsung unrestringierter Optimierungsaufgaben

Springer-Verlag, 1999. In German.

C. Helmberg, F. Rend|, R. J. Vanderbei, and H. Wolkowica. imterior—point method for semidefinite
programming.SIAM Journal on Optimizatigr6:342—-361, 1996.

M. Kotvara, F. Leibfritz, M. Stingl, and D. Henrion. A nonlineadB algorithm for static output feed-
back problems in COMPIib. LAAS-CNRS research report no. &%@&AS, Toulouse, 2004.

M. Ko¢vara and M. Stingl. PENNON—a code for convex nonlinear aeridefinite programming.
Optimization Methods and SoftwarE8:317-333, 2003.

M. Kotvara and M. Stingl. Solving nonconvex SDP problems of sima¢toptimization with stability
control. Optimization Methods and Softwark9:595-609, 2004.

C.-J. Lin and R. Saigal. An incomplete cholesky factdiirafor dense matricesApplied Numerical
MathematicsBIT:536-558, 2000.

H. Mittelmann. Benchmarks for optimization software; asJahuary 5, 2005. Available at
http://plato.la.asu.edu/bench.html

H. D. Mittelmann. An independent benchmarklng of SDP an@B®olversMath. Prog, 95:407-430,
2003.

R. D. C. Monteiro. Primal—-dual path-following algorithfos semidefinite programmingIAM Journal
on Optimization7:663-678, 1997.

J. L. Morales and J. Nocedal. Automatic preconditionindimited memory quasi-Newton updating.
SIAM Journal on Optimizatigrii0:1079-1096, 2000.

Jorge Nocedal and Stephen WrigNumerical Optimization Springer Series in Operations Research.
Springer, New York, 1999.

R. Polyak. Modified barrier functions: Theory and methddathematical Programminds4:177—-222,
1992.

M. Stingl.On the Solution of Nonlinear Semidefinite Programs by Augeddragrangian Method$°hD
thesis, Institute of Applied Mathematics Il, Friedrich-f&snder University of Erlangen-Nuremberg, in
preparation.

J. Sturm.Primal-Dual Interior Point Approach to Semidefinite Prognaning PhD thesis, Tinbergen
Institute Research Series vol. 156, Thesis Publishers, émstn, The Netherlands, 1997. Available at
http://members.tripodnet.nl/SeDuMi/sturm/papers/the SiSSTURM.ps.gz

K. C. Toh. Solving large scale semidefinite programs viaemative solver on the augmented systems.
SIAM J. Optim.14:670-698, 2003.

K. C. Toh and M. Kojima. Solving some large scale semidefimitgrams via the conjugate residual
method.SIAM J. Optim. 12:669-691, 2002.

M. Trick, V. Chvatal, W. Cook, D. Johnson, C. McGeoch, and R. Trajan. TherseE4MACS imple-
mentation challenge: NP hard problems: Maximum clique, graptring, and satisfiability. Technical
report, Rutgers University. Available http://dimacs.rutgers.edu/Challenges/

S.-L. Zhang, K. Nakata, and M. Kojima. Incomplete orthagmation preconditioners for solvmg large
and dense linear systems which arise from semidefinite prognagndpplied Numerical Mathematics
41:235-245, 2002.

