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Abstract The limiting factors of second-order methods for large-scale semidefi-
nite optimization are the storage and factorization of the Newton matrix. For a par-
ticular algorithm based on the modified barrier method, we propose to use iterative
solvers instead of the routinely used direct factorization techniques. The precon-
ditioned conjugate gradient method proves to be a viable alternative for problems
with a large number of variables and modest size of the constrained matrix. We
further propose to avoid explicit calculation of the Newton matrix either by an
implicit scheme in the matrix-vector product or using a finite-difference formula.
This leads to huge savings in memory requirements and, for certain problems, to
further speed-up of the algorithm.

1 Introduction

The currently most efficient and popular methods for solving general linear semi-
definite programming (SDP) problems

min
x∈Rn

f T x s.t. A (x) 4 0 (A : Rn → Sm)

are the dual-scaling [2] and primal-dual interior-point techniques [1,10,17,22].
These techniques are essentially second-order algorithms: one solves a sequence
of unconstrained minimization problems by a Newton-type method. To compute
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the search direction, it is necessary to construct a sort of “Hessian” matrix and
solve the Newton equation. Although there are several forms of this equation to
choose from, the typical choice is the so-called Schur complement equation (SCE)
with a symmetric and positive definite Schur complement matrix of order n×n. In
many practical SDP problems, this matrix is dense, even if the data matrices are
sparse.

Recently, an alternative method for SDP problems has been proposed in [12].
It is based on a generalization of the augmented Lagrangian technique and termed
modified barrier or penalty/barrier method. This again is a second-order method
and one has to form and solve a sequence of Newton systems. Again, the Newton
matrix is of order n×n, symmetric, positive definite and often dense.

The Schur complement or the Newton equations are most frequently solved
by routines based on the Cholesky factorization. As a result, the applicability of
the SDP codes is restricted by the memory requirements (a need to store a full
n× n matrix) and the complexity of the Cholesky algorithm, n3/3. In order to
solve large-scale problems (with n larger than a few thousands), the only option
(for interior-point or modified barrier codes) is to replace the direct factorization
method by an iterative solver, like a Krylov subspace method.

In the context of primal-dual interior point methods, this option has been pro-
posed by several authors with ambiguous results [5,14,26]. The main difficulty is
that, when approaching the optimal point of the SDP problem, the Newton (or SC)
matrix becomes more and more ill-conditioned. In order to solve the system by an
iterative method, it is necessary to use an efficient preconditioner. However, as we
want to solve a general SDP problem, the preconditioner should also be general.
And it is well-known that there is no general and efficient preconditioner. Conse-
quently, the use of iterative methods in interior-point codes seems to be limited to
solving problems with just (very) low accuracy.

A new light on this rather pessimistic conclusion has been shed in the recent
papers by Toh and Kojima [24] and later by Toh in [23]. In [23], a symmetric
quasi-minimal residual method is applied to an augmented system equivalent to
SCE that is further transformed to a so-called reduced augmented system. It is
shown that if the SDP problem is primal and dual nondegenerate and strict com-
plementarity holds at the optimal point, the system matrix of the augmented re-
duced system has a bounded condition number, even close to the optimal point.
The use of a diagonal preconditioner enables the authors to solve problems with
more than 100 000 variables with a relatively high accuracy.

A promising approach has been also studied by Fukuda et al. [8]. The authors
propose a Lagrangian dual predictor-corrector algorithm using the BFGS method
in the corrector procedure and the conjugate gradient method for the solution of
the linear system. The conjugate gradient method uses as preconditioner the BFGS
matrix from the predictor procedure. Although this approach delivers promising
results for medium size examples, it remains unclear whether it can be practically
efficient for large scale problems.

In this paper, we investigate this approach in the context of the modified bar-
rier method from [12]. Similar to the primal-dual interior-point method from [23],
we face highly ill-conditioned dense matrices of the same size. Also similarly to
[23], the use of iterative solvers (instead of direct ones) brings greatest advantage
when solving problems with very large number of variables (up to one hundred
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thousand and possibly more) and medium size of the constrained matrix (up to
one thousand). Despite of these similarities there are a few significant differences.
First, the Schur complement equation has a lot of structure that is used for its
further reformulation and for designing the preconditioners. Contrary to that, the
Newton matrix in the modified barrier method is just the Hessian of a (general-
ized) augmented Lagrangian and as such has no intrinsic structure. Further, the
condition number of the Hessian itself is bounded close to the optimal point, pro-
vided a standard constraint qualification, strict complementarity and a standard
second order optimality sufficient condition hold for the SDP problem. We also
propose two “Hessian-free” methods. In the first one, the Hessian-vector product
(needed by the iterative solver) is calculated by an implicit formula without the
need to explicitly evaluate (and store) the full Hessian matrix. In the second one,
we use approximate Hessian calculation, based on the finite difference formula
for a Hessian-vector product. Both approaches bring us large savings in memory
requirements and further significant speed-up for certain classes of problems. Last
but not least, our method can also be applied to nonconvex SDP problems [11,13].

We implemented the iterative solvers in the code PENNON [12] and com-
pare the new versions of the code with the standard linear SDP version called
PENSDP1 working with Cholesky factorization. Because other parts of the codes
are identical, including stopping criteria, the tests presented here give a clear pic-
ture of advantages and disadvantages of each version of the code.

The paper is organized as follows. In Section 2 we present the basic modified
barrier algorithm and some details of its implementation. Section 3 offers moti-
vation for the use of iterative solvers based on complexity estimates. In Section 4
we present examples of ill-conditioned matrices arising in the algorithm and in-
troduce the preconditioners used in our testing. The results of extensive tests are
presented in Section 5. We compare the new codes on four collections of SDP
problems with different backgrounds. In Section 6 we demonstrate that the use of
iterative solvers does not necessarily lead to reduced accuracy of the solution. We
conclude our paper in Section 7.

We use standard notation: Sm is the space of real symmetric matrices of dimen-
sion m×m. The inner product on Sm is defined by 〈A,B〉 := trace(AB). Notation
A 4 B for A,B ∈ Sm means that the matrix B−A is positive semidefinite.

2 The algorithm

The basic algorithm used in this article is based on the nonlinear rescaling method
of R. Polyak [20] and was described in detail in [12]. Here we briefly review it
and emphasize points that will be needed in the rest of the paper.

Our goal is to solve optimization problems with a linear objective function
subject to a linear matrix inequality as a constraint:

min
x∈Rn

f T x

subject to
A (x) 4 0;

(1)

1 See www.penopt.com.
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here f ∈Rn and A :Rn → Sm is a linear matrix operator A (x) := A0 +∑n
i=1 xiAi,

Ai ∈ Sm, i = 0,1, . . . ,n.
The algorithm is based on a choice of a smooth penalty/barrier function Φp :

Sm → Sm that satisfies a number of assumptions (see [12]) guaranteeing, in partic-
ular, that

A (x) 4 0⇐⇒Φp(A (x)) 4 0 .

Thus for any p > 0, problem (1) has the same solution as the following “aug-
mented” problem

min
x∈Rn

f T x

subject to
Φp(A (x)) 4 0 .

(2)

The Lagrangian of (2) can be viewed as a (generalized) augmented Lagrangian
of (1):

F(x,U, p) = f T x+ 〈U,Φp (A (x))〉Sm ; (3)

here U ∈ Sm
+ is a Lagrangian multiplier associated with the inequality constraint.

The algorithm below can be seen as a generalization of the Augmented La-
grangian method.

Algorithm 1 Let x1 and U1 be given. Let p1 > 0. For k = 1,2, . . . repeat until a
stopping criterion is reached:

(i) xk+1 = argmin
x∈Rn

F(x,Uk, pk)

(ii) Uk+1 = DΦp(A (xk+1))[Uk]

(iii) pk+1 < pk .

Here DΦ(X)[Y ] denotes the directional derivative of Φ with respect to X in direc-
tion Y .

By imposing standard assumptions on problem (1), it can be proved that any
cluster point of the sequence {(xk,Uk)}k>0 generated by Algorithm 1 is an opti-
mal solution of problem (1). The proof is based on extensions of results by Polyak
[20]; for the full version we refer to [21]. Let us emphasize a property that is
important for the purpose of this article. Assuming the standard constraint quali-
fication, strict complementarity and a standard second order optimality sufficient
condition hold at the optimal point, there exists p such that the minimum eigen-
value of the Hessian of the Lagrangian (3) is bounded away from zero for all p≤ p
and all (x,U) close enough to the solution (x∗,U∗); see [21]. An analogous result
has been proved in [20] in the context of standard inequality constrained nonlinear
programming problems.

Details of the algorithm were given in [12]. Hence, in the following we just
recall facts needed in the rest of the paper and some new features of the algo-
rithm. The most important fact is that the unconstrained minimization in Step (i)
is performed by the Newton method with line-search. Therefore, the algorithm
is essentially a second-order method: at each iteration we have to compute the
Hessian of the Lagrangian (3) and solve a linear system with this Hessian.
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2.1 Choice of Φp

The penalty function Φp of our choice is defined as follows:

Φp(A (x)) =−p2(A (x)− pI)−1− pI . (4)

The advantage of this choice is that it gives closed formulas for the first and second
derivatives of Φp. Defining

Z (x) =−(A (x)− pI)−1 (5)

we have (see [12]):

∂
∂xi

Φp(A (x)) = p2Z (x)
∂A (x)

∂xi
Z (x) (6)

∂ 2

∂xi∂x j
Φp(A (x)) = p2Z (x)

(
∂A (x)

∂xi
Z (x)

∂A (x)
∂x j

+
∂ 2A (x)
∂xi∂x j

+
∂A (x)

∂x j
Z (x)

∂A (x)
∂xi

)
Z (x) . (7)

2.2 Multiplier and penalty update, stopping criteria

For the penalty function Φp from (4), the formula for update of the matrix multi-
plier U in Step (ii) of Algorithm 1 reduces to

Uk+1 = (pk)2Z (xk+1)UkZ (xk+1) (8)

with Z defined as in (5). Note that when Uk is positive definite, so is Uk+1. We
set U1 equal to a positive multiple of the identity, thus all the approximations of
the optimal Lagrangian multiplier U remain positive definite.

Numerical tests indicate that big changes in the multipliers should be avoided
for the following reasons. Big change of U means big change of the augmented
Lagrangian that may lead to a large number of Newton steps in the subsequent
iteration. It may also happen that already after few initial steps, the multipliers
become ill-conditioned and the algorithm suffers from numerical difficulties. To
overcome these, we do the following:

1. Calculate Uk+1 using the update formula in Algorithm 1.
2. Choose a positive µA ≤ 1, typically 0.5.

3. Compute λA = min
(

µA,µA
‖Uk‖F

‖Uk+1−Uk‖F

)
.

4. Update the current multiplier by

Unew = Uk +λA(Uk+1−Uk).
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Given an initial iterate x1, the initial penalty parameter p1 is chosen large
enough to satisfy the inequality

p1I−A (x1)Â 0.

Let λmax(A (xk+1)) ∈ (−∞, pk
)

denote the maximal eigenvalue of A (xk+1), π <

1 be a constant factor, depending on the initial penalty parameter p1 (typically
chosen between 0.3 and 0.6) and xfeas be a feasible point. Let l be set to 0 at
the beginning of Algorithm 1. Using these quantities, our strategy for the penalty
parameter update can be described as follows:

1. If pk < peps, set γ = 1 and go to 6.
2. Calculate λmax(A (xk+1)).
3. If π pk > λmax(A (xk+1)), set γ = π, l = 0 and go to 6.
4. If l < 3, set γ =

(
λmax(A (xk+1))+ pk

)
/2pk, set l := l +1 and go to 6.

5. Let γ = π , find λ ∈ (0,1) such, that

λmax

(
A (λxk+1 +(1−λ )xfeas)

)
< π pk,

set xk+1 = λxk+1 +(1−λ )xfeas and l := 0.
6. Update current penalty parameter by pk+1 = γ pk.

The reasoning behind steps 3 to 5 is as follows: As long as the inequality

λmax(A (xk+1)) < π pk (9)

holds, the values of the augmented Lagrangian in the next iteration remain finite
and we can reduce the penalty parameter by the predefined factor π (compare step
3). However, as soon as inequality (9) is violated, an update using π would result in
an infinite value of the augmented Lagrangian in the next iteration. Therefore the
new penalty parameter should be chosen from the interval (λmax(A (xk+1)), pk).
Because a choice close to the left boundary of the interval leads to large values of
the augmented Lagrangian, while a choice close to the right boundary slows down
the algorithm, we choose γ such that

pk+1 =
λmax(A (xk+1))+ pk

2

(compare step 4). In order to avoid stagnation of the penalty parameter update
process due to repeated evaluations of step 4, we redefine xk+1 using the feasi-
ble point xfeas whenever step 4 is executed in three successive iterations (compare
step 5); this is controlled by the parameter l. If no feasible point is yet available,
Algorithm 1 is stopped and restarted from the scratch with a different choice of
initial multipliers. The parameter peps is typically chosen as 10−6. In case we de-
tect problems with convergence of Algorithm 1, peps is decreased and the penalty
parameter is updated again, until the new lower bound is reached.

The unconstrained minimization in Step (i) is not performed exactly but is
stopped when ∥∥∥∥

∂
∂x

F(x,U, p)
∥∥∥∥≤ α , (10)
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where α = 0.01 is a good choice in most cases. Also here, α is decreased if we
encounter problems with accuracy.

To stop the overall Algorithm 1, we have implemented two groups of criteria.
Firstly, the algorithm is stopped if both of the following inequalities hold:

| f T xk−F(xk,Uk, p)|
1+ | f T xk| < ε ,

| f T xk− f T xk−1|
1+ | f T xk| < ε . (11)

Secondly, we have implemented the DIMACS criteria [16]. To define these crite-
ria, we rewrite our SDP problem (1) as

min
x∈Rn

f T x

subject to
C (x) 4 C0

(12)

where C (x)−C0 = A (x). Recall that U is the corresponding Lagrangian multi-
plier and let C ∗(·) denote the adjoint operator to C (·). The DIMACS error mea-
sures are defined as

err1 =
‖C ∗(U)− f‖

1+‖ f‖
err2 = max

{
0,
−λmin(U)
1+‖ f‖

}
err4 = max

{
0,
−λmin(C (x)−C0)

1+‖C0‖
}

err5 =
〈C0,U〉− f T x

1+ |〈C0,U〉|+ | f T x| err6 =
〈C (x)−C0,U〉

1+ |〈C0,U〉|+ | f T x| .

Here, err1 represents the (scaled) norm of the gradient of the Lagrangian, err2 and
err4 is the dual and primal infeasibility, respectively, and err5 and err6 measure the
duality gap and the complementarity slackness. Note that, in our code, err2 = 0
by definition; also err3 that involves the slack variable (not used in our problem
formulation) is automatically zero.

In the code we typically require that (11) is satisfied with ε = 10−4 and, at the
same time,

errk ≤ δDIMACS, k ∈ {1,4,5,6} . (13)

with δDIMACS = 10−7.

2.3 Complexity

As mentioned in the Introduction, every second-order method for SDP problems
has two bottlenecks: evaluation of the Hessian of the augmented Lagrangian (or a
similar matrix of similar size) and the solution of a linear system with this matrix.
What are the complexity estimates in our algorithm?

The complexity of Hessian assembling, when working with the function Φp

from (4) is O(m3n + m2n2) for dense data matrices and O(m3 + K2n2) for sparse
data matrices, where K is the maximal number of nonzeros in Ai, i = 1, . . . ,n; here
we used the sparse techniques described in [7].
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In the standard implementation of the algorithm (code PENSDP), we use
Cholesky decomposition for the solution of the Newton system (as do all other
second-order SDP codes). The complexity of Cholesky algorithm is O(n3) for
dense matrices and O(nκ), 1≤ κ ≤ 3 for sparse matrices, where κ depends on the
sparsity structure of the matrix, going from a diagonal to a full matrix.

As vast majority of linear SDP problems lead to dense Hessians (even if the
data matrices Ai are sparse), in the rest of the paper we will concentrate on this
situation.

3 Iterative solvers

In step (i) of Algorithm 1 we have to approximately solve an unconstrained mini-
mization problem. As already mentioned before, we use the Newton method with
line-search to this purpose. In each iteration step of the Newton method we solve
a system of linear equations

Hd =−g (14)

where H is the Hessian and g the gradient of the augmented Lagrangian (3). In the
majority of SDP software (including PENSDP) this (or similar) system is solved
by a version of the Cholesky method. In the following we will discuss an alterna-
tive approach of solving the linear system by an iterative algorithm.

3.1 Motivation for iterative solvers

Our motivation for the use of iterative solvers is two-fold. Firstly we intend to
improve the complexity of the Cholesky algorithm, at least for certain kinds of
problems. Secondly, we also hope to improve the complexity of Hessian assem-
bling.

3.1.1 Complexity of Algorithm 1 summarized

The following table summarizes the complexity bottlenecks of Algorithm 1 for the
case of linear SDP problems. Recall that K is the maximal number of nonzeros in
Ai, i = 1, . . . ,n. Note further that we assume A (x) to be dense.

Hessian computation
dense data matrices O(m3n+m2n2)
sparse data matrices O(m3 +K2n2)
Cholesky method
dense Hessian O(n3)
sparse Hessian O(nκ)

where 1≤ κ ≤ 3 depends on the sparsity pattern. This shows that, for dense prob-
lems, Hessian computation is the critical issue when m (size of Ai) is large com-
pared to n (number of variables). On the other hand, Cholesky algorithm takes the
most time when n is (much) larger than m.
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3.1.2 Complexity: Cholesky versus iterative algorithms

At this moment, we should be more specific in what we mean by an iterative
solver. In the rest of the paper we will only consider Krylov type methods, in
particular, the conjugate gradient (CG) method.

From the complexity viewpoint, the only demanding step in the CG method is
a matrix-vector product with a matrix of dimension n (when applied to our sys-
tem (14)). For a dense matrix and vector, it needs O(n2) operations. Theoretically,
in exact arithmetics, the CG method needs n iterations to find an exact solution
of (14), hence it is equally expensive as the Cholesky algorithm. There are, how-
ever, two points that may favor the CG method.

First, it is well known that the convergence behavior of the CG method de-
pends solely on the spectrum of the matrix H and the right-hand side vector. In
particular, it is given by the condition number and the possible clustering of the
eigenvalues; for details, see, e.g., [19]. In practice it means that if the spectrum
is “favorable”, we may need much smaller number of steps than n, to obtain a
reasonably exact solution. This fact leads to a very useful idea of preconditioning
when, instead of (14), we solve a “preconditioned” system

M−1Hd =−M−1g

with a matrix M chosen in such a way that the new system matrix M−1H has a
“good” spectrum. The choice of M will be the subject of the next section.

The second, and very important, point is that we actually do not need to have an
exact solution of (14). On the contrary, a rough approximation of it will do (com-
pare [9, Thm. 10.2]). Hence, in practice, we may need just a few CG iterations to
reach the required accuracy. This is in contrast with the Cholesky method where
we cannot control the accuracy of the solution and always have to compute the ex-
act one (within the machine precision). Note that we always start the CG method
with initial approximation d0 = 0; thus, performing just one CG step, we would
obtain the steepest descend method. Doing more steps, we improve the search
direction toward the Newton direction; note the similarity to the Toint-Steihaug
method [19].

To summarize these two points: when using the CG algorithm, we may expect
to need just O(n2) operations, at least for well-conditioned (or well-preconditioned)
systems.

Note that we are still talking about dense problems. The use of the CG method
is a bit nonstandard in this context—usually it is preferable for large sparse prob-
lems. However, due to the fact that we just need a very rough approximation of
the solution, we may favor it to the Cholesky method also for medium-sized dense
problems.

3.1.3 Complexity: explicit versus implicit versus approximate Hessian

Our second goal is to improve the complexity of Hessian computation. When
solving (14) by the CG method (and any other Krylov type method), the Hessian
is only needed in a matrix-vector product of the type Hv := ∇2F(xk)v. Because we
only need to compute the products, we have two alternatives to explicit Hessian
calculation—an implicit, operator, formula and an approximate finite-difference
formula.
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Implicit Hessian formula Instead of computing the Hessian matrix explicitly and
then multiplying it by a vector v, we can use the following formula for the Hessian-
vector multiplication2

∇2F(xk)v = A ∗
(
(pk)2Z (xk)UkZ (xk)A(v)Z (xk)

)
, (15)

where A(v) = ∑n
i=1 viAi. Hence, in each CG step, we only have to evaluate matri-

ces A(v) (which is simple), Z (xk) and Z (xk)UkZ (xk) (which are needed in the
gradient computation, anyway), and perform two additional matrix-matrix prod-
ucts. The resulting complexity formula for one Hessian-vector product is thus
O(m3 +Kn).

Additional (but very important) advantage of this approach is the fact that we
do not have to store the Hessian in the memory, thus the memory requirements
(often the real bottleneck of SDP codes) are drastically reduced.

Approximate Hessian formula We may use a finite difference formula for the ap-
proximation of this product

∇2F(xk)v≈ ∇F(xk +hv)−∇F(xk)
h

(16)

with h = (1 +‖xk‖2
√

εFD); see [19]. In general, εFD is chosen so that the formula
is as accurate as possible and still not influenced by round-off errors. The “best”
choice is obviously case dependent; in our implementation, we use εFD = 10−6.
Hence the complexity of the CG method amounts to the number of CG iterations
times the complexity of gradient evaluation, which is of order O(m3 + Kn). This
may be in sharp contrast with the Cholesky method approach by which we have to
compute the full Hessian and factorize it. Again, we have the advantage that we
do not have to store the Hessian in the memory.

Both approaches may have their dark side. With certain SDP problems it may
happen that the Hessian computation is not much more expensive than the gra-
dient evaluation. In this case the Hessian-free approaches may be rather time-
consuming. Indeed, when the problem is ill-conditioned and we need many CG
iterations, we have to evaluate the gradient many (thousand) times. On the other
hand, when using Cholesky method, we compute the Hessian just once.

At a first glance, the implicit approach is clearly preferable to the approximate
one, due to the fact that it is exact. Note, however, that our final goal is to solve
nonlinear SDPs. In this case it may happen that the second order partial deriva-
tives of A are expensive to compute or not available at all and thus the implicit
approach is not applicable. For this reason we also performed testing with the fi-
nite difference formula, to see how much is the behavior of the overall algorithm
influenced by the use of approximate Hessian calculation.

2 We are grateful to the anonymous referee for suggesting this option.
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3.2 Preconditioned conjugate gradients

We use the very standard preconditioned conjugate gradient method. The algo-
rithm is given below. Because our stopping criterion is based on the residuum,
one consider an alternative: the minimum residual method. Another alternative
is the QMR algorithm that can be favorable even for symmetric positive definite
systems thanks to its robustness.

We solve the system Hd = −g with a symmetric positive definite and, possi-
bly, ill-conditioned matrix H. To improve the conditioning, and thus the behavior
of the iterative method, we will solve a transformed system (C−1HC−1)(Cd) =
−C−1g with C symmetric positive definite. We define the preconditioner M by
M = C2 and apply the standard conjugate gradient method to the transformed sys-
tem. The resulting algorithm is given below.

Algorithm 2 (Preconditioned conjugate gradients) Given M, set d0 = 0, r0 =
g, solve Mz0 = r0 and set p0 =−z0.

For k = 0,1,2 . . . repeat until convergence:

(i) αk =
rT

k zk

pT
k H pk

(ii) dk+1 = dk +αk pk

(iii) rk+1 = rk +αkH pk

(iv) solve Mzk+1 = rk+1

(v) βk+1 =
rT

k+1zk+1

rT
k zk

(vi) pk+1 =−rk+1 +βk+1 pk

From the complexity point of view, the only expensive parts of the algorithm
are the Hessian-vector products in steps (i) and (iii) (note that only one product is
needed) and, of course, the application of the preconditioner in step (iv).

The algorithm is stopped when the scaled residuum is small enough:

‖Hdk +g‖/‖g‖ ≤ εCG ,

in practice, when
‖rk‖/‖g‖ ≤ εCG .

In our tests, the choice εCG = 5 ·10−2 was sufficient.

4 Preconditioning

4.1 Conditioning of the Hessian

It is well known that in context of penalty or barrier optimization algorithms the
biggest trouble with iterative methods is the increasing ill-conditioning of the
Hessian when we approach the optimum of the original problem. Indeed, in certain
methods the Hessian may even become singular. The situation is not much better
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in our case, i.e., when we use Algorithm 1 for SDP problems. Let us demonstrate
it on examples.

Consider first problem theta2 from the SDPLIB collection [3]. The dimen-
sion of this problem is n = 498. Figure 1 shows the spectrum of the Hessian at
the initial and the optimal point of Algorithm 1 (note that we use logarithmic
scaling in the vertical axes). The corresponding condition numbers are κini = 394
and κopt = 4.9 · 107, respectively. Hence we cannot expect the CG method to be
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Fig. 1 Example theta2: spectrum of the Hessian at the initial (left) and the optimal (right)
point.

very effective close to the optimum. Indeed, Figure 2 presents the behavior of the
residuum ‖Hd +g‖/‖g‖ as a function of the iteration count, again at the initial and
the optimal point. While at the initial point the method converges in few iterations
(due to low condition number and clustered eigenvalues), at the optimal point one
observes extremely slow convergence, but still convergence. The zig-zagging na-
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Fig. 2 Example theta2: CG behavior at the initial (left) and the optimal (right) point.

ture of the latter curve is due to the fact that CG method minimizes the norm of
the error, while here we plot the norm of the residuum. The QMR method offers
a much smoother curve, as shown in Figure 3 (left), but the speed of convergence
remains almost the same, i.e., slow. The second picture in Figure 3 shows the be-
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havior of the QMR method with diagonal preconditioning. We can see that the
convergence speed improves about two-times, which is still not very promising.
However, we should keep in mind that we want just an approximation of d and
typically stop the iterative method when the residuum is smaller than 0.05; in this
case it would be after about 180 iterations.
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Fig. 3 Example theta2: QMR behavior at the optimal (right) point; without (left) and with
(right) preconditioning.

The second example, problem control3 from SDPLIB with n = 136, shows
even a more dramatic picture. In Figure 4 we see the spectrum of the Hessian,
again at the initial and the optimal point. The condition number of these two ma-
trices is κini = 3.1 ·108 and κopt = 7.3 ·1012, respectively. Obviously, in the second
case, the calculations in the CG method are on the edge of machine precision and
we can hardly expect convergence of the method. And, indeed, Figure 5 shows
that while at xini we still get convergence of the CG method, at xopt the method
does not converge anymore. So, in this case, an efficient preconditioner is a real
necessity.

0 20 40 60 80 100 120
140

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100 120
140

-8

-6

-4

-2

0

2

4

6

Fig. 4 Example control3: spectrum of the Hessian at the initial (left) and the optimal (right)
point.
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Fig. 5 Example control3: CG behavior at the initial (left) and the optimal (right) point.

4.2 Conditions on the preconditioner

Once again, we are looking for a preconditioner—a matrix M ∈ Sn
+—such that the

system M−1Hd =−M−1g can be solved more efficiently than the original system
Hd =−g. Hence

(i) the preconditioner should be efficient

in the sense that the spectrum of M−1H is “good” for the CG method. Further,

(ii) the preconditioner should be simple.

When applying the preconditioner, in every iteration of the CG algorithm we have
to solve the system

Mz = p.

Clearly, the application of the “most efficient” preconditioner M = H would return
us to the complexity of the Cholesky method applied to the original system. Con-
sequently M should be simple enough, so that Mz = p can be solved efficiently.

The above two requirements are general conditions for any preconditioner
used within the CG method. The next condition is typical for our application
within optimization algorithms:

(iii) the preconditioner should only use Hessian-vector products.

This condition is necessary for the use of the Hessian-free version of the algorithm.
We certainly do not want the preconditioner to destroy the Hessian-free nature of
this version. When we use the CG method with exact (i.e. computed) Hessian, this
condition is not needed.

Finally,
(iv) the preconditioner should be “general”.

Recall that we intend to solve general SDP problems without any a-priori knowl-
edge about their background. Hence we cannot rely on special purpose precondi-
tioners, as known, for instance, from finite-element discretizations of PDEs.
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4.3 Diagonal preconditioner

This is a simple and often-used preconditioner with

M = diag(H).

It surely satisfies conditions (ii) and (iv). On the other hand, though simple and
general, it is not considered to be very efficient. Furthermore, it does not really sat-
isfy condition (iii), because we need to know the diagonal elements of the Hessian.
It is certainly possible to compute these elements by Hessian-vector products. For
that, however, we would need n gradient evaluations and the approach would be-
come too costly.

4.4 Symmetric Gauss-Seidel preconditioner

Another classic preconditioner with

M = (D+L)T D−1(D+L) where H = D−L−LT

with D and L being the diagonal and strictly lower triangular matrix, respectively.
Considered more efficient than the diagonal preconditioner, it is also slightly more
expensive. Obviously, matrix H must be computed and stored explicitly in order
to calculate M. Therefore this preconditioner cannot be used in connection with
formula (16) as it does not satisfy condition (iii).

4.5 L-BFGS preconditioner

Introduced by Morales-Nocedal [18], this preconditioner is intended for applica-
tion within the Newton method. (In a slightly different context, the (L-)BFGS pre-
conditioner was also proposed in [8].) The algorithm is based on limited-memory
BFGS formula ([19]) applied to successive CG (instead of Newton) iterations.

Assume we have a finite sequence of vectors xi and gradients g(xi), i = 1, . . . ,k.
We define the correction pairs (t i,yi) as

t i = xi+1− xi, yi = g(xi+1)−g(xi), i = 1, . . . ,k−1 .

Using a selection σ of µ pairs from this sequence, such that

1≤ σ1 ≤ σ2 ≤ . . .≤ σµ := k−1

and an initial approximation

W0 =
(tσµ )T yσµ

(yσµ )T yσµ
I ,

we define the L-BFGS approximation W of the inverse of H; see, e.g. [19]. To
compute a product of W with a vector, we use the following algorithm of com-
plexity nµ .
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Algorithm 3 (L-BFGS) Given a set of pairs {tσi ,yσi}, i = 1,2, . . . ,µ , and a vec-
tor d, we calculate the product r = Wd as

(i) q = d
(ii) for i = µ,µ−1, . . . ,1, put

αi =
(tσi)T q
(yσi)T tσi

, q = q−αiyσi

(iii) r = W0q
(iv) for i = 1,2, . . . ,µ , put

β =
(yσi)T r
(yσi)T tσi

, r = r + tσi(αi−β ) .

The idea of the preconditioner is the following. Assume we want to solve the
unconstrained minimization problem in Step (i) of Algorithm 1 by the Newton
method. At each Newton iterate x(i), we solve the Newton system H(x(i))d(i) =
−g(x(i)). The first system at x(0) will be solved by the CG method without precon-
ditioning. The CG iterations x(0)

κ , g(x(0)
κ ), κ = 1, . . . ,K0 will be used as correction

pairs to build a preconditioner for the next Newton step. If the number of CG iter-
ations K0 is higher than the prescribed number of correction pairs µ , we just select
some of them (see the next paragraph). In the next Newton step x(1), the correction
pairs are used to build an approximation W (1) of the inverse of H(x(1)) and this
approximation is used as a preconditioner for the CG method. Note that this ap-
proximation is not formed explicitly, rather in the form of matrix-vector product
z = W (1)p —just what is needed in the CG method. Now, the CG iterations in the
current Newton step are used to form new correction pairs that will build the pre-
conditioner for the next Newton step, and so on. The trick is in the assumption that
the Hessian at the old Newton step is close enough to the one at the new Newton
step, so that its approximation can serve as a preconditioner for the new system.

As recommended in the standard L-BFGS method, we used 16–32 correction
pairs, when available. Often the CG method finished in less iterations and in that
case we could only use the available iterations for the correction pairs. If the num-
ber of CG iterations is higher than the required number of correction pairs µ , the
question is how to select these pairs. We have two options: Either we take the last
µ pairs or an “equidistant” distribution over all CG iterations. The second option
is slightly more complicated but may be expected to deliver better results. The
following Algorithm 4 gives a guide to such an equidistant selection.

Algorithm 4 Given an even number µ , set γ = 1 and P = /0. For i = 1,2, . . . do:

Initialization
If i < µ
– insert {t i,yi} in P

Insertion/subtraction
If i can be written as i = ( µ

2 + `−1)2γ for some ` ∈ {1,2, . . . , µ
2 } then

– set index of the subtraction pair as k = (2`−1)2γ−1

– subtract {tk,yk} from P
– insert {t i,yi} in P
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– if ` = µ
2 , set γ = γ +1

The L-BFGS preconditioner has the big advantage that it only needs Hessian-
vector products and can thus be used in the Hessian-free approaches. On the
other hand, it is more complex than the above preconditioners; also our results
are not conclusive concerning the efficiency of this approach. For many problems
it worked satisfactorily, for some, on the other hand, it even lead to higher number
of CG steps than without preconditioner.

5 Tests

For testing purposes we have used the code PENNON, in particular its version for
linear SDP problems called PENSDP. The code implements Algorithm 1; for the
solution of the Newton system we use either the LAPACK routine DPOTRF based
on Cholesky decomposition (dense problems) or our implementation of sparse
Cholesky solver (sparse problems). In the test version of the code we replaced
the direct solver by conjugate gradient method with various preconditioners. The
resulting codes are called

PEN-E-PCG(prec) with explicit Hessian calculation
PEN-I-PCG(prec) with implicit Hessian calculation (15)
PEN-A-PCG(prec) with approximate Hessian calculation (16)

where prec is the name of the particular preconditioner. In two latter cases, we
only tested the BFGS preconditioner (and a version with no preconditioning). All
the other preconditioners either need elements of the Hessian or are just too costly
with this respect.

Few words about the accuracy. It has already been mentioned that the condi-
tioning of the Hessian increases as the optimization algorithm gets closer to the
optimal point. Consequently, a Krylov-type iterative method is expected to have
more and more difficulties when trying to reach higher accuracy of the solution of
the original optimization problem. This was indeed observed in practice [23,24].
This ill-conditioning may be so severe that it does not allow to solve the problem
within reasonable accuracy at all. Fortunately, this was not observed in the pre-
sented approach. We explain this by the fact that, in Algorithm 1, the minimum
eigenvalue of the Hessian of the Lagrangian is bounded away from zero, even if
we are close to the solution. At the same time, the penalty parameter p (affecting
the maximum eigenvalue of the Hessian) is not updated when it reaches certain
lower bound peps; see Section 2.

For the tests reported in this section, we set the stopping criteria in (11) and
(13) as ε = 10−4 and δDIMACS = 10−3, respectively. At the end of this section we
report what happens when we try to increase the accuracy.

The conjugate gradient algorithm was stopped when

‖Hd +g‖/‖g‖ ≤ εCG

where εCG = 5 · 10−2 was sufficient. This relatively very low accuracy does not
significantly influence the behavior of Algorithm 1; see also [9, Thm. 10.2]. On the
other hand, it has the effect that for most problems we need a very low number of
CG iterations at each Newton step; typically 4–8. Hence, when solving problems
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with dense Hessians, the complexity of the Cholesky algorithm O(n3) is replaced
by O(κn2) with κ < 10. We may thus expect great savings for problems with
larger n.

In the following paragraphs we report the results of our testing for four col-
lections of linear SDP test problems: the SDPLIB collection of linear SDPs by
Borchers [3]; the set of various large-scale problems collected by Hans Mittel-
mann and called here HM-problems [15]; the set of examples from structural opti-
mization called TRUSS collection3; and a collection of very-large scale problems
with relatively small-size matrices provided by Kim Toh and thus called TOH
collection [23].

5.1 SDPLIB

Let us start with a comparison of preconditioners for this set of problems. Figure 6
presents a performance profile [6] on three preconditioners: diagonal, BFGS, and
symmetric Gauss-Seidel. Compared are the CPU times needed to solve 23 selected
problems of the SDPLIB collection. We used the PEN-E-PCG version of the code
with explicit Hessian computation. The profile shows that the preconditioners de-
liver virtually identical results, with SGS having slight edge. Because the BFGS
preconditioner is the most universal one (it can also be used with the ”I” and ”A”
version of the code), it will be our choice for the rest of this paragraph.
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Fig. 6 Performance profile on preconditioners; SDPLIB problems

Table 2 gives a comparison of PENSDP (i.e., a code with Cholesky solver),
PEN-E-PCG(BFGS) (with explicit Hessian computation), PEN-I-PCG(BFGS) (with
implicit Hessian computation) and PEN-A-PCG(BFGS) (approximate Hessian
computation). Not only the CPU times in seconds are given, but also times per

3 Available at http://www2.am.uni-erlangen.de/∼kocvara/pennon/problems.html
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Newton iteration and number of CG steps (when applicable) per Newton iteration.
We have chosen the form of a table (contrary to a performance profile), because
we think it is important to see the differences between the codes on particular ex-
amples. Indeed, while for most examples the PCG-based codes are about as fast
as PENSDP, in a few cases they are significantly faster. These examples (theta*,
thetaG*) are typical of a high ratio of n to m. In such situation, the complexity of
the solution of the Newton system is much higher than the complexity of Hessian
computation and PCG versions of the code are expected to be efficient (see Ta-
ble 3 and the text below). In (almost) all other problems, most time is spent on
Hessian computation and thus the solver of the Newton system does not effect
the total CPU time. In a few problems (control*, truss8), PEN-*-PCG(BFGS)
were significantly slower than PENSDP; these are the very ill-conditioned prob-
lems when the PCG method needs many iterations to reach even the low accuracy
required.

Looking at PEN-I-PCG(BFGS) results, we see even stronger effect “the higher
the ratio n to m, the more efficient code”. In all examples, this code is faster
than the other Hessian-free code PEN-A-PCG(BFGS); in some cases PEN-A-
PCG(BFGS) even failed to reach the required accuracy (typically, it failed in the
line-search procedure when the search direction delivered by inexact Hessian for-
mula calculations was not a direction of descent).

Table 1 Dimensions of selected SDPLIB problems.

dimensions
problem n m
arch8 174 335
control7 666 105
equalG11 801 801
equalG51 1001 1001
gpp250-4 250 250
gpp500-4 501 500
maxG11 800 800
maxG32 2000 2000
maxG51 1000 1000
mcp250-1 250 250
mcp500-1 500 500
qap9 748 82
qap10 1021 101
qpG51 1000 2000
ss30 132 426
theta3 1106 150
theta4 1949 200
theta5 3028 250
theta6 4375 300
thetaG11 2401 801
truss8 496 628

The results of the table are also summarized in form of the performance profile
in Figure 7. The profile confirms that while PENSDP is the fastest code in most
cases, PEN-I-PCG(BFGS) is the best performer in average.

Table 3 compares the CPU time spent in different parts of the algorithm for
different types of problems. We have chosen typical representatives of problems
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Table 2 Results for selected SDPLIB problems. CPU times in seconds; CPU/it–time per a New-
ton iteration; CG/it–average number of CG steps per Newton iteration. 3.2Ghz Pentium 4 with
1GB DDR400 running Linux.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it CPU CPU/it CG/it
arch8 6 0.07 7 0.07 16 10 0.11 20 30 0.29 39
control7 72 0.56 191 1.39 357 157 0.75 238 191 2.45 526
equalG11 49 1.58 66 2.00 10 191 5.79 10 325 9.85 13
equalG51 141 2.76 174 3.55 8 451 9.20 8 700 14.29 10
gpp250-4 2 0.07 2 0.07 4 4 0.14 4 4 0.14 4
gpp500-4 15 0.42 18 0.51 5 32 0.91 5 45 1.29 6
hinf15 421 9.57 178 2.83 8 22 0.40 7 44 0.76 13
maxG11 13 0.36 12 0.33 11 46 1.24 12 66 1.83 12
maxG32 132 4.13 127 3.74 18 634 18.65 18 failed
maxG51 91 1.82 98 1.78 8 286 5.20 8 527 9.58 9
mcp250-1 1 0.03 1 0.03 5 2 0.07 6 4 0.10 7
mcp500-1 5 0.14 5 0.13 7 10 0.26 7 14 0.39 7
qap9 3 0.09 29 0.22 60 26 0.08 55 48 0.57 273
qap10 9 0.20 34 0.67 67 18 0.24 98 failed
qpG11 49 1.36 46 1.31 10 214 6.11 10 240 6.86 11
qpG51 181 4.31 191 4.34 3 323 7.34 3 493 11.20 4
ss30 15 0.26 15 0.28 5 10 0.19 5 11 0.20 6
theta3 11 0.22 8 0.14 8 3 0.05 8 5 0.08 10
theta4 40 0.95 30 0.50 12 8 0.14 9 11 0.20 11
theta5 153 3.26 74 1.23 8 14 0.22 7 23 0.40 11
theta6 420 9.55 178 2.83 8 21 0.38 7 44 0.76 13
thetaG11 218 2.63 139 1.70 11 153 1.72 13 359 3.86 26
truss8 9 0.12 23 0.27 115 36 0.40 130 failed

with n ≈ m (equalG11) and n/m À 1 (theta4). For all four codes we show the
total CPU time spent in the unconstrained minimization, and cumulative times of
function and gradient evaluations, Hessian evaluation, and solution of the Newton
system. We can clearly see that in the theta4 example, solution of the Newton
system is the decisive part, while in equalG11 it is the function/gradient/Hessian
computation.

Table 3 Cumulative CPU time spent in different parts of the codes: in the whole unconstrained
minimization routine (CPU); in function and gradient evaluation (f+g); in Hessian evaluation
(hess) ; and in the solution of the Newton system (chol or CG).

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU f+g hess chol CPU f+g hess CG CPU f+g CG CPU f+g CG
theta4 40.1 0.8 10.5 28.7 30.0 1.6 14.5 13.7 7.4 1.5 5.7 10.8 10.1 0.5
equalG11 44.7 27.5 14.0 1.8 60.2 43.1 14.6 2.3 185.6 42.6 142.6 319.9 318.3 1.4

5.2 HM collection

Table 4 lists a selection of large-scale problems from the HM collection, together
with their dimensions and number of nonzeros in the data matrices.
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Table 4 Dimensions of selected HM-problems.

problem m n nzs blocks
cancer 100 570 10 470 10 569 2
checker 1.5 3 971 3 971 3,970 2
cnhil10 221 5 005 24 310 2
cnhil8 121 1 716 7 260 2
cphil10 221 5 005 24 310 2
cphil12 364 12 376 66 429 2
foot 2 209 2,209 2 440 944 2
G40 mb 2 001 2 000 2 003 000 2
G40mc 2 001 2 000 2 000 2
G48mc 3 001 3 000 3 000 2
G55mc 5 001 5 000 5 000 2
G59mc 5 001 5 000 5 000 2
hand 1 297 1 297 841 752 2
neosfbr20 363 7 201 309 624 2
neu1 255 3 003 31 880 2
neu1g 253 3 002 31 877 2
neu2c 1 256 3 002 158 098 15
neu2 255 3 003 31 880 2
neu2g 253 3 002 31 877 2
neu3 421 7 364 87 573 3
rabmo 6 827 5 004 60 287 2
rose13 106 2 379 5 564 2
taha1a 1 681 3 002 177 420 15
taha1b 1 610 8 007 107 373 25
yalsdp 301 5 051 1 005 250 4

The test results are collected in Table 5, comparing again PENSDP with PEN-
E-PCG(BFGS), PEN-I-PCG(BFGS) and PEN-A-PCG(BFGS). Contrary to the
SDPLIB collection, we see a large number of failures of the PCG based codes,
due to exceeded time limit of 20000 seconds. This is the case even for prob-
lems with large n/m. These problems, all generated by SOSTOOLS or GLOP-
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TIPOLY, are typified by high ill-conditioning of the Hessian close to the solution;
while in the first few steps of Algorithm 1 we need just few iterations of the PCG
method, in the later steps this number becomes very high and the PCG algorithm
becomes effectively non-convergent. There are, however, still a few problems with
large n/m for which PEN-I-PCG(BFGS) outperforms PEN-E-PCG(BFGS) and
this, in turn, clearly outperforms PENSDP: cancer 100, cphil*, neosfbr20,
yalsdp. These problems are “good” in the sense that the PCG algorithm needs,
on average, a very low number of iterations per Newton step. In other problems
with this property (like the G* problems), n is proportional to m and the algorithm
complexity is dominated by the Hessian computation.

Table 5 Results for selected HM-problems. CPU times in seconds; CPU/it–time per a Newton
iteration; CG/it–average number of CG steps per Newton iteration. 3.2Ghz Pentium 4 with 1GB
DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it CPU CPU/it CG/it
cancer 100 4609 112.41 818 18.18 8 111 2.47 8 373 6.32 19
checker 1.5 1476 20.22 920 15.59 7 2246 39.40 6 3307 58.02 7
cnhil10 664 18.44 3623 77.08 583 703 13.78 477 1380 30.67 799
cnhil8 43 1.13 123 2.62 52 30 0.67 116 87 2.23 280
cphil10 516 18.43 266 9.50 16 15 0.56 17 22 0.79 19
cphil12 5703 219.35 1832 73.28 21 71 2.63 17 92 3.41 19
foot 1480 26.43 2046 33.54 4 3434 57.23 4 4402 73.37 4
G40 mb 987 21.00 1273 26.52 10 4027 83.90 10 5202 110.68 11
G40mc 669 13.94 663 13.26 8 1914 38.28 8 3370 67.40 8
G48mc 408 12.75 332 10.38 1 330 10.31 1 381 11.91 1
G55mc 6491 150.95 6565 139.68 9 18755 416.78 8 timed out
G59mc 9094 185.59 8593 175.37 8 timed out timed out
hand 262 5.95 332 7.38 6 670 14.89 5 1062 23.60 7
neosfbr20 4154 67.00 4001 57.99 109 884 13.19 137 1057 16.02 131
neu1 958 11.01 timed out timed out timed out
neu1g 582 10.78 5677 68.40 1378 1548 20.92 908 timed out
neu2c 2471 27.46 timed out timed out timed out
neu2 1032 10.98 timed out timed out timed out
neu2g 1444 10.78 timed out timed out timed out
neu3 14402 121.03 timed out timed out timed out
rabmo 1754 18.66 timed out timed out timed out
rose13 77 1.88 862 19.59 685 668 3.01 492 1134 8.86 1259
taha1a 1903 24.40 5976 74.70 1207 6329 72.75 1099 13153 137.01 1517
taha1b 7278 72.06 timed out 9249 79.73 835 timed out
yalsdp 1817 38.62 2654 54.16 7 29 0.59 7 37 0.77 8

5.3 TRUSS collection

Unlike the previous two collections of problems with different background and of
different type, the problems from the TRUSS collection are all of the same type
and differ just by the dimension. Looking at the CPU-time performance profile
on the preconditioners (Figure 8) we see a different picture than in the previous
paragraphs: the SGS preconditioner is the winner, closely followed by the diagonal



Large-scale SDP and iterative solvers 23

one; BFGS is the poorest one now. Thus in this collection we only present results
of PEN-E-PCG with the SGS preconditioner.
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Fig. 8 Performance profile on preconditioners; TRUSS problems

The results of our testing (see Table 6) correspond to our expectations based
on complexity estimates. Because the size of the constrained matrices m is larger
than the number of variables n, we may expect most CPU time to be spent in
Hessian evaluation. Indeed, for both PENSDP and PEN-E-PCG(SGS) the CPU
time per Newton step is about the same in most examples. These problems have
ill-conditioned Hessians close to the solution; as a result, with the exception of
one example, PEN-A-PCG(BFGS) never converged to a solution and therefore it
is not included in the table.

Table 6 Results for selected TRUSS problems. CPU times in seconds; CPU/it–time per a New-
ton iteration; CG/it–average number of CG steps per Newton iteration. 3.2Ghz Pentium 4 with
1GB DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-PCG(SGS)
problem n m CPU CPU/it CPU CPU/it CG/it
buck3 544 1 186 42 0.27 92 0.46 32
buck4 1 200 2 546 183 1.49 421 2.60 40
buck5 3 280 6 802 3215 15.46 10159 27.02 65
trto3 544 866 14 0.13 17 0.18 6
trto4 1 200 1 874 130 0.78 74 0.52 12
trto5 3 280 5 042 1959 8.86 1262 8.89 5
vibra3 544 1 186 39 0.27 132 0.35 10
vibra4 1 200 2 546 177 1.50 449 1.98 11
vibra5 3 280 6 802 2459 15.56 timed out
shmup3 420 2 642 271 3.15 309 3.81 6
shmup4 800 4 962 1438 15.63 1824 20.49 10
shmup5 1 800 11 042 10317 83.20 16706 112.88 6
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5.4 TOH collection

As predicted by complexity results (and as already seen in several examples in
the previous paragraphs), PCG-based codes are expected to be most efficient for
problems with large n and (relatively) small m. The complexity of the Cholesky
algorithm O(n3) is replaced by O(10n2) and we may expect significant speed-up
of the resulting algorithm. This is indeed the case of the examples from this last
collection.

The examples arise from maximum clique problems on randomly generated
graphs (theta*) and maximum clique problems from the Second DIMACS Im-
plementation Challenge [25].

The dimensions of the problems are shown in Table 7; the largest example has
almost 130 000 variables. Note that the Hessians of all the examples are dense, so
to solve the problems by PENSDP (or by any other interior-point algorithm) would
mean to store and factorize a full matrix of dimension 130 000 by 130 000. On the
other hand, PEN-I-PCG(BFGS) and PEN-A-PCG(BFGS), being effectively first-
order codes, have only modest memory requirements and allow us to solve these
large problems within a very reasonable time.

Table 7 Dimensions of selected TOH problems.

problem n m
ham 7 5 6 1 793 128
ham 9 8 2 305 512
ham 8 3 4 16 129 256
ham 9 5 6 53 761 512
theta42 5 986 200
theta6 4 375 300
theta62 13 390 300
theta8 7 905 400
theta82 23 872 400
theta83 39 862 400
theta10 12 470 500
theta102 37 467 500
theta103 62 516 500
theta104 87 845 500
theta12 17 979 600
theta123 90 020 600
theta162 127 600 800
keller4 5 101 171
sanr200-0.7 6 033 200

We first show a CPU-time based performance profile on the codes PENSDP,
PEN-E-PCG, PEN-I-PCG, and PEN-A-PCG; see Figure 9. All iterative codes
used the BFGS preconditioner. We can see dominance of the Hessian-free codes
with PEN-I-PCG as a clear winner. From the rest, PEN-E-PCG is clearly faster
than PENSDP. Note that, due to memory limitations caused by explicit Hessian
calculation, PENSDP and PEN-E-PCG were only able to solve about 60 per cent
of the examples.

Table 8 collects the results. As expected, larger problems are not solvable by
the second-order codes PENSDP and PEN-E-PCG(BFGS), due to memory limi-
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tations. They can be, on the other hand, easily solved by PEN-I-PCG(BFGS) and
PEN-A-PCG(BFGS): to solve the largest problem from the collection, theta162,
these codes needed just 614 MB of memory. But not only memory is the limitation
of PENSDP. In all examples we can see significant speed-up in CPU time going
from PENSDP to PEN-E-PCG(BFGS) and further to PEN-I-PCG(BFGS).

To our knowledge, aside from the code described in [23], the only available
code capable of solving problems of this size is SDPLR by Burer and Monteiro
([4]). SDPLR formulates the SDP problem as a standard NLP and solves this by
a first-order method (Augmented Lagrangian method with subproblems solved by
limited memory BFGS). Table 9 thus also contains results obtained by SDPLR; the
stopping criterion of SDPLR was set to get possibly the same accuracy as by the
other codes. While the hamming* problems can be solved very efficiently, SDPLR
needs considerably more time to solve the theta problems, with the exception of
the largest ones. This is due to a very high number of L-BFGS iterations needed.

6 Accuracy

There are two issues of concern when speaking about possibly high accuracy of
the solution:

– increasing ill-conditioning of the Hessian of the Lagrangian when approaching
the solution and thus decreasing efficiency of the CG method;

– limited accuracy of the finite difference formula in the A-PCG algorithm (ap-
proximate Hessian-matrix product computation).

Because the A-PCG algorithm is outperformed by the I-PCG version, we ne-
glect the second point. In the following we will thus study the effect of the DI-
MACS stopping criterion δDIMACS on the behavior of PEN-I-PCG.
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Table 8 Results for selected TOH problems. CPU times in seconds; CPU/it–time per a Newton
iteration; CG/it–average number of CG steps per Newton iteration. AMD Opteron 250/2.4GHz
with 4GB RAM; time limit 100 000 sec.

PENSDP PEN-E-PCG(BFGS) PEN-I-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it CPU CPU/it CG/it
ham 7 5 6 34 0.83 9 0.22 2 1 0.02 2 1 0.02 2
ham 9 8 100 2.13 44 1.02 2 33 0.77 2 38 0.88 2
ham 8 3 4 17701 431.73 1656 39.43 1 30 0.71 1 30 0.71 1
ham 9 5 6 memory memory 330 7.17 1 333 7.24 1
theta42 1044 23.20 409 7.18 16 25 0.44 9 33 0.61 12
theta6 411 9.34 181 2.97 8 24 0.44 7 69 1.15 17
theta62 13714 253.96 1626 31.88 9 96 1.88 10 62 1.27 5
theta8 2195 54.88 593 9.88 8 93 1.55 10 124 2.07 12
theta82 memory memory 457 7.62 14 664 12.53 23
theta83 memory memory 1820 26.00 21 2584 43.07 35
theta10 12165 217.23 1947 29.95 13 227 3.07 10 265 4.27 12
theta102 memory memory 1299 16.44 13 2675 41.80 35
theta103 memory memory 2317 37.37 12 5522 72.66 24
theta104 memory memory 11953 140.62 25 9893 164.88 30
theta12 27565 599.24 3209 58.35 7 254 4.62 8 801 10.01 17
theta123 memory memory 10538 140.51 23 9670 163.90 27
theta162 memory memory 13197 173.64 13 22995 365.00 30
keller4 783 14.50 202 3.42 12 19 0.32 9 62 0.72 23
sanr200-0.7 1146 23.88 298 5.32 12 30 0.55 12 47 0.87 18

Table 9 Results for selected TOH problems. Comparison of codes PEN-I-PCG(BFGS) and SD-
PLR. CPU times in seconds; CPU/it–time per a Newton iteration; CG/it–average number of CG
steps per Newton iteration. AMD Opteron 250/2.4GHz with 4GB RAM; time limit 100 000 sec.

PEN-I-PCG(BFGS) SDPLR
problem CPU CPU/it CG/it CPU iter
ham 7 5 6 1 0.02 2 1 101
ham 9 8 33 0.77 2 13 181
ham 8 3 4 30 0.71 1 7 168
ham 9 5 6 330 7.17 1 30 90
theta42 25 0.44 9 92 6720
theta6 24 0.44 7 257 9781
theta62 96 1.88 10 344 6445
theta8 93 1.55 10 395 6946
theta82 457 7.62 14 695 6441
theta83 1820 26.00 21 853 6122
theta10 227 3.07 10 712 6465
theta102 1299 16.44 13 1231 5857
theta103 2317 37.37 12 1960 7168
theta104 11953 140.62 25 2105 6497
theta12 254 4.62 8 1436 7153
theta123 10538 140.51 23 2819 6518
theta162 13197 173.64 13 6004 1 6845
keller4 19 0.32 9 29 2922
sanr200-0.7 30 0.55 12 78 5547

We have solved selected examples with several values of δDIMACS, namely

δDIMACS = 10−1, 10−3, 10−5 .

We have tested two versions of the code a monotone and a nonmonotone one.
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Nonmonotone strategy This is the strategy used in the standard version of the
code PENSDP. We set α , the stopping criterion for the unconstrained minimiza-
tion (10), to a modest value, say 10−2. This value is then automatically recom-
puted (decreased) when the algorithm approaches the minimum. Hence, in the
first iterations of the algorithm, the unconstrained minimization problem is solved
very approximately; later, it is solved with increasing accuracy, in order to reach
the required accuracy. The decrease of α is based on the required accuracy ε and
δDIMACS (see (11), (13)). To make this a bit more transparent, we set, for the purpose
of testing,

α = min{10−2,δDIMACS} .

Monotone strategy In the nonmonotone version of the code, already the first iter-
ations of the algorithm obtained with δDIMACS = 10−1 differ from those obtained
with δDIMACS = 10−2, due to the different value of α from the very beginning.
Sometimes it is thus difficult to compare two runs with different accuracy: theo-
retically, the run with lower accuracy may need more time than the run with higher
required accuracy. To eliminate this phenomenon, we performed the tests with the
“monotone” strategy, where we always set

α = 10−5 ,

i.e., to the lowest tested value of δDIMACS. By this we guarantee that the first it-
erations of the runs with different required accuracy will always be the same.
Note that this strategy is rather inefficient when low accuracy is required: the code
spends too much time in the first iterations to solve the unconstrained minimiza-
tion problem more exactly than it is actually needed. However, with this strategy
we will better see the effect of decreasing δDIMACS on the behavior of the (A-)PCG
code.

Note that for δDIMACS = 10−5 both, the monotone and the nonmonotone version
coincide. Further, in the table below we only show the DIMACS error measures
err1 (optimality conditions) and err4 (primal feasibility) that are critical in our
code; all the other measures were always well below the required value.

In Table 10 we examine, for selected examples, the effect of increasing Hessian
ill-conditioning (when decreasing δDIMACS) on the overall behavior of the code. We
only have chosen examples for which the PCG version of the code is significantly
more efficient than the Cholesky-based version, i.e., problems with large factor
n/m. The table shows results for both, the monotone and nonmonotone strategy.

We draw two main conclusions from the table: the increased accuracy does
not really cause problems; and the nonmonotone strategy is clearly advisable in
practice. In the monotone strategy, to reach the accuracy of 10−5, one needs at
most 2–3 times more CG steps than for 10−1. In the nonmonotone variant of the
code, the CPU time increase is more significant; still it does not exceed the factor
5 which we consider reasonable.

Note also that the actual accuracy is often significantly better than the one
required, particularly for δDIMACS = 10−1. This is due to the fact that the primal
stopping criterion (11) with ε = 10−4 is still in effect.
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Table 10 Convergence of PEN-I-PCG(BFGS) on selected problems using the monotone
(mon=Y) and nonmonotone (mon=N) strategy. Shown are the cumulated CPU time in seconds,
number of Newton steps and number of CG iterations and the DIMACS error measures. AMD
Opteron 250/2.4GHz running Linux.

δDIMACS mon CPU Nwt CG err1 err4 objective
theta42

1.0E-01 Y 37 64 856 4.0E-07 1.6E-03 23.931571
1.0E-03 Y 37 64 856 4.0E-07 1.6E-03 23.931571
1.0E-05 Y 77 71 1908 3.8E-07 3.3E-05 23.931708
1.0E-01 N 15 48 303 9.7E-04 3.7E-02 23.931777
1.0E-03 N 19 54 398 2.8E-04 1.8E-03 23.931564
1.0E-05 N 77 71 1908 3.8E-07 3.3E-05 23.931708

theta6
1.0E-01 Y 39 71 657 1.5E-07 4.1E-03 63.476509
1.0E-03 Y 39 71 657 1.5E-07 4.1E-03 63.476509
1.0E-05 Y 100 81 1901 2.0E-07 1.1E-05 63.477087
1.0E-01 N 18 52 243 3.4E-03 3.5E-02 63.476054
1.0E-03 N 26 60 413 9.6E-05 4.1E-03 63.476483
1.0E-05 N 100 81 1901 2.0E-07 1.1E-05 63.477087

cancer-100
1.0E-01 Y 280 62 850 4.4E-05 7.1E-03 27623.143
1.0E-03 Y 291 64 885 7.7E-05 1.2E-03 27623.292
1.0E-05 Y 666 74 2209 6.8E-06 1.1E-05 27623.302
1.0E-01 N 129 42 353 2.6E-02 0.0E+00 27624.890
1.0E-03 N 181 47 528 3.2E-04 0.0E+00 27623.341
1.0E-05 N 666 74 2209 6.8E-06 1.1E-05 27623.302

keller4
1.0E-01 Y 36 72 1131 3.8E-06 2.1E-04 14.012237
1.0E-03 Y 36 72 1131 3.8E-06 2.1E-04 14.012237
1.0E-05 Y 38 74 1257 5.9E-07 1.9E-05 14.012242
1.0E-01 N 12 58 346 1.8E-03 5.4E-04 14.012400
1.0E-03 N 17 60 500 1.9E-05 1.3E-04 14.012248
1.0E-05 N 38 74 1257 5.9E-07 1.9E-05 14.012242

hamming-9-8
1.0E-01 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-03 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-05 Y 38 52 79 4.2E-08 4.7E-05 223.99992
1.0E-01 N 32 43 66 6.1E-06 5.0E-04 224.00016
1.0E-03 N 37 50 75 1.4E-05 5.6E-04 224.00011
1.0E-05 N 38 52 79 4.2E-08 4.7E-05 223.99992

neosbfr20
1.0E-01 Y 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-03 Y 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-05 Y 3149 95 30678 3.0E-07 3.3E-06 238.56085
1.0E-01 N 758 67 7258 2.9E-03 4.2E-06 238.56109
1.0E-03 N 1056 75 10135 4.8E-04 9.3E-06 238.56094
1.0E-05 N 3149 95 30678 3.0E-07 3.3E-06 238.56085

7 Conclusion and outlook

In the framework of a modified barrier method for linear SDP problems, we pro-
pose to use iterative solvers for the computation of the search direction, instead
of the routinely used factorization technique. The proposed algorithm proved to
be more efficient than the standard code for certain groups of examples. The ex-
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amples for which the new code is expected to be faster can be assigned a priori,
based on the complexity estimates (namely on the ratio of the number of variables
and the size of the constrained matrix). Furthermore, using an implicit formula
for the Hessian-vector product or replacing it by a finite difference formula, we
reach huge savings in the memory requirements and, often, further speed-up of
the algorithm.

Inconclusive is the testing of various preconditioners. It appears that for differ-
ent groups of problems different preconditioners are recommendable. While the
diagonal preconditioner (considered poor man’s choice in the computational lin-
ear algebra community) seems to be the most robust one, BFGS preconditioner is
the best choice for many problems but, at the same time, clearly the worst one for
the TRUSS collection.
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6. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles.
Math. Prog. 91, 201–213 (2002)

7. Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal-dual interior-point
method for semidefinite programming. Math. Prog. 79, 235–253 (1997)

8. Fukuda, M., Kojima, M., Shida, M.: Lagrangian dual interior-point methods for semidefinite
programs. SIAM J. Optimization 12, 1007–1031 (2002)

9. Geiger, C., Kanzow, C.: Numerische Verfahren zur Lösung unrestringierter Opti-
mierungsaufgaben. Springer-Verlag (1999). In German.

10. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior–point method for
semidefinite programming. SIAM J. Optimization 6, 342–361 (1996)
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