
On the solution of large-scale SDP problems by the modified barrier method using iter-
ative solvers , Michal Kočvara and Michael Stingl

This paper continues a line of recent papers in computational semidefinite program-
ming (SDP), which attempt to extend second-order interior-point methods to large-
scale SDP by using Krylov-type methods to solve the “Newton” equation arising in
each iteration of such methods. Some key questions that the paper addresses are: when
could one expect a conjugate-gradient approach to outperform a regular second-order
method; and what preconditioning techniques are available in the context of SDP? The
primary perspective for analysis is the performance of the authors’ code, PENNON.

Both questions are successfully answered in the paper through careful discussion
and thorough experiments. The authors should be commended for presenting a multi-
faceted topic in such an understandable manner.

In my opinion, the main contribution of the paper is additional insight into the
challenges of extending algorithms to large-scale SDP. After reading the paper, one
is left with a mixed impression: some success has been made, but still much work
needs to be done. At this point in time, I think this is the correct impression to have.
Accordingly, I would like to recommend the paper for publication subject to revisions
that incorporate the following suggestions:

• The second-half of the third full paragraph on p.2 should be edited for greater
clarity. It is not clear what is similar to, and what is different from, the paper
[22].

• Doesn’t the Lagrange multiplier U need to be positive semidefinite? This should
be stated explicitly, and it should be highlighted that equation (8) keeps U positive
semidefinite because the algorithm will also keep Z(x) positive definite.

• At the top of p.4, what is DA? Also, Φp has two arguments here, whereas its
definition has just one.

• On p.4, any cluster point will constitute an optimal solution of (1) and its dual.

• In step 4 of the penalty update procedure, what is l?

• In the penalty update procedure, how do you get xfeas? Isn’t this as difficult as
solving the SDP itself?

• On p.8, in the context of PENNON, a specific contribution of the paper is the use
of finite differences to calculate Hessian-vector products. The authors explain that
this is necessary if one wishes to save memory — the implication being that the
only other alternative for performing Hessian-vector products requires the explicit
construction of the Hessian. But is it not possible to represent the Hessian in an
“operator form” that shows how Hessian-vector products can be done without

1



explicitly construction the Hessian? For example, a typical primal-dual method
Newton system is something like

A∗(XA(d)Z−1) = −g.

So a Hessian-vector product can be done without explicitly constructing the
Hessian or doing finite differences by applying A, then pre- and post-multiplying
by X and Z−1, respectively, and finally applying A∗ (the adjoint of A). Could
the authors please address this issue?

• Figures such as Fig. 1-3 would be easier to interpret if the scale for the vertical
axes in the left and right charts were the same.

• On p.15, it is stated that only the BFGS preconditioner was tested in the case
of PEN-A-PCG. Was the AINV preconditioner not appropriate — even though
it was stated as only requiring Hessian-vector products? If AINV is not really
important for the paper (the only other mention seems to be Fig. 8), then please
remove Section 4.6.

• The table numbers mentioned in the text do not match the actual table numbers.

• Could the authors provide some additional details about Fig. 9 and 10? In par-
ticular, is Fig. 9 with respect to PEN-PCG or PEN-A-PCG? I understood that
PEN-PCG could not be run on most of the TOH problems because of PEN-
PCG’s need to construct the Hessian explicitly. Or does Fig. 9 cover just a subset
of TOH? PEN-PCG is also represented in Fig. 10.

• When running SDPLR on the theta problems, was SDPLR run with knowledge
that A0 is the rank-1 matrix of all ones, eeT ? SDPLR is able to exploit this
structure and can benefit greatly over a situation in which eeT is expressed as a
general matrix.

• In Tables 8 and 9, five of the six problems are theta problems. Could the authors
present a somewhat more representative sample?

Some small types and minor corrections are:

• (abstract,5) with a large

• (p.1,6) “the Newton method”?

• (p.2,-15) there are a few significant differences

• (p.3,3) examples of ill-conditioned

• (p.3,6) with different backgrounds.

• (p.4,16) minimization in Step (i)

2



• (p.6,-2) certain kinds of problems

• (p.7,12) takes the most time

• (p.7,17) From the complexity viewpoint

• (p.7,19) in exact arithmetic, the (other instances)

• (p.8,6) may use a finite

• (p.8,10) amounts to the number

• (p.9,-14) in a few examples

• (p.9,-10) κopt

• (p.16,20) robust than the

• (p.16,-11) examples the PEN-PCG(BFGS) is about as fast

• (p.16,-12) in a few cases

• (p.16,-11) typical of a high

• (p.17,3) Do you mean BFGS instead of diag?

• (p.17,-7) are typified by

• (p.17,-4) There are, however, still a few

• (p.17,-1) “good”

3


