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Realization of the RDM approach has benefited greatly from recent developments in semidef-

inite programming (SDP). We present the actual state of this new application of SDP as well

as the formulation of these SDPs, which can be arbitrarily large. Numerical results using par-

allel computation on high performance computers are given. The RDM method has several

advantages including robustness and provision of high accuracy compared to traditional elec-

tronic structure methods, although its computational time and memory consumption are still

extremely large.

Key words. Large-scale optimization – Computational chemistry – Semidefi-

nite programming relaxation – Reduced Density Matrix – N-representability –

Parallel computation

1. Introduction

Electronic structure theory is the source of some of the largest and most chal-

lenging problems in computational science. As the quantum mechanical basis

for the computation of properties of molecules and solids it is also of immense

practical importance.

Traditional formulations of the electronic structure problem give rise to large

linear or nonlinear Hermitian eigenvalue problems, but using the reduced den-

sity matrix (RDM) method [5,20], one is required instead to solve a very large

semidefinite programming (SDP) problem. Until recently the RDM method

could not compete either in accuracy or in speed with well-established elec-

tronic structure methods, but this is changing. Especially Nakata et al. [44,42]

showed that a well-established SDP code (e.g., SDPA [17]) could be used to solve
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an SDP having the RDMs as variables with the basic conditions (the “P”, “Q”,

and “G” conditions, as will be clarified later) for a wide variety of interesting

(although still small) molecules. Later, Zhao et al. [62] showed that with the in-

clusion of additional conditions (“T1” and “T2”), the accuracy that is obtained

for small molecular systems compares favorably with the best widely used elec-

tronic structure methods. Very recently, Mazziotti [36,37] announced results for

larger molecular systems using the P , Q and G conditions.

For applied work, the main present challenge for the RDM approach is to

develop the efficiency of the solution of the resulting large SDP problems to the

stage where one has a method that is genuinely competitive in both accuracy and

speed with traditional electronic structure methods. Accordingly, our objective

in the present paper is to present the basics of the RDM method and the details

of the resulting SDP, together with our computational experience, to experts

in optimization theory and semidefinite programming. Very briefly: the RDM

method gives rise to arbitrarily large SDP problems. Each of the data matrices

of the SDP has a small number of diagonal blocks and is extremely sparse. On the

other hand, the linear combination of these matrices, i.e., the dual slack matrix,

is mostly dense, but its largest block has density only about 20%. One of the keys

to successfully and drastically reduce the size of the SDP is to formulate it as a

dual SDP problem. The dual formulation has many fewer dual variables (primal

constraints) than the original primal formulation and can therefore be solved

more efficiently. The SDP problems must be solved to high accuracy – typically

7 digits for the optimal value – and this is an extremely important consideration
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in the choice of solution methods and codes. We have experience solving these

problems with both the SeDuMi code [50] and with the SDPA/SDPARA codes

[17,58].

In the next section, Section 2, we present the electronic structure problem

and the RDM theory. In Section 2.1, we show the basic equations and the general

form of the RDM reformulation, and we explain the concept of N -representability

conditions. In Section 2.2, we exhibit the principal N -representability conditions:

P , Q, G, T1 and T2, respectively, and in Section 2.3, we give a chronological

overview of applications of SDP to these equations.

In Section 3, we present the precise formulation of the RDM equations in

dual SDP form using inequality and equality constraints. This is an improvement

over the previous result [62] where equality constraints were split into a slightly

relaxed pair of inequalities. The quality of this modification is also discussed in

Section 4.3. We also consider the computational advantages of the dual SDP

formulation compared to the primal one in terms of both number of floating

point operations and memory usage.

Section 4 gives our main results. Section 4.1 discusses the sizes and the spar-

sity of this class of SDPs. Section 4.2 gives the ground state energies and the

dipole moments of small atomic-molecular systems solving small- and medium-

scale SDPs by SeDuMi, which can handle inequality and equality constraints in

the dual SDP problem. The numerical results confirm that the RDM approach

employing the P , Q, G, T1 and T2 conditions provides accurate, robust and most

of the time better values for the ground state energy and the dipole moment than
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the traditional electronic structure methods. Section 4.3 gives the same results

for large-scale SDPs using the parallel SDPARA-SMP code, which has a bet-

ter memory storage scheme than SDPARA [58]. Only inequality constraints are

considered in the dual SDP formulation here. We also discuss essential tech-

niques to solve large-scale problems in a high performance parallel environment.

Possibly, we solved the largest SDP reported with 20709 dual variables (primal

constraints) and largest block matrices with size 3211×3211 with such density

and accuracy. This size was not exceeded because of lack of available hours at

the computational provider. Finally, Section 4.4 briefly reports our particular

experience in using alternative formulations and methods for this problem. We

conclude with an outlook for further work.

To finalize this introduction, we indicate briefly the key ideas and terminology

of the RDM method in a pure linear algebra setting. Let A ∈ Sn (the space of real

symmetric matrices of dimension n×n) and let E0 be its smallest eigenvalue. By

the Rayleigh-Ritz variational principle, E0 is equal to the minimum of 〈x, Ax〉

over x ∈ Rn subject to 〈x, x〉 = 1, and by convexity this has an optimization

formulation:

E0 =





min 〈A, X〉

subject to 〈X, I〉 = 1,

X º O, X ∈ Sn.

(1)

We are interested in the case where the dimension of A is exponentially

large in some natural parameter, but the matrix A has a special structure:

A = M†(B) where B ∈ Sm, M : Sn → Sm is a linear map, and M† is its
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adjoint. The dimension of B is only polynomially large in the same natural

parameter. The map M has another important property: the n × n identity

matrix is in the range of M†; more specifically, M†(Im) = dIn where d is

a nonzero constant. Also, M preserves positive semidefiniteness. Thus, letting

Y = M(X), the problem (1) can be reformulated as a minimization problem in

Sm:

E0 =





min 〈B,Y 〉

subject to 〈Y , I〉 = d, Y ∈ Sm, and

“representability”.

(2)

Here, “representability” means: there exists a positive semidefinite matrix X ∈

Sn such that Y = M(X). An obvious necessary condition for representability,

since M preserves semidefiniteness, is Y º O. The success of this approach

might seem to rely now on being able to specify concrete necessary and suffi-

cient conditions for representability that do not require the reconstruction of the

large matrix X, but this is understood to be intractable. Instead the conditions

that are known are necessary but not sufficient, and so they serve to define an

approximation – a lower-bound approximation – to the original exponentially

large problem. The conditions that have turned out to be most effective are all

of semidefinite kind.

In the language of electronic structure, A is the Hamiltonian, E0 is the

ground state energy, x is a wavefunction, and X is a (full) density matrix. The

dimension of the matrix A is exponentially large in the natural parameter N

(the number of electrons) or in another natural parameter r (the size of the
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one-electron basis), assuming the ratio r/N is kept fixed. A matrix of the form

Y = M(X) is called a reduced density matrix, Sm is the space of RDMs, and

the dimension m scales as r2.

2. The electronic structure problem and reduced density matrices

2.1. Basic formalism

The electronic structure problem is to determine the ground state energy of

a many-electron system in a given external potential [51]. For an N -electron

system this ground state energy is the smallest eigenvalue of a Hermitian op-

erator (the Schrödinger operator or Hamiltonian) that acts on a space of N -

electron wavefunctions, which are complex-valued square-integrable functions of

N single-electron coordinates simultaneously that are totally antisymmetric un-

der the interchange of any pair of electrons. The single-electron coordinates are

three space coordinates and a discrete spin coordinate, R3×{− 1
2 ,+ 1

2}. A wave-

function is often denoted by Ψ and if we let z1, . . . , zN denote single-electron

coordinates then the antisymmetry is expressed by

Ψ(z1, . . . , za, . . . , zb, . . . , zN ) = −Ψ(z1, . . . , zb, . . . , za, . . . , zN )

for all distinct pairs of indices (a, b) and for all arguments of the wavefunction.

In our work we follow the usual approach of discretizing the many-electron

space of wavefunctions by way of a discretization of the single-electron space of

wavefunctions, and for purpose of exposition, we let that single-electron basis be
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orthonormal. If the single-electron basis functions are ψi for 1 ≤ i ≤ r, then the

discretized many-electron wavefunctions are of the form

Ψ(z1, z2, . . . , zN ) =
∑

i1,i2,...,iN

c(i1, i2, . . . , iN )ψi1(z1)ψi2(z2) · · ·ψiN (zN ), (3)

where i1, i2, . . . , iN are distinct indices from 1 to r. The antisymmetry require-

ment on Ψ is carried over to the discrete coefficients c, so we require

c(i1, . . . , ia, . . . , ib, . . . , iN ) = −c(i1, . . . , ib, . . . , ia, . . . , iN )

for all distinct pairs (a, b) and all values of the arguments.

If single-electron wavefunctions are discretized using a basis of size r then

the associated basis for N -electron wavefunctions has size r!/(N ! (r−N)!) (tak-

ing into account the antisymmetry requirement). Even under a rather coarse

discretization the basis size r is a small multiple of N , say r = 2N , and so the

number of coefficients scales exponentially with N and quickly becomes astro-

nomical.

This discrete formulation of the electronic structure problem as an exponen-

tially large eigenvalue problem is called full configuration-interaction (FCI), and

it is intractable except for very small systems. More practical approaches [51]

involve truncating the many electron basis in some systematic way. In the most

direct versions (for example in the SDCI approach: singly and doubly substituted

configuration interaction) this leads to a smaller Hermitian eigenvalue problem

and in other versions (for example in the CCSD approach: coupled cluster ex-

pansion using single and double excitations) one obtains a nonlinear eigenvalue

problem.



Large-scale semidefinite programs in electronic structure calculation 9

An entirely different conceptual approach to the ground state electronic struc-

ture problem relies on the concept of the two-body reduced density matrix (2-

RDM) of a many-electron system. This approach, first articulated in detail in

two papers in the early 1960’s [5,20] (but note as well the earlier refs. [26,30,

31]), was the subject of active theoretical [8,39,13] and computational [28,29,

19,40,48,18] investigations through the 1970’s, but because of limited success

interest somewhat waned. The basic ideas of the RDM method were indicated

in the Introduction, and we now describe them again in the specific setting of

electronic structure theory.

We assume that the space of wavefunctions has been discretized as just dis-

cussed, and so we obtain a discrete Hamiltonian H. The discretized ground state

problem then asks for the minimum eigenvalue E0 for the problem Hc = E0c,

where c is the discretized wavefunction (3). The corresponding matrix variational

problem (1) then becomes





min 〈H, Γ full〉

subject to 〈Γ full, I〉 = 1,

Γ full º O.

(4)

Here Γ full denotes the full density matrix: a function of two pairs of N -electron

variables, so of the form Γ full(i1, . . . , iN ; i′1, . . . , i
′
N ) which is, like the wavefunc-

tion, antisymmetric under interchange of any pair of indices in i1, . . . , iN and

also under interchange of any pair of indices in i′1, . . . , i
′
N . In the general case

where wavefunctions are assumed to be complex, then Γ full is complex Hermi-
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tian under interchange of (i1, . . . , iN ) with (i′1, . . . , i
′
N ), but in the present work

we consider only the real case and then Γ full is real symmetric under that oper-

ation. Γ full is an exponentially large object that is not suitable as ingredient of

an effective computational method. However, a reduction to the form described

in (2) is possible.

Given a full density matrix Γ full, the corresponding p-body RDM Γ p is a

function of two pairs of p-electron variables defined as a (scaled) partial trace

over the remaining N − p variables:

Γ p(i1, . . . , ip; i′1, . . . , i
′
p) =

N !
(N − p)!

∑

ip+1,...,iN

Γ full(i1, . . . , ip, ip+1, . . . iN ; i′1, . . . , i
′
p, ip+1, . . . , iN ).

(5)

The linear space of Γ p is defined by antisymmetry conditions (which are

obviously inherited from Γ full): Γ p(i1, . . . , ip; i′1, . . . , i
′
p) is antisymmetric under

the interchange of any two unprimed coordinates and is also antisymmetric under

the interchange of any two primed coordinates. Furthermore, Γ p is Hermitian

or real symmetric (following Γ full) under interchange of the vector of unprimed

coordinates with the vector of primed coordinates.

The key property for RDM theory is described in the language of physics

and chemistry by saying that the Hamiltonian involves – for the case of nonrel-

ativistic electronic structure – one-body and two-body interaction terms only.

The mathematical description is that the energy depends only on the one-body

and two-body RDMs. Thus we have discrete operators H1 and H2 – the one-

body and two-body parts of the Hamiltonian – such that on the space of density



Large-scale semidefinite programs in electronic structure calculation 11

matrices

〈H, Γ full〉 = 〈H1, Γ 1〉+ 〈H2, Γ 2〉.

It is easily seen that 〈Γ p, I〉 = N !/(N − p)! and also that the mapping

Γ full → Γ p preserves the positive semidefiniteness property. Now a formulation

of the electronic structure problem is obtained in the form of (2):





min 〈H1, Γ 1〉+ 〈H2, Γ 2〉

subject to 〈Γ 1, I〉 = N, 〈Γ 2, I〉 = N(N − 1), and

“N -representability”.

(6)

In this equation, “N -representability” has yet to be defined – or rather, ap-

proximated – by a tractable family of necessary conditions for N -representability

of the matrices Γ 1 and Γ 2 in the form of (5) for a positive semidefinite matrix

Γ full.

2.2. Specific N-representability conditions

The linear space of Γ 1 is the space of real symmetric r × r matrices, Sr. As

defined in (5), Γ 2 depends on two pairs of indices, Γ 2(i1, i2; i′1, i
′
2), and is an-

tisymmetric in both pairs and real symmetric under interchange of the pairs.

The antisymmetry in (i1, i2) and in (i′1, i
′
2) will be built into the basis, and so

Γ 2 ∈ Sr(r−1)/2. It is also clear from (5) that Γ 1 is itself a scaled partial trace of

Γ 2:

Γ 1(i, i′) =
1

N − 1

r∑

j=1

Γ 2(i, j; i′, j). (7)
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Γ 1 could therefore be eliminated entirely from the problem. However, both the

objective function and the N -representability conditions are more conveniently

formulated if Γ 1 is retained and if the trace condition (7) is used as a set of

linear constraints on the pair (Γ 1, Γ 2). We follow this approach.

The trace conditions on Γ 1 and Γ 2 were specified in (6). The remaining

conditions are in the form of convex inequalities. Moreover, all conditions that

we have used are of semidefinite form.

For the 1-RDM the remaining necessary and sufficient N -representability

conditions [5] are:

I º Γ 1 º O. (8)

For the 2-RDM, a complete family of constructive necessary and sufficient

conditions is not available. On a smaller subspace of matrices (the “diagonal”

2-RDM’s), the N -representability problem is well understood: this diagonal N -

representability problem is equivalent to characterization of the Correlation

Polytope, also known as the Boolean Quadric Polytope and equivalent via a

linear bijection to the Cut Polytope [9, p. 54]. Optimization over the Boolean

Quadric Polytope is NP-hard (it is the same as the unconstrained 0-1 quadratic

programming problem), and as is pointed out in [9, p. 397], it follows from a

result of Karp and Papadimitriou [27] that a polynomially concise description of

all the facets of this polytope is not available unless NP = co-NP. For earlier

investigations into the diagonal N -representability problem, we note [8,39,13].

As the original problem (4) is exponentially large, this complexity barrier should

not deter us – the RDM method is to be viewed as an approximation method
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and one works with necessary conditions for N -representability that are known

not to be sufficient.

The basic well known convex inequalities for the 2-RDM are the P and

the Q conditions (so named in [20], but they are also found in [5]) and the

G condition [20]. In our previous work [62] we added to this a T1 and a T2

condition, which as we pointed out are implied by a much earlier paper of Erdahl

[13]. All these conditions are of semidefinite form: P º O, Q º O, G º O,

T1 º O, and T2 º O, where the matrices P , Q, G, T1 and T2 are defined by

linear combinations of the entries of the basic matrices Γ 1 and Γ 2. Specifically

(all indices range over 1, . . . , r and δ is the Kronecker delta):

P ≡ Γ 2, (9)

Q(i, j; i′, j′) ≡ Γ2(i, j; i′, j′)− δ(i, i′)Γ1(j, j′)− δ(j, j′)Γ1(i, i′) + δ(i, j′)Γ1(j, i′)

+δ(j, i′)Γ1(i, j′) + δ(i, i′)δ(j, j′)− δ(i, j′)δ(j, i′).

(10)

The matrices P and Q are of the same size as Γ 2 and have the same antisym-

metry property, so they belong to Sr(r−1)/2. Also,

G(i, j; i′, j′) = Γ2(i, j′; j, i′) + δ(i, i′)Γ1(j′, j). (11)

In the matrix G there is no antisymmetry in (i, j) or in (i′, j′), so G belongs to

Sr2
. Also,
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T1(i, j, k; i′, j′, k′) = δ(i, i′)Γ2(k′, j′; k, j)− δ(i, j′)Γ2(k′, i′; k, j)

+δ(i, k′)Γ2(j′, i′; k, j)− δ(j, i′)Γ2(k′, j′; k, i)

+δ(j, j′)Γ2(k′, i′; k, i)− δ(j, k′)Γ2(j′, i′; k, i)

+δ(k, i′)Γ2(k′, j′; j, i)− δ(k, j′)Γ2(k′, i′; j, i)

+δ(k, k′)Γ2(j′, i′; j, i)

+(δ(j, k′)δ(k, j′)− δ(j, j′)δ(k, k′))Γ1(i′, i)

+(δ(i, j′)δ(k, k′)− δ(i, k′)δ(k, j′))Γ1(i′, j)

+(δ(i, k′)δ(j, j′)− δ(i, j′)δ(j, k′))Γ1(i′, k)

+(δ(j, i′)δ(k, k′)− δ(j, k′)δ(k, i′))Γ1(j′, i)

+(δ(i, k′)δ(k, i′)− δ(i, i′)δ(k, k′))Γ1(j′, j)

+(δ(i, i′)δ(j, k′)− δ(i, k′)δ(j, i′))Γ1(j′, k)

+(δ(j, j′)δ(k, i′)− δ(j, i′)δ(k, j′))Γ1(k′, i)

+(δ(i, i′)δ(k, j′)− δ(i, j′)δ(k, i′))Γ1(k′, j)

+(δ(i, j′)δ(j, i′)− δ(i, i′)δ(j, j′))Γ1(k′, k)

+δ(i, i′)δ(j, j′)δ(k, k′)− δ(i, j′)δ(j, i′)δ(k, k′)

−δ(i, i′)δ(j, k′)δ(k, j′) + δ(i, j′)δ(j, k′)δ(k, i′)

+δ(i, k′)δ(j, i′)δ(k, j′)− δ(i, k′)δ(j, j′)δ(k, i′).

(12)

T1 is fully antisymmetric in both its index triples, so it belongs to Sr(r−1)(r−2)/6.

Finally,
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T2(i, j, k; i′, j′, k′) = δ(i, i′)Γ2(j′, k′; j, k)− δ(j, j′)Γ2(k′, i; k, i′)

−δ(k, k′)Γ2(j′, i; j, i′) + δ(j, k′)Γ2(j′, i; k, i′)

+δ(k, j′)Γ2(k′, i; j, i′) + δ(k, k′)δ(j, j′)Γ1(i, i′)

−δ(j, k′)δ(k, j′)Γ1(i, i′).

(13)

T2(i, j, k; i′, j′, k′) is antisymmetric in (j, k) and in (j′, k′), so it belongs to

Sr2(r−1)/2.

Let us briefly discuss spin symmetries, which can be used to reduce the above

matrices to a block-diagonal form. In order to make use of spin symmetry the

basis functions ψi must be organized in pairs; each function is a product of one of

r/2 orthogonal spatial basis functions (functions of the spatial coordinates) and

one of two orthogonal spin states (functions of the spin coordinate). Each index

i can then be further refined by a bijection to a pair of indices n(i) (spatial

orbitals) and σ(i) (spin states). The spatial orbitals n(i) can take the indices

1, 2, . . . , r
2 while the spin states σ(i) can take the values +1/2 (α spin, spin up)

or −1/2 (β spin, spin down).
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Then our variable matrices and the matrix conditions will vanish for these

values of the indices:

Γ1(n(i)σ(i), n(i′)σ(i′)) = 0 for σ(i) 6= σ(i′),

A(n(i)σ(i), n(j)σ(j); n(i′)σ(i′), n(j′)σ(j′)) = 0 where A = Γ 2 or Q

for σ(i) + σ(j) 6= σ(i′) + σ(j′),

G(n(i)σ(i), n(j)σ(j); n(i′)σ(i′), n(j′)σ(j′)) = 0 for σ(i) + σ(j′) 6= σ(j) + σ(i′),

T1(n(i)σ(i), n(j)σ(j), n(k)σ(k); n(i′)σ(i′), n(j′)σ(j′), n(k′)σ(k′)) = 0

for σ(i) + σ(j) + σ(k) 6= σ(i′) + σ(j′) + σ(k′),

T2(n(i)σ(i), n(j)σ(j), n(k)σ(k); n(i′)σ(i′), n(j′)σ(j′), n(k′)σ(k′)) = 0

for σ(i) + σ(j′) + σ(k′) 6= σ(j) + σ(k) + σ(i′).

(14)

In addition to the trace conditions (6), there are trace conditions correspond-

ing to the number of electrons with α spin:

r/2∑

n(i)=1

Γ1(n(i)α, n(i)α) = Nα, (15)

r/2∑

n(i),n(j)=1

Γ2(n(i)α, n(j)α;n(i)α, n(j)α) = Nα(Nα − 1), (16)

where N = Nα + Nβ (β = −α).

Finally there is a linear constraint for the given total spin S,

r/2∑

n(i),n(j)=1

(Γ2(n(i)α, n(j)α; n(i)α, n(j)α) + Γ2(n(i)β, n(j)β;n(i)β, n(j)β))

−2
r/2∑

n(i),n(j)=1

Γ2(n(i)α, n(j)β;n(i)α, n(j)β)

−4
r/2∑

n(i),n(j)=1

Γ2(n(i)α, n(j)β;n(j)α, n(i)β) + 3N = 4S(S + 1).

(17)



Large-scale semidefinite programs in electronic structure calculation 17

2.3. Previous numerical computations using the RDM method

Following the clear statement of the RDM approach and of the most important

N -representability conditions [5,20], the first significant computational results

came in the 1970s. Kijewski [28,29] applied the RDM method to doubly ionized

carbon (N = 4), C++, using a basis of 10 spin orbitals (r = 10). Garrod and

co-authors were the first ones to actually solve the SDP imposing the P , Q and

G conditions, by which they obtained very accurate results for atomic beryllium

(N = 4 and r = 10) [19,48,18]. Mihailović and Rosina also considered the RDM

method for nuclear physics [40], but reported rather poor accuracy.

This early work belongs firmly to semidefinite programming, although that

name was not yet in use. The analytical work [20] is focused on semidefinite

conditions (for fermion and also for boson systems), and the subsequent com-

putational methods would be recognized by anyone working in semidefinite pro-

gramming today. Rosina and Garrod [48] described two main algorithms to solve

the SDP. One successively added cutting planes into the linear programming

relaxation of the problem, and the other minimized the objective function incor-

porating a barrier function for the cone of positive semidefinite matrices!

Because of the high computational cost and the lack of progress on the N -

representability problem interest in the computational aspects of the RDM ap-

proach fell off during the 1980s, but it has been rekindled in recent years. Nakata

et al. [44] showed that the RDM method with the P , Q and G conditions pro-

vides ground state energies that compare very favorably to Hartree-Fock results

for a wide variety of small molecules (r up to 16). In subsequent work [42], they
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demonstrated that the method maintains its accuracy when molecular dissoci-

ation is modeled – a test that is failed by many of the traditional methods of

electronic structure calculation. In a previous paper [62] several of us confirmed

and extended the results of [44,42] for the accuracy of the RDM method with

P , Q and G conditions relative to the Hartree-Fock approximation. We fur-

ther showed that by adding two additional N -representability conditions, which

we called T1 and T2, one obtains for small molecular systems (r up to 20)

an accuracy that compares favorably not just with Hartree-Fock but with the

best standard methods of quantum chemistry. Although the cost of the RDM

method is still very high compared to traditional methods, Mazziotti [36,37]

recently announced results for considerably larger systems (r up to 36) for the

RDM approach imposing only the P , Q and G conditions.

In the present paper we discuss in detail only our chosen approach of optimiz-

ing the 2-RDM subject to semidefinite N -representability conditions (P ,Q,G,T1,T2),

without invoking 3-body or higher RDMs. We note here, however, a related ap-

proach being actively pursued that employs 2-body and higher reduced density

matrices. In this other approach, under the name of Density Equation (DE)

or Contracted Schrödinger Equation (CSE) [4,45,55,7,32,59,60], the primary

unknown is the 1-RDM or 2-RDM and the equations involve an approximate

reconstructed 3-RDM or 4-RDM. An excellent survey can be found in the edited

volume [3] that includes contributions by Coleman [6], Erdahl [15], Nakatsuji

[46], Valdemoro [56] and Mazziotti [33]. Applications of the DE/CSE approach

to quantum chemistry include [60,12]. In its original form the DE/CSE method
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does not impose the basic positivity conditions on the 2-RDM, but Erdahl and

Jin [14,15] and Mazziotti [38,34] set up and solve equations closely related to

the DE/CSE ones in which positivity conditions are imposed on the 2-RDM and

on higher-order reconstructed density matrices [35].

3. The SDP formulation of the RDM method

Let C, Ap (p = 1, 2, . . . , m) be given block-diagonal symmetric matrices with

prescribed block sizes, and c,ap ∈ Rs (p = 1, 2, . . . , m) be given s-dimensional

real vectors. We denote by Diag(a) a diagonal matrix with the elements of a

on its diagonal.

The primal SDP is defined as





max 〈C,X〉+ 〈Diag(c), Diag(x)〉

subject to 〈Ap,X〉+ 〈Diag(ap), Diag(x)〉 = bp, (p = 1, 2, . . . ,m)

X º O, x ∈ Rs,

(18)

and its dual




min bT y

subject to S =
m∑

p=1

Apyp −C º O,

m∑
p=1

Diag(ap)yp = Diag(c),

y ∈ Rm,

(19)

where (X, x) are the primal variables and (S,y) are the dual variables.
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Primal-dual interior-point methods and their variants are the most estab-

lished and efficient algorithms to solve general SDPs. Details on how these iter-

ative methods work can be found in [57,52,41].

In this section, we formulate the RDM method with the (P ,Q,G,T1,T2)

N -representability conditions as an SDP. Observe that the 1-RDM variational

variable Γ 1 and its corresponding Hamiltonian H1 is a two index matrix (see

(6)), but the 2-RDM variational variable Γ 2, the corresponding Hamiltonian

H2, as well as Q and G are four index matrices, and moreover, T1 and T2

are six index matrices. We map each pair i, j or triple i, j, k of indices to a

composite index for these matrices, resulting in symmetric matrices of order

r(r − 1)/2 × r(r − 1)/2 for Γ 2, H2 and Q, a symmetric matrix of order r(r −

1)(r − 2)/6× r(r − 1)(r − 2)/6 for T1, and a symmetric matrix of order r2(r −

1)/2×r2(r−1)/2 for T2. For example, the four-index element Γ2(i, j; i′, j′), with

1 ≤ i < j ≤ r, 1 ≤ i′ < j′ ≤ r, can be associated with the two-index element

Γ̃2(j − i + (2r − i)(i− 1)/2, j′ − i′ + (2r − i′)(i′ − 1)/2). We assume henceforth

that all matrices have their indices mapped to two indices, and we keep the same

notation for simplicity. Furthermore, due to the antisymmetry property of the

2-RDM Γ 2 and of the N -representability conditions Q, T1 and T2, and also due

to the spin symmetry, all these matrices reduce to block-diagonal matrices of

size specified in Table 1.

Now, let us define a linear transformation svec : Sn → Rn(n+1)/2 as

svec(U) = (U11,
√

2U12, U22,
√

2U13,
√

2U23, U33, . . . ,
√

2U1n, . . . , Unn)T , U ∈ Sn.
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To formulate the RDM method with the (P ,Q,G,T1,T2) conditions in (6) as

the dual SDP (19), define

y = (svec(Γ 1)T , svec(Γ 2)T )T ∈ Rm and b = (svec(H1)T , svec(H2)T )T ∈ Rm.

It is now relatively straightforward to express the N -representability conditions

(8) through (13) as the dual slack matrix variable S by defining it to have the

following diagonal blocks: Γ 1, I−Γ 1, Γ 2, Q, G, T1, T2 taking into account the

spin symmetry (14) and making suitable definitions for the matrices C, Ap (p =

1, 2, . . . ,m). The equalities in (6) and (7), and (15) through (17) will define the

vectors c, ap (p = 1, 2, . . . ,m).

The required number of floating point operations when solving these prob-

lems for instance using the parallel code SDPARA [58] are as follows. The com-

putational flops per iteration when using SDPARA (Section 4.3) can be esti-

mated as O(m2f2/q + m3/q + mn2
max + n3

max), where nmax is the size of the

largest block matrix, f is the maximum number of nonzero elements in each

data matrix Ap (p = 1, 2, . . . , m), and q is the number of used processors. In

our case, m = O(r4), nmax = O(r3) and f = O(r2), and therefore, the compu-

tational flops per iteration is O(r12/q), while the total memory usage becomes

O(m2) = O(r8).

The formulation of the RDM method as a dual SDP, as considered here,

has a clear advantage over the primal SDP formulation [44,34,42,36,37] as de-

tailed in [62]. When using the primal SDP formulation with the (P ,Q,G,T1,T2)

conditions, we have m = O(r6), nmax = O(r3) and f = O(1), and then, the
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computational flops per iterations becomes O(r18/q), while the total memory

usage becomes O(m2) = O(r12).

The formulation (19) proposed here is novel in the sense that it now includes

equality constraints that were previously absent [62]. The implications of these

two different formulations are discussed in Section 4.3.

4. Numerical results for the RDM method

First, we present the sizes of the SDPs which arise from this application, and

briefly analyze their sparsity. In Section 4.2, we solve small- and medium-scale

SDPs with discretization basis size r up to 18 using SeDuMi. The ground

state energies and dipole moments obtained by the RDM method imposing the

(P ,Q,G,T1,T2) conditions are compared with the values obtained by the tradi-

tional electronic structure methods from the specialized packages Gamess and

Gaussian 98. Section 4.3 gives similar results for large-scale SDPs with r up to

26 using the parallel code SDPARA. The SDP formulation is slightly changed

here and we discuss several issues regarding large-scale optimization. Finally, in

Section 4.4, we briefly comment on the limitations of alternative optimization

methods to solve these problems.

4.1. Sizes and sparsity of SDPs

Table 1 shows the typical size of the SDP relaxation problem (19) as a function

of the discretization basis size r, itemizing the sizes of block matrices for each of

the N -representability conditions.
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Table 1. Size of the SDP relaxation problem as a function of the discretization basis size r.

# constraints m in primal SDP (18) r
4 ( 3r3

16 − r2
4 + 9r

4 + 1)

N-representability conditions Size of block matrices

dimension of the free variable x r
2 ( r

2 + 1) + 5

Γ 1 º O r
2 , r

2

I − Γ 1 º O r
2 , r

2

P ≡ Γ 2 º O r2
4 , r

4 ( r
2 − 1), r

4 ( r
2 − 1)

Q º O r2
4 , r

4 ( r
2 − 1), r

4 ( r
2 − 1)

G º O r2
2 , r2

4 , r2
4

T1 º O r2
8 ( r

2 − 1), r2
8 ( r

2 − 1), r
12 ( r

2 − 1)( r
2 − 2), r

12 ( r
2 − 1)( r

2 − 2)

T2 º O r2
8 ( 3r

2 − 1), r2
8 ( 3r

2 − 1), r2
8 ( r

2 − 1), r2
8 ( r

2 − 1)

Observe that the number of equality constraints in the primal SDP (18)

grows as m ≈ 3r4/64, while the size of the largest block matrices corresponding

to the T2 condition grows as approximately 3r3/16, and they do not depend on

the number of electrons N of the system.

As one can observe from the N -representability conditions given in Sec-

tion 2.2 and the actual formulation (19) as an SDP, all data matrices for our prob-

lem have integral values, excepting the diagonal matrices Diag(c), Diag(ap) (p =

1, 2, . . . ,m) which have rational values, and the objective function vector b which

has real values. Also, if we have two different systems with a common discretiza-

tion basis size r, only the diagonal matrices and the objective function vector

differ, and the entries corresponding to the semidefinite conditions of the 1-RDM

Γ 1 and the (P ,Q,G,T1,T2) conditions will be exactly the same. This fact can
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eventually be explored to re-solve a new system with the same discretization

basis size r once we have the results from a previous one.

Figure 1 shows the number of nonzero elements of each data matrix. We

counted the nonzero elements of each data matrix (C,Diag(c)), (Ap, Diag(ap)) (p =

1, 2, . . . ,m) and sorted them in non-increasing order for r = 10 with m = 465,

and r = 26 with m = 20709. The maximum number of nonzero elements which

occurred for each case are 245 out of 76985 possible occurrences, and 3325 out

of 25151105, respectively, which correspond to the data matrix (C, Diag(c)).

After that, the data matrices (Ap,Diag(ap)) with the second most nonzero

elements correspond to the coefficients of the variables Γ 1 and Γ 2 in this order.

Therefore, each data matrix is extremely sparse.

A more interesting sparsity characterization of the problem can be observed

by analyzing the density rate of the dual slack matrix variable S =
∑m

p=1 Apyp−

C, which has 21 block matrices as itemized in Table 1, for a random nonzero

vector y ∈ Rm. From the definition and the dual SDP formulation (19) we used,

one can see that the block matrices corresponding to the 1-RDM characteriza-

tion, the P condition, and the Q condition are fully dense. In addition, the two

smallest block matrices of the G condition are fully dense, too. Figure 2 (left)

depicts the density of the other block matrices as a function of the discretization

basis size r. More specifically, this figure shows the density of the largest block

matrix of the G condition, and the block matrices corresponding to the T1 and

T2 conditions (see Table 1). The density rate of the two largest block matrices
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Fig. 1. Number of nonzero elements of each data matrix in the SDP for r = 10 with m = 465

(left) and r = 26 with m = 20709 (right).

of the T1 condition coincides with the two smallest block matrices of the T2

condition here.

A very positive aspect of the density rates is that for all the block matrices

corresponding to the T1 and T2 conditions, the density decreases as r increases.

In particular, the crucial block matrix corresponding to the two largest block ma-

trices of the T2 condition are the sparsest ones due to the product of Kronecker

deltas (13), although they are still rather dense: 19.3% for r = 26.
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Fig. 2. Density rates of the sparse block matrices as a function of the discretization basis size

r (left), and sparsity structure for the two largest block matrices of the T2 condition for r = 12

(right).

Figure 2 (right) shows the sparsity structure corresponding to the two largest

block matrices of the T2 condition from S for r = 12. These block matrices are

still very dense (37.7 %) and apparently do not have an obvious sparsity structure

which could be exploited.
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4.2. Numerical results for small- and medium-scale problems

We utilized SeDuMi 1.05 [50] for small- and medium-scale SDPs on a Pentium

Xeon 2.4GHz with 6GB of memory, and a level two cache of size 512KB. SDPT3

3.1 [54] is the only other software package that can solve SDPs with inequality

and equality constraints in the dual SDP (19), but our experiments showed that

SeDuMi provides much more accurate solutions.

Table 2 shows the actual sizes, the typical time and memory usage of the

SDPs we picked for each discretization basis size r. We only listed the sizes

of the largest block matrices among the 21 block matrices and one diagonal

matrix. Here, 306x2 for instance means that there are two block matrices of

sizes 306× 306 each.

Table 3 shows our main result, the ground state energies calculated by the

RDM method, imposing the (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), and (P ,Q,G,T1,T2)

conditions (columns 7–10) to verify numerically the effectiveness of each N -

representability condition. For all the tables that follow, “r” is the discretization

basis size, “basis” is the spin orbital (one-electron) basis, “state” is the equilib-

rium state of the system, “N(Nα)” is the electron (α spin electron) number, and

“2S + 1” is the spin multiplicity. For non-atomic systems, it is also necessary to

add the repulsion energies to the optimal values of SDPs to obtain the ground

state energies. These results are compared with the mainstream electronic struc-

ture methods: coupled cluster singles and doubles with perturbational treatment

of triples (CCSD(T)) (from Gaussian 98 [16] – column 11), singly and doubly

substituted configuration interaction (SDCI) (from Gamess [49] – column 12),
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Table 2. Sizes, required time and memory to solve the SDPs (imposing the (P ,Q,G,T1,T2)

conditions) as a function of the discretization basis size r for small- and medium-scale problems

using SeDuMi.

Basis size conditions # constraints Sizes of the largest Time Memory

r m block matrices (GB)

P ,Q,G 465 50x1,25x4,10x4,5x4 11s 0.0

10 P ,Q,G,T1 465 50x3,25x4,10x6,5x4 10s 0.0

P ,Q,G,T1,T2 465 175x2,50x5,25x4,10x6 86s 0.1

P ,Q,G 948 72x1,36x4,15x4,6x4 2.3min 0.1

12 P ,Q,G,T1 948 90x2,72x1,36x4,20x2 2.8min 0.1

P ,Q,G,T1,T2 948 306x2,90x4,72x1,36x4 17min 0.1

P ,Q,G 1743 98x1,49x4,21x4,7x4 13min 0.1

14 P ,Q,G,T1 1743 147x2,98x1,49x4,35x2 14min 0.1

P ,Q,G,T1,T2 1743 490x2,147x4,98x1,49x4 1.4h 0.2

P ,Q,G 2964 128x1,64x4,28x4,8x4 41min 0.3

16 P ,Q,G,T1 2964 224x2,128x1,64x4,56x2 1.4h 0.3

P ,Q,G,T1,T2 2964 736x2,224x4,128x1,64x4 6.4h 0.4

P ,Q,G 4743 162x1,81x4,36x4,9x4 1.9h 0.6

18 P ,Q,G,T1 4743 324x2,162x1,84x2,81x4 2.7h 0.7

P ,Q,G,T1,T2 4743 1053x2,324x4,162x1,84x2 12h 1.0

and Hartree-Fock (HF) (from Gamess – column 13). The standard for these

comparisons is the Full Configuration Interaction method (FCI) (from Gamess

– column 14) which essentially consists in computing the minimum eigenvalue of

a symmetric matrix with size O(r!/N !(r−N)!). All of the energies are given as

a difference between them and the FCI values. Also, in all the tables that follow,

the actual discretization basis is from [10,11,23,24,63], and the experimental
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geometries for these systems are from [21,22,25]. In all calculations using Gaus-

sian 98 and Gamess, we unfroze the core orbitals which are frozen by default.

The entry “F/C” means fail to converge.

Table 3. The ground state energies (in difference from that of FCI) calculated by the

RDM method adding the (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), and (P ,Q,G,T1,T2) conditions

(columns 7–10), and those obtained by CCSD(T), SDCI, and HF (columns 11–13) from Gamess

and Gaussian 98. The last column shows the FCI results. The energy and the energy differences

are in Hartree (= 4.3598× 10−18 Joules). SDPs solved by SeDuMi.

r System Basis State N(Nα) 2S + 1 ∆EP QG ∆EP QGT1 ∆EP QGT2 ∆EP QGT1T2 ∆ECCSD(T) ∆ESDCI ∆EHF EFCI

10 Li STO-6G 2S 3(2) 2 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 −0.0000 +0.0003 −7.4002

10 Be STO-6G 1S 4(2) 1 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0527 −14.5561

12 H3 double-ζ 2A′1 3(2) 2 −0.0007 −0.0005 −0.0000 −0.0000 F/C †+0.0001 +0.0314 −1.4861

12 BeH+ STO-6G 1Σ+ 4(2) 1 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0204 −14.8433

14 NH−2 STO-6G 1A1 10(5) 1 −0.0020 −0.0013 −0.0000 −0.0000 +0.0000 +0.0007 +0.0454 −55.1607

14 FH+
2 STO-6G 1A1 10(5) 1 −0.0011 −0.0005 −0.0000 −0.0000 +0.0001 +0.0006 +0.0416 −99.8294

16 CH+
3 STO-6G 1E′ 8(4) 1 −0.0135 −0.0038 −0.0002 −0.0002 +0.0002 +0.0016 +0.0596 −39.2147

16 CH3 STO-6G 2A′′2 9(5) 2 −0.0105 −0.0018 −0.0001 −0.0001 F/C +0.0016 +0.0631 −39.5178

16 NH+
3 STO-6G 2A′′2 9(5) 2 −0.0098 −0.0018 −0.0002 −0.0002 F/C +0.0015 +0.0618 −55.7924

18 Be split-valence 1S 4(2) 1 −0.0001 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0447 −14.6156

18 CH4 STO-6G 1A1 10(5) 1 −0.0195 −0.0041 −0.0002 −0.0002 +0.0001 +0.0027 +0.0802 −40.1906

18 NH+
4 STO-6G 1A1 10(5) 1 −0.0170 −0.0041 −0.0002 −0.0002 +0.0001 +0.0028 +0.0829 −56.4832

18 Na STO-6G 2S 11(6) 2 −0.0010 −0.0004 −0.0000 −0.0000 −0.0001 +0.0014 +0.0430 −161.0770

† from Gaussian 98 since Gamess did not converge, “F/C” fail to converge.

The RDM method with the (P ,Q,G) conditions gives better results than the

classic HF. With the (P ,Q,G,T1) conditions we get improvements, but impos-

ing the (P ,Q,G,T1,T2) conditions, the results are clearly better than the best

traditional electronic structure method CCSD(T) (from Gaussian 98). One of

the great advantages of the RDM method compared to the traditional electronic

structure methods is that it is more numerically robust in the sense that the
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SDPs can be solved without tuning or sensitive parameter setting required by

the traditional electronic structure methods. We are mostly interested in solving

highly-correlated systems, and CCSD(T) is frequently used for such systems.

However, CCSD(T) and its family of methods have severe limitations for such

systems and may not reflect a physical situation, for example, due to the spin

contaminations. CCSD(T) solves a nonlinear eigenvalue problem so that there

are systems which are hard to solve or do not converge (H3, CH3, NH+
3 in Ta-

bles 3 and 6), or due to its non-variational nature, the energy can get lower than

the FCI energy (Na, LiOH in Tables 3 and 6). Unfortunately, the RDM method

is not competitive in terms of time since heuristic based electronic structure

methods provide results in a few seconds.

The RDM method with (P ,Q,G,T1,T2) conditions provides a more reliable

approximation of the ground state energy than using only the (P ,Q,G) conditions

if we pay a price for the computational time and memory as shown in Table 2.

However their complexity in terms of floating point operations per iteration (of

the interior-point method) and total memory usage are the same: O(r12) and

O(r8), respectively (see Section 3).

It is interesting to comment here that the RDM method, through an SDP

relaxation, can always derive an extremely good lower bound for the ground

state energy in polynomial time in r, while the targeting value from the FCI

is only computable in factorial time in N and in a fixed discretization basis r.

At the same time, though, it is quite impressive that some electronic structure
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methods like CCSD(T) can often provide comparably good values in a much

shorter time.

Observe from Table 3 that we usually require at least 7 digits of accuracy

for the optimal value of the SDP for systems with less than −100.0 Hartrees

of energy. This means that, adding to the difficulty of solving large-scale SDPs,

we need highly precise optimal values and solutions. This particular requirement

apparently excludes the possibility of using methods such as the bundle method,

Krylov iterative methods or nonlinear formulations (see refs. in [57,52,53,2]).

The dipole moment 〈µ̂〉 is defined as the norm of (〈µ̂x〉, 〈µ̂y〉, 〈µ̂z〉), i.e.,

〈µ̂〉 =
√
〈µ̂x〉2 + 〈µ̂y〉2 + 〈µ̂z〉2,

where

〈µ̂x〉 = 〈µx, Γ 1〉,

[µx]ij =
∫

ψi(z)xψj(z)dz, (i, j = 1, 2, . . . , r)

and ψi (i = 1, 2, . . . , r) are the basis function for the discretization. 〈µ̂y〉 and

〈µ̂z〉 are also defined in a similar way.

In Table 4, we show (only) the nonzero dipole moments 〈µ̂〉 of H3, BeH+,

NH−2 , and FH−2 in Debye. H3 is a regular triangle shaped molecule, whose dipole

moment should be 0. Surprisingly, the RDM method reproduces this, while tra-

ditional electronic structure methods calculated nonzero dipole moments. The

H3 system has many local minima, and HF gets trapped at them due to the

spatial symmetry, as well as SDCI and FCI which use HF as a reference. In con-

trast, the RDM method computes the global minimum. In general, the dipole
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Table 4. The (nonzero) dipole moments in Debye (= 3.356× 10−30 Coulomb meters) calcu-

lated by the RDM method adding the (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), and (P ,Q,G,T1,T2)

conditions (columns 7–10), and those obtained by SDCI, HF and FCI (columns 11–13) from

Gamess. SDPs solved by SeDuMi.

r System Basis State N(Nα) 2S + 1 DP QG DP QGT1 DP QGT2 DP QGT1T2 DSDCI DHF DFCI

12 H3 double-ζ 2A′1 3(2) 2 0.000000 0.000000 0.000000 0.000000 †0.8908 †0.9211 0.859481

12 BeH+STO-6G 1Σ+ 4(2) 1 3.730358 3.730202 3.729455 3.729455 3.729713 3.979810 3.729456

14 NH−2 STO-6G 1A1 10(5) 1 1.179561 1.173888 1.178982 1.178952 1.186210 1.190041 1.178952

14 FH+
2 STO-6G 1A1 10(5) 1 2.296445 2.299526 2.303632 2.303690 2.295315 2.465680 2.303915

† from Gaussian 98 instead, since Gamess calculated a higher energy.

moments from the RDM method with (P ,Q,G) conditions are better than from

HF, and worse than from SDCI. But with (P ,Q,G,T1,T2) conditions, they al-

most reproduce the FCI results. The dipole moment results for NH−2 have a

noteworthy feature. When more conditions are added to constrain the varia-

tional space, then the result for the energy must become better and one expects

that normally the result for the dipole moment will become better at the same

time. However, when the T1 condition was added to the (P ,Q,G) conditions, the

dipole moment result for NH−2 became worse. This suggests that for that system

the (P ,Q,G) dipole result was in some sense accidentally very good. Summing

up, the RDM with (P ,Q,G,T1,T2) conditions reproduces good dipole moments

and it is a stable and a robust method even when traditional electronic structure

methods fail to work.

Finally, the error measures for the approximate optimal solution (X̂, x̂, Ŝ, ŷ)

of the SDPs are as follows:
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(I) duality gap ≡ bT ŷ − 〈C, X̂〉 − 〈Diag(c),Diag(x̂)〉,

(II) primal feasibility error ≡ max
p=1,2,...,m

|〈Ap, X̂〉+ 〈Diag(ap), Diag(x̂)〉− bp|,

(III) dual feasibility error≡ max

{
max

i,j=1,2,...,n
|[Ŝ −

m∑
p=1

Apŷp + C]ij |, max
i=1,2,...,s

|[
m∑

p=1

apyp − c]i|
}

,

(IV) minimum eigenvalue of X̂,

(V) minimum eigenvalue of Ŝ.

The largest errors obtained for the instances solved in this section, not nec-

essarily for the same problem, are (I) 6.86× 10−7, (II) 2.16× 10−7, (III) 0, (IV)

1.93×10−9, and (V) 3.51×10−9. Since they are small values, they guarantee that

we are very close to the optimal solution (see [57,52,41] for optimality criteria).

Basically, there are two reasons we could not solve larger SDPs by SeDuMi.

First, lack of memory caused by the use of MATLAB. Second, the computational

time becomes very large for a serial code. Therefore, we solved large-scale SDPs

by the parallel code SDPARA [58] using high performance computers in the next

subsection.

4.3. Numerical results for large-scale problems

SDPARA [58] is a C++ open source parallel code for solving general SDPs un-

der GNU General Public License. It is an implementation of the primal-dual

predictor-corrector infeasible interior-point method. The main ways that SD-

PARA benefits from parallel computation are the following two routines. In the

framework of primal-dual interior-point methods for general SDPs, the most

computationally intense routines involve the construction and the solution of

a linear equation whose coefficient matrix is known as the Schur complement
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matrix (SCM). A close look at this matrix [58] reveals that each element can be

evaluated on a different processor, independently from the others, if each of them

stores the input data matrices Ap (p = 1, 2, . . . ,m) and the variable matrices X

and S in their own memory space. This characteristic is well suited for parallel

computation. In addition to the evaluation of the SCM, its parallel Cholesky

factorization can be done efficiently by a routine provided by ScaLAPACK [1].

We installed SDPARA on two IBM RS/6000 SPs, seaborg (16 × 375MHz

Power3+ with level two cache of size 8MB, and a maximum of 64GB of memory

per Nighthawk node) at the National Energy Research Scientific Computing

Center (NERSC), and eagle (4 × 375MHz Power3-II with level two cache of

size 8MB, and 2GB of memory per Winterhawk-II thin node) at Oak Ridge

National Laboratory. We also installed SDPARA on an IBM pSeries 690, cheetah

(32 × 1.3GHz Power4 with level two cache of size 1.5MB per chip, level three

cache of size 32MB, and maximum of 128GB memory per Regatta node) at Oak

Ridge National Laboratory. We chose to report the time and the total memory

usage for seaborg since we performed most of the computation there.

SDPARA was compiled with IBM C++ using the 64-bit addressing option

which allows handling more than 2GB of data. We also made two modifications

to SDPARA 0.90 [58], which limited the size of SDPs that could be solved to

r = 20 with m = 7230 and nmax = 1450 [62]. First, a check point was intro-

duced, permitting a re-start of SDPARA after a certain number of iterations.

This was due to a technical restriction on the running time of twelve hours

at these multiple-user facilities. Second, the memory storage was changed. SD-
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PARA 0.90 keeps duplicate copies of three type of matrices: the input data

matrices C, Ap (p = 1, 2, . . . , m), the variable matrices X and S, and a consid-

erable number of auxiliary matrices such as X−1, S−1, various matrix products,

and the search direction at each processor. See [58] for details. Storing the input

data matrices and the variable matrices at each processor is essential for con-

structing the SCM elements by parallel processing. The advantage of also storing

the auxiliary matrices at each processor is that this reduces communication time,

but the disadvantage is the excessive use of local memory. We modified the code

to just keep a single copy of the auxiliary matrices at a specific processor. Before

evaluating the SCM elements at each iteration of the interior-point method, we

transmit copies of only the updated variable matrices from the specific processor

to all other processors. We will call this version of the code SDPARA-SMP.

Table 5 shows the great reduction in total memory usage that resulted from

this change, where the last column indicates the number of processors used.

Furthermore, a reduction in the running time was also achieved, especially for

problems with (P ,Q,G) and (P ,Q,G,T1) conditions, by making a minor im-

provement in handling zero block matrices. Fortunately, the computational time

was not increased by these modifications, mostly because most of communica-

tions were done within the node, which shares a common memory space between

several processors, and not between different nodes.

Another limitation in using SDPARA-SMP is that it does not handle equal-

ity constraints in the dual SDP (19) as SeDuMi does. Therefore, we introduced

a small perturbation into the formulation which is equivalent to a further re-
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Table 5. Sizes, required time, memory, and number of processors to solve the SDP (imposing

the (P ,Q,G,T1,T2) conditions) as a function of the discretization basis size r using SDPARA

0.90 and SDPARA-SMP.

SDPARA 0.90 SDPARA-SMP

Basis size conditions # constraints Sizes of the largest Time Memory Time Memory # proc.

r m block matrices (GB) (GB)

P ,Q,G 465 50x1,25x4,10x4,5x4 5.8s 0.2 5.3s 0.2 16

10 P ,Q,G,T1 465 50x3,25x4,10x6,5x4 9.7s 0.2 8.0s 0.2 16

P ,Q,G,T1,T2 465 175x2,50x5,25x4,10x6 37s 0.5 36s 0.2 16

P ,Q,G 948 72x1,36x4,15x4,6x4 16s 0.3 13s 0.2 16

12 P ,Q,G,T1 948 90x2,72x1,36x4,20x2 26s 0.3 21s 0.2 16

P ,Q,G,T1,T2 948 306x2,90x4,72x1,36x4 3.2min 1.1 3.1min 0.4 16

P ,Q,G 1743 98x1,49x4,21x4,7x4 45s 0.4 37s 0.3 16

14 P ,Q,G,T1 1743 147x2,98x1,49x4,35x2 1.7min 0.5 1.3min 0.4 16

P ,Q,G,T1,T2 1743 490x2,147x4,98x1,49x4 15min 2.6 15min 0.8 16

P ,Q,G 2964 128x1,64x4,28x4,8x4 2.1min 0.6 1.7min 0.5 16

16 P ,Q,G,T1 2964 224x2,128x1,64x4,56x2 4.3min 1.0 3.6min 0.6 16

P ,Q,G,T1,T2 2964 736x2,224x4,128x1,64x4 55min 5.6 54min 1.5 16

P ,Q,G 4743 162x1,81x4,36x4,9x4 6.9min 1.0 5.7min 0.9 16

18 P ,Q,G,T1 4743 324x2,162x1,84x2,81x4 15min 1.9 12min 1.1 16

P ,Q,G,T1,T2 4743 1053x2,324x4,162x1,84x2 3.3h 11.2 3.3h 2.9 16

P ,Q,G 7230 200x1,100x4,45x4,10x4 19min 1.8 16min 1.6 16

20 P ,Q,G,T1 7230 450x2,200x1,120x2,100x4 37min 3.5 34min 2.0 16

P ,Q,G,T1,T2 7230 1450x2,450x4,200x1,120x2 14h 27.2 13h 5.7 16

P ,Q,G 10593 242x1,121x4,55x4,11x4 1.3h 3.3 56min 2.9 16

22 P ,Q,G,T1 10593 605x2,242x1,165x2,121x4 2.3h 6.3 2.0h 3.6 16

P ,Q,G,T1,T2 10593 1936x2,605x4,242x1,165x2 * 48.4 2.0days 10.2 16

P ,Q,G 15018 288x1,144x4,66x4,12x4 3.2h 5.8 2.3h 5.3 16

24 P ,Q,G,T1 15018 792x2,288x1,220x2,144x4 7.5h 10.9 6.9h 6.4 16

P ,Q,G,T1,T2 15018 2520x2,792x4,288x1,220x2 * * 3.3days 26.3 32

P ,Q,G 20709 338x1,169x4,78x4,13x4 8.3h 10.2 6.2h 9.3 16

26 P ,Q,G,T1 20709 1014x2,338x1,286x2,169x4 21h 18.5 21h 11.2 16

P ,Q,G,T1,T2 20709 3211x2,1014x4,338x1,286x2 * * 5.4days 73.9 64

“*” memory was exceeded or the running time would have been excessive.

laxation of the problem (19) [62]. Equalities like 〈Γ 1, I〉 = N were all replaced

by −ε ≤ 〈Γ 1, I〉 −N , and 〈Γ 1, I〉 −N ≤ ε, where ε was fixed to 10−5 for SDP
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relaxations with (P ,Q,G,T2) or (P ,Q,G,T1,T2) conditions and r ≥ 16, and 10−7

otherwise.

Table 6. The ground state energies (in difference from that of the FCI) calculated by the

RDM method adding the (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), and (P ,Q,G,T1,T2) conditions

(columns 7–10), and those obtained by CCSD(T), SDCI, and HF (columns 11–13) from Gamess

and Gaussian 98. The last column shows the FCI results. The energy and the energy differences

are in Hartree (= 4.3598× 10−18 Joules). SDPs solved by SDPARA-SMP.

r System Basis State N(Nα) 2S + 1 ∆EP QG ∆EP QGT1 ∆EP QGT2 ∆EP QGT1T2 ∆ECCSD(T) ∆ESDCI ∆EHF EFCI

10 Li STO-6G 2S 3(2) 2 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 −0.0000 +0.0003 −7.4002

10 Be STO-6G 1S 4(2) 1 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0527 −14.5561

12 H3 double-ζ 2A′1 3(2) 2 −0.0008 −0.0006 −0.0000 −0.0000 F/C †+0.0001 +0.0314 −1.4861

12 BeH+ STO-6G 1Σ+ 4(2) 1 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0204 −14.8433

14 NH−2 STO-6G 1A1 10(5) 1 −0.0020 −0.0013 −0.0000 −0.0000 +0.0000 +0.0007 +0.0454 −55.1607

14 FH+
2 STO-6G 1A1 10(5) 1 −0.0011 −0.0005 −0.0000 −0.0000 +0.0001 +0.0006 +0.0416 −99.8294

16 CH+
3 STO-6G 1E′ 8(4) 1 −0.0135 −0.0038 −0.0003 −0.0003 +0.0002 +0.0016 +0.0596 −39.2147

16 CH3 STO-6G 2A′′2 9(5) 2 −0.0106 −0.0018 −0.0006 −0.0006 F/C +0.0016 +0.0631 −39.5178

16 NH+
3 STO-6G 2A′′2 9(5) 2 −0.0098 −0.0018 −0.0005 −0.0005 F/C +0.0015 +0.0618 −55.7924

18 Be split-valence 1S 4(2) 1 −0.0001 −0.0001 −0.0001 −0.0000 +0.0000 +0.0000 +0.0447 −14.6156

18 CH4 STO-6G 1A1 10(5) 1 −0.0195 −0.0041 −0.0004 −0.0004 +0.0001 +0.0027 +0.0802 −40.1906

18 NH+
4 STO-6G 1A1 10(5) 1 −0.0171 −0.0041 −0.0004 −0.0004 +0.0001 +0.0028 +0.0829 −56.4832

18 Na STO-6G 2S 11(6) 2 −0.0010 −0.0005 −0.0001 −0.0001 −0.0001 +0.0014 +0.0430 −161.0770

20 C double-ζ 3P 6(4) 3 −0.0039 −0.0031 −0.0010 −0.0009 +0.0002 +0.0011 +0.0520 −37.7365

20 O double-ζ 1D 8(4) 1 −0.0187 −0.0140 −0.0021 −0.0019 +0.0028 +0.0144 +0.1088 −74.7873

20 Ne double-ζ 1S 10(5) 1 −0.0067 −0.0026 −0.0010 −0.0007 −0.0000 +0.0042 +0.1165 −128.6388

22 HLi2 STO-6G 2A1 7(4) 2 −0.0010 −0.0007 −0.0002 −0.0002 +0.0002 +0.0005 +0.0235 −15.4055

22 LiOH STO-6G 1Σ+ 12(6) 1 −0.0086 −0.0040 −0.0007 −0.0007 −0.0005 +0.0109 +0.0940 −82.6484

22 HN+
2 STO-6G 1Σ+ 14(7) 1 −0.0259 −0.0119 −0.0023 −0.0023 +0.0014 +0.0144 +0.1712 −108.9307

22 HNO STO-6G 1A′ 16(8) 1 −0.0190 −0.0136 −0.0010 −0.0010 +0.0012 +0.0093 +0.1499 −129.4479

24 LiH double-ζ 1Σ+ 4(2) 1 −0.0003 −0.0002 −0.0001 — +0.0000 +0.0002 +0.0276 −8.0087

24 BH double-ζ 1Σ+ 6(3) 1 −0.0065 −0.0047 −0.0006 — +0.0003 +0.0034 +0.0740 −25.1877

24 HF double-ζ 1Σ+ 10(5) 1 −0.0116 −0.0058 −0.0003 −0.0003 +0.0003 +0.0134 +0.1383 −100.1603

26 CH3N STO-6G 1A1 16(8) 1 −0.0385 −0.0164 −0.0013 −0.0013 +0.0007 +0.0113 +0.1574 −93.8845

† from Gaussian 98 since Gamess did not converge, “F/C” fail to converge, “—” not computed.
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Table 6 gives the ground state energy for all systems we solved using SDPARA-

SMP, including the small- and medium-scale ones we solved previously using Se-

DuMi. The basic conclusions about the quality of the results of the RDM method

compared to the traditional electronic structure methods are the same as previ-

ously stated. A comparison between this table and Table 3 shows that the small

perturbations we included in the formulation can lower the energy in some cases

as much as 0.0005 Hartrees (CH3 with (P ,Q,G,T1,T2) conditions), which is still

acceptable but not desirable. On the other hand, this means that the actual en-

ergies obtained by the SDPs especially imposing the (P ,Q,G,T1,T2) conditions

with equality constraints should be slightly higher than shown in Table 6, and

they still must give comparably better results than CCSD(T).

In particular, we believe that we solved the largest SDP found in the literature

so far (m = 20709, largest block matrix nmax = 3211) with this density and

accuracy. Larger problems could not be solved because we had limited access to

these high performance computers.

Table 7 shows the nonzero dipole moments for the corresponding molecules.

We derive the same conclusions as in Section 4.2. Here, NH−2 and HNO with

(P ,Q,G,T1) conditions and LiOH with (P ,Q,G,T2) conditions contradict our

expectation that adding more N -representability conditions into the variational

space, we get better approximations for the dipole moments (from FCI).

In Table 8, we show the occupation number calculated by the RDM method

with (P ,Q,G), (P ,Q,G,T1), and (P ,Q,G,T1,T2) conditions and compared to

HF’s and FCI’s ones for CH3 and CH4. The occupation number is defined by the
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Table 7. The (nonzero) dipole moments in Debye (= 3.3356× 10−30 Coulomb meters) calcu-

lated by the RDM method adding the (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), and (P ,Q,G,T1,T2)

conditions (columns 7–10), and those obtained by SDCI, HF and FCI (columns 11–13) from

Gamess. SDPs solved by SDPARA-SMP.

r System Basis State N(Nα) 2S + 1 DP QG DP QGT1 DP QGT2 DP QGT1T2 DSDCI DHF DFCI

12 H3 double-ζ 2A′1 3(2) 2 0.000000 0.000000 0.000000 0.000000 †0.8908 †0.9211 0.859481

12 BeH+ STO-6G 1Σ+ 4(2) 1 3.730328 3.730157 3.729477 3.729459 3.729713 3.979810 3.729456

14 NH−2 STO-6G 1A1 10(5) 1 1.179587 1.173864 1.178975 1.178942 1.186210 1.190041 1.178952

14 FH+
2 STO-6G 1A1 10(5) 1 2.296407 2.299562 2.303633 2.303682 2.295315 2.465680 2.303915

22 HLi2 STO-6G 2A1 7(4) 2 0.561751 0.570898 0.574802 0.574843 0.582754 0.529818 0.575991

22 LiOH STO-6G 1Σ+ 12(6) 1 0.214317 0.224562 0.318120 0.318062 0.277222 1.994491 0.330520

22 HN+
2 STO-6G 1Σ+ 14(7) 1 3.086371 3.130303 3.168295 3.168292 3.290407 3.161953 3.170068

22 HNO STO-6G 1A′ 16(8) 1 1.212286 1.211767 1.249927 1.250139 1.286756 1.467859 1.254617

24 LiH double-ζ 1Σ+ 4(2) 1 5.537220 5.541333 5.547012 — 5.572690 5.937220 5.548159

24 BH double-ζ 1Σ+ 6(3) 1 1.558380 1.565279 1.593296 — 1.662481 2.030271 1.594179

24 HF double-ζ 1Σ+ 10(5) 1 2.255452 2.260646 2.281847 2.281844 2.283955 2.378904 2.282259

26 CH3N STO-6G 1A1 16(8) 1 1.625011 1.662642 1.701920 1.701928 1.715631 1.871751 1.706174

† from Gaussian 98 instead, since Gamess calculated a higher energy, “—” not computed.

eigenvalue of the density matrix D1(i, i′):

D1(i, i′) =
∑

σ=α,β

Γ 1(iσ, i′σ), (i, i′ = 1, 2, . . . , r/2) (20)

where σ is the spin variable. We chose CH3 because it is an open shell systems,

and CH4 because unusually bad results were obtained by previous investigations

[42,43]. The occupation number of HF is always 0, 1 or 2. Apparently, the RDM

method overestimates the occupation numbers when the FCI’s ones are close to

zero, and underestimates otherwise. Adding the T1 and T2 conditions to the

(P ,Q,G) conditions, we recover the FCI’s occupation numbers. Observe that the

core orbitals (close to integral values) are almost inactive and unaffected by the

approximation levels.
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Table 8. Occupation number for CH3 and CH4 computed from the RDM method with

(P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T1,T2) conditions compared to those from HF and FCI. SDPs

solved by SDPARA-SMP.

r System Basis State N(Nα) 2S + 1 PQG PQGT1 PQGT1T2 HF FCI

16 CH3 STO-6G 2A′′2 9(5) 2 0.026261 0.021318 0.020702 0 0.0205

0.026261 0.021318 0.020702 0 0.0205

0.028585 0.028945 0.028186 0 0.0279

0.999989 1.000492 1.000042 1 1.0000

1.972254 1.975063 1.976044 2 1.9763

1.972254 1.975063 1.976044 2 1.9763

1.974420 1.977839 1.978330 2 1.9784

1.999976 1.999963 1.999959 2 2.0000

18 CH4 STO-6G 1A1 10(5) 1 0.025979 0.021372 0.020305 0 0.0201

0.027267 0.023940 0.022851 0 0.0227

0.027267 0.023941 0.022852 0 0.0227

0.027267 0.023941 0.022852 0 0.0227

1.972743 1.974314 1.975499 2 1.9757

1.972743 1.974314 1.975499 2 1.9757

1.972743 1.974315 1.975499 2 1.9757

1.974026 1.983911 1.984701 2 1.9848

1.999963 1.999952 1.999952 2 2.0000

Finally, we give the error measures for the approximate optimal solution

(X̂, Ŝ, ŷ) for the SDPs. Now that we do not have the equality constraints in the

dual SDP (19), the errors (I), (II) and (III) can be restated as follows:

(I’) duality gap ≡ bT ŷ − 〈C, X̂〉,

(II’) primal feasibility error ≡ max
p=1,2,...,m

|〈Ap, X̂〉 − bp|,

(III’) dual feasibility error ≡ max
i,j=1,2,...,n

|[Ŝ −
m∑

p=1

Apŷp + C]ij |.



Large-scale semidefinite programs in electronic structure calculation 41

The largest errors obtained for the instances solved in this section, not

necessary for the same problem, are (I’) 1.73 × 10−5, (II’) 1.28 × 10−6, (III’)

4.48× 10−13, (IV) 2.27× 10−10, and (V) 3.85× 10−12.

4.4. Considerations on alternative methods

The small perturbations we introduced into the formulation, splitting one equal-

ity constraint into two inequality constraints, as explained at Section 4.3, are

not desirable. Instead, we tried to eliminate some variables (at y in (19)) using

these equalities as equations, producing an equivalent SDP with fewer variables

and no equality constraints. Preliminary numerical experiments demonstrated,

however, that these linear transformations introduce undesirable numerical prop-

erties into the problem and SDPARA was not able to get enough accuracy [61,

Section 5.3.3]. Therefore, incorporation of equality constraints as a standard

option, as done in SeDuMi and SDPT3, certainly is a desirable addition to SD-

PARA’s capability.

Alternative methods such as discussed by [41] may be worth considering, but

we have felt up until now that they are not able to deliver the accuracy that

we require for this application. This is certainly our experience with the spec-

tral bundle method; early experiments reported in [47] indicated that is very

difficult to obtain satisfactory accuracy. We also experimented with the new

code SDPLR 1.01 [2] which combines an augmented Lagrangian technique with

limited-memory BFGS. However, we even could not solve the smallest problems

to the accuracy that we need since the number of internal limited-memory BFGS
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iterations increases prohibitively as the optimal solution is approached. Surpris-

ingly, Mazziotti [36,37] very recently announced some results for larger systems

(r = 36, with m = 468684 and nmax = 648, using only the (P ,Q,G) conditions),

for which he solved the SDPs by a method similar to that used in SDPLR.

The use of the conjugate gradient method to solve the SCM system or other

iterative methods to solve the related indefinite “augmented system” (see [53])

could be a further alternative, but the extreme ill-conditioning of these linear

systems makes it very difficult to obtain the accuracy that we need. It is possible

that eliminating some of the degeneracies in the system could lead to improved

performance of these methods.

5. Conclusion and further directions

The RDM method, which provides a lower bound for the ground state energy of

a many-electron system subject to a given external potential, can be formulated

as an SDP problem through the known (P ,Q,G,T1,T2) N -representability con-

ditions. The new formulation presented here as a dual SDP (19) seems the most

suitable one for the state-of-art software to solve general SDPs. The numerical

experiments carried out since 2001, including the ones reported here, demon-

strate for the first time the quality, the strength, and the actual effectiveness of

the N -representability conditions known for more than forty years in electronic

structure calculation. In fact, they demonstrate that the RDM method with the

(P ,Q,G,T1,T2) conditions can give better ground state energies than the current

electronic structure methods, although it is not competitive in terms of time at
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least at present. It also has the advantage of robust convergence which is not

the case for the traditional electronic structure methods. In addition, our results

for the dipole moment confirm that the RDM itself is computed with excellent

accuracy compared with traditional wavefunction-based methods.

We also report results for the largest problems in literature using the (P ,Q,G,T1,T2)

conditions with discretization basis size r = 26 (m = 20709, nmax = 3211), while

the previous ones were r = 20 (m = 7230, nmax = 1450) [62]. The SDPs which

arise from this application can be arbitrarily large, and may require special tech-

niques for their solution. Parallel computation and large memory management

are indispensable. In fact, it seems that we will always face a dual hardware lim-

itation in solving large-scale problems: time and memory, both of which depend

on the number of available processors and physical memory.

The recent series of numerical results for this application opens up a whole

research field which was once very active, and at the same time raises many

questions for future investigations.

Some fundamental questions for physicists are the search for new N -represen-

tability conditions and understanding the role of the known conditions. Chemists

might be interested in understanding why the same (P ,Q,G,T1,T2) conditions

provide very good approximations for some systems and not for others, and also

in studying many desirable properties obtainable by this unique method, like

dissociation processes of highly-correlated systems having multiple bonds and

high spin states, which are difficult to calculate. And finally, optimizers have

the challenge of solving larger SDPs with m > 20000 and n > 3000 with high
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accuracy. However, it is certain that novel algorithms and exploration of new

physical properties of the N -representability conditions are necessary in order

for the RDM method becomes practical.

As a final observation, we recognize that there is a need to provide physi-

cists/chemists easy-to-use black box SDP solvers based on their own terminology.
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30. Löwdin, P.-O.: Quantum theory of many-particle systems. I. Physical interpretations by

means of density matrices, natural spin-orbitals, and convergence problems in the method

of configurational iteration. Phys. Rev. 97, 1474–1489 (1955)

31. Mayer, J.E.: Electron correlation. Phys. Rev. 100, 1579–1586 (1955)

32. Mazziotti, D.A.: Contracted Schrödinger equation: Determining quantum energies and

two-particle density matrices without wave functions. Phys. Rev. A57 4219–4234 (1998)



Large-scale semidefinite programs in electronic structure calculation 47

33. Mazziotti, D.A.: Cumulants and the contracted Schrödinger equation. In: [3], pp. 139–163

34. Mazziotti, D.A.: Variational minimization of atomic and molecular ground-state energies

via the two-particle reduced density matrix. Phys. Rev. A65, 062511 (2002)

35. Mazziotti, D.A.: Solution of the 1,3-contracted Schrödinger equation through positivity

conditions on the two-particle reduced density matrix. Phys. Rev. A66, 062503 (2002)

36. Mazziotti, D.A.: Realization of quantum chemistry without wave functions through first-

order semidefinite programming. Phys. Rev. Lett. 93, 213001 (2004)

37. Mazziotti, D.A.: First-order semidefinite programming for the direct determination of two-

electron reduced density matrices with application to many-electron atoms and molecules.

J. Chem. Phys. 121, 10957–10966 (2004)

38. Mazziotti, D.A., Erdahl, R.M.: Uncertainty relations and reduced density matrices: Map-

ping many-body quantum mechanics onto four particles. Phys. Rev. A63, 042113 (2001)

39. McRae, W.B., Davidson, E.R.: Linear inequalities for density matrices II. J. Math. Phys.

13, 1527–1538 (1972)
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