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Abstract

Let Bi be deterministic symmetric m ×m matrices, and ξi be independent random scalars
with zero mean and “of order of one” (e.g., ξi ∼ N (0, 1)). We are interested in conditions

for the “typical norm” of the random matrix SN =
N∑

i=1

ξiBi to be of order of 1. An evi-

dent necessary condition is E{S2
N} � O(1)I, which, essentially, translates to

N∑
i=1

B2
i � I; a

natural conjecture is that the latter condition is sufficient as well. In the paper, we prove
a relaxed version of this conjecture, specifically, show that under the above condition the
typical norm of SN is ≤ O(1)m

1
6 : Prob{‖SN‖ > Ωm1/6} ≤ O(1) exp{−O(1)Ω2} for all

Ω > 0 We outline some applications of this result, primarily in investigating the quality
of semidefinite relaxations of a general quadratic optimization problem with orthogonality
constraints Opt = max

Xj∈Rm×m

{
F (X1, ...,Xk) : XjX

T
j = I, j = 1, ..., k

}
, where F is quadratic

in X = (X1, ...,Xk). We show that when F is convex in every one of Xj , a natural semidef-
inite relaxation of the problem is tight within a factor slowly growing with the size m of the
matrices Xj : Opt ≤ Opt(SDP ) ≤ O(1)[m1/3 + ln k]Opt.

AMS Subject Classification: 60F10, 90C22, 90C25, 90C59.

Key words: large deviations, random perturbations of linear matrix inequalities, semidefi-

nite relaxations, orthogonality constraints, Procrustes problem.

1 Introduction

In this paper, we address the following question:

(Q): Let Ξi, 1 ≤ i ≤ N , be independent random m × m symmetric matrices with

zero mean and “light-tail” distributions, and let SN =
N∑

i=1
Ξi. Under what conditions

a “typical value” of ‖SN‖ is “of order of 1” so that the probability for ‖SN‖ to be

≥ Ω goes to 0 exponentially fast as Ω > 1 grows?

Here and in what follows ‖A‖ denotes the standard spectral norm (the largest sin-
gular value) of a matrix A.

This informal question admits various formal settings; to motivate the one we focus on, we start
with describing two applications we intend to consider: tractable approximations of randomly

perturbed Linear Matrix Inequalities (LMI) and semidefinite relaxations of nonconvex quadratic

minimization under orthogonality constraints.

∗on leave from the Technion – Israel Institute of Technology at School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia, USA; nemirovs@ie.technion.ac.il

1



Randomly perturbed LMI’s. Consider a randomly perturbed LMI

A0[x]−
N∑

i=1

ξiAi[x] � 0, (1)

where A0[x], ..., AN [x] are affine functions of the decision vector x taking values in the space
Sm of symmetric m ×m matrices, and ξi are independent of each other random perturbations
(which w.l.o.g. can be assumed to have zero means). Constraints of this type arise in many
applications, e.g., in various optimization and Control problems with randomly perturbed data.
A natural way to treat a randomly perturbed constraint is to pass to its chance form, which in
the case of constraint (1) is the deterministic constraint

Prob

{
ξ = (ξ1, ..., ξN ) : A0[x]−

N∑

i=1

ξiAi[x] � 0

}
≥ 1− ε, (2)

where ε > 0 is a small tolerance. The resulting chance constraint, however, typically is “heavily
computationally intractable” – usually, the probability in the left hand side cannot be computed
efficiently, and its reliable estimation by Monte-Carlo techniques requires samples of order of
ε−1, which is prohibitively time-consuming when ε is small (like 1.e-6 or 1.e-8). In the rare cases
when this difficulty can be circumvented (e.g., when ε is not too small), one still have a severe
problem: chance constraint (2) defines, in general, a nonconvex set in the space of x-variables,
and therefore it is absolutely unclear how to optimize under this constraint. A natural way
to overcome this difficulty is to replace “intractable” chance constraint (1) with its “tractable
approximation” – an explicit convex constraint on x such that its validity at a point x implies
that x is feasible for (1). Now note that an evident necessary condition for x to be feasible
for (1) is A0[x] � 0; strengthening this necessary condition to A0[x] � 0, x is feasible for the

chance constraint if and only if the random sum SN =
N∑

i=1
ξiA

−1/2
0 [x]Ai[x]A

−1/2
0 [x]︸ ︷︷ ︸

Ξi

is � Im

with probability ≥ 1 − ε. Assuming, as it is typically the case, that the distributions of ξi are
symmetric, this condition is essentially the same as the condition ‖SN‖ ≤ 1 with probability
≥ 1− ε. If we knew how to answer (Q), we could use this answer to build a “tractable” sufficient
condition for ‖SN‖ to be ≤ 1 with probability close to 1 and thus could build a tractable
approximation of (2).

Nonconvex quadratic optimization under orthogonality constraints. Here we present
a single example – the Procrustes problem, postponing the in-depth considerations till section
4. In the Procrustes problem, one is given matrices a[k], k = 1, ..., K, of the same size m × n
and is looking for K orthogonal n× n matrices x[k] minimizing the objective

∑

1≤k<k′≤K

‖a[k]x[k]− a[k′]x[k′]‖22,

where ‖a‖2 =
√

Tr(aaT ) is the Frobenius norm of a matrix. Informally speaking, we are given

K collections of points in Rn (s-th element of k-th collection is the s-th row of a[k]) and are
seeking for rotations which make these collections as close to each other as possible, the closeness
being quantified by the sum, over s, k, k′, of squared Euclidean distances between s-th points of
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k-th and k′-th collections. For various applications of this problem, see [2, 7, 8, 9]. The problem
clearly is equivalent to the quadratic maximization problem

max
x[1],...,x[K]



2

∑

k<k′

Tr(a[k]x[k]xT [k′]aT [k′]) : x[k] ∈ Rn×n, x[k]xT [k] = In, i = 1, ..., K



 . (P )

When K > 2, the problem is intractable (for K = 2, there is a closed form solution); it, however,
allows for a straightforward semidefinite relaxation. Let X = X[x[1], ..., x[K]] be the symmetric
matrix defined as follows: the rows and the columns in X are indexed by triples (k, i, j), where
k runs from 1 to K and i, j run from 1 to n; the entry Xkij,k′i′j′ in X is xij [k]xi′j′ [k

′]. Note
that X is symmetric positive semidefinite matrix of rank 1. Further, the relation x[k]xT [k] = In

is equivalent to a certain system Sk of linear equations on the entries of X, while the relation
xT [k]x[k] = In (in fact equivalent to xT [k]x[k] = In) is equivalent to another system Tk of linear
equations on the entries of X. Finally, the objective in (P ) is a linear function Tr(AX) of X,
where A is an appropriate symmetric matrix of the same size Kn2×Kn2 as X. It is immediately
seen that (P ) is equivalent to the problem

max
X∈SKn2

{Tr(AX) : X � 0, X satisfies Sk, Tk, k = 1, ..., K, Rank(X) = 1} ;

removing the only troublemaking constraint Rank(X) = 1, we end up with an explicit semidef-
inite program

max
X∈SKn2

{Tr(AX) : X � 0, X satisfies Sk, Tk, k = 1, ..., K} (SDP)

which is a relaxation of (P ), so that Opt(SDP) ≥ Opt(P ). We shall see in section 4 that an
appropriate answer to (Q) allows to prove that

Opt(SDP) ≤ O(1)(n
1
3 + lnK)Opt(P ), (3)

and similarly for other problems of quadratic optimization under orthogonality constraints.
To the best of our knowledge, (3) is the first nontrivial bound on the quality of semidefinite
relaxation for problems of this type.

The outlined applications motivate our specific approach to treating (Q). First, we are in-
terested in the case when the size m of the random matrices in question can be large, and pay
primary attention on how this size enters the results (as we shall see, this is the only way to
get nontrivial bounds for our second application). In this respect, our goals are similar to those
pursued in huge literature on large-scale random matrices inspired by applications in Physics.
However, we cannot borrow much from this literature, since the assumptions which are tra-
ditional there (appropriate pattern of independence/weak dependence of entries in SN ) makes
no sense for our applications. What we are interested in when answering (Q), are conditions
expressed in terms of distributions of random terms Ξi in SN . Let us try to understand what
could be the “weakest possible” condition of this type. In the case when Prob {‖SN‖ > Ω} goes
rapidly to 0 as Ω > 1 grows, we clearly should have E

{
S2

N

} � O(1)Im (since S2
N � ‖SN‖2Im).

Thus, the condition
[
E
{
S2

N

}
=
] N∑

i=1

E
{
Ξ2

i

}
� O(1)Im (4)

is necessary for ‖SN‖ to be “of order of 1”. A natural guess is that this necessary condition
plus appropriate “light-tail” assumptions on the distributions of Ξi is sufficient for the property
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in question; we shall see in a while that if this guess were true, it would provide us with all we
need in our applications. Unfortunately, when interpreted literally, the guess fails to be true.
First, it is immediately seen that in fact O(1)Im in the right hand side of (4) should be reduced
to O(1) 1

ln mIm. Indeed, let Ξi be diagonal matrices with independent (from position to position

and for different t’s) diagonal entries taking values ±αN−1/2 with probabilities 1/2, so that

Σ ≡
N∑

i=1

E
{
Ξ2

i

}
= α2Im.

Here SN is a random diagonal matrix with i.i.d. diagonal entries; by Central Limit Theorem,
the distribution of these entries approaches, as N grows, the Gaussian distribution N (0, α2).
It follows that when N is large, the typical value of ‖SN‖ is the same as the typical value of
max
i≤m
|ζi|, with independent ζi ∼ N (0, α2); in other words, for large N the typical value of ‖SN‖

is α
√

2 lnm. In order for this quantity to be of order of 1, α should be of order of (lnm)−1/2,
which corresponds to Σ of order of (lnm)−1Im rather than of order of Im. In our context,
the consequences of the outlined correction are not that dramatic, since ln m, for all practical
purposes, is a moderate constant. A less pleasant observation is that the corrected guess still

fails to be true, unless we impose further restrictions on the distributions of Ξi. Indeed, consider

the case when m = 2k is even, N = 1, and the random matrix Ξ1 = SN is

[
ηξT

ξηT

]
, where

η is uniformly distributed on the unit sphere in Rk, ξ ∼ N (0, Ik) and η, ξ are independent. In
this case, direct computation demonstrates that E

{
Ξ2

1

}
= Im, while ‖Ξ1‖ = ‖SN‖ = ‖η‖2‖ξ‖2,

so that the typical value of ‖SN‖ is as large as O(
√

m). It follows that in order to make our guess
valid for the particular case we are considering, the right hand side in (4) should be reduced
to O(1)m−1Im. After such a correction, our guess does become valid, but the correction itself
turns out to be too bad for our tentative applications. What we intend to do is to try to save
the “logarithmically corrected” guess at the cost of restricting Ξi to be semi-scalar, that is, to
be random matrices of the form ξiBi, where Bi are deterministic symmetric matrices and ξi are
independent random scalars with zero mean and light-tail distributions. Specifically, we make
a conjecture as follows:

Conjecture 1.1 Let Bi, i = 1, ..., N , be deterministic symmetric m×m matrices such that

N∑

i=1

B2
i � Im, (5)

and let ξi, i = 1, ..., N , be independent random scalars with zero mean and “of order of 1”, e.g.,
such that (a) |ξi| ≤ 1, or (b) ξi ∼ N (0, 1), or (c) E

{
exp{ξ2

i }
} ≤ exp{1}. Then

Ω ≥ O(1)
√

lnm⇒ Prob

{
ξ = (ξ1, ..., ξN ) : ‖

N∑

i=1

ξiBi‖ ≥ Ω

}
≤ O(1) exp{−O(1)Ω2} (6)

with appropriate positive absolute constants O(1).

It turns out that (6) would satisfy all the requirements posed by the applications we bear in
mind. Unfortunately, for the time being we are unable to prove the conjecture “as it is”. The
primary goal of this paper is to prove a weaker statement – the one where

√
lnm in the premise

of (6) is replaced with m
1
6 , and to use this weaker fact in the applications we have mentioned.
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In our opinion, question (Q) in general, and its specialization as presented in Conjecture 1.1,
in particular are quite natural and deserve attention by their own right. Surprisingly, the only,
to the best of our knowledge, result in this direction which makes no assumptions on how strong
the entries in SN depend on each other, is recent result announced in [5] (for proof, see [6]) as
follows:

Proposition 1 Let Ξi be independent symmetric m×m matrices with zero mean such that

E
{
exp{‖Ξi‖2σ−2

i }
}
≤ exp{1}, i = 1, ..., N

(σi > 0 are deterministic scale factors). Then

Prob



‖SN‖ ≥ t

√√√√
N∑

i=1

σ2
i



 ≤ O(1) exp{−O(1)

t2

lnm
} ∀t > 0. (7)

with positive absolute constants O(1).

From this Proposition it follows that when strengthening the premise (5) in Conjecture 1.1 to
N∑

i=1
‖Bi‖2 ≤ 1, the conclusion becomes “nearly true”:

Prob

{
ξ = (ξ1, ..., ξN ) : ‖

T∑

i=1

ξiBi‖ ≥ Ω
√

lnm

}
≤ O(1) exp{−O(1)Ω2}.

Unfortunately, in the applications we intend to consider strengthening the matrix inequality∑
i

B2
i � I to the scalar inequality

∑
i
‖Bi‖2 ≤ 1 is too costly to be of actual use.

The rest of the paper is organized as follows. In section 2, we prove that our conjecture, in its
outlined weaker form, indeed is valid. In sections 3 and 4 we apply this result to approximating
chance constraints associated with randomly perturbed LMI’s, and to deriving bound on the
quality of semidefinite relaxations of problems of quadratic approximation under orthogonality
constraints.

2 Main result

2.1 Preliminaries: Talagrand’s Inequality

We start with the following instrumental fact:

Theorem 2.1 [Talagrand’s Inequality] Let (Ei, ‖·‖i), i = 1, ..., N , be finite-dimensional normed
spaces and µi, i = 1, ..., N , be Borel probability measures on the balls Vi = {xi ∈ Ti : ‖xi‖i ≤

1/2}. Let us equip the space E = E1 × ...× EN with the norm ‖(x1, ..., xN )‖ =

√
N∑

i=1
‖xi‖2i and

with the probability distribution µ = µ1 × ... × µN , and let A be a closed convex set in E such
that µ(A) > 0. Then

∫

E

exp{
dist2‖·‖(x, A)

4
}µ(dx) ≤ 1

µ(A)
, (8)

where dist‖·‖(x, A) = min
z∈A
‖x− z‖.
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In this form, the Talagrand Inequality is proved in [4], up to the only difference that in [4], the
supports of µi are assumed to be finite subsets of Vi. However, finiteness of the supports is of no
importance, since a Borel probability measure on Vi can be weakly approximated by probability
measures with finite supports contained in Vi.

2.2 Main result

Our main result related to question (Q) is as follows:

Theorem 2.2 Let ξ1, ..., ξN be independent random variables with zero mean and zero third
moment taking values in [−1, 1], Bi, i = 1, ..., N , be deterministic symmetric m ×m matrices,
and Θ > 0 be a real such that ∑

i

B2
i � Θ2I. (9)

Then

Ω ≥ 7m1/4 ⇒ Prob{‖
N∑

i=1
ξiBi‖ ≥ ΩΘ} ≤ 5

4 exp{−Ω2

32 } (a)

Ω ≥ 7m1/6 ⇒ Prob{‖
N∑

i=1
ξiBi‖ ≥ ΩΘ} ≤ 22 exp{−Ω2

32 } (b)
(10)

Proof. 10. Our first observation is as follows:

Lemma 1 Let Θ > 0, let Bi ∈ Sm be deterministic matrices satisfying (9) and ζi be independent
random scalar variables such that

E {ζi} = 0, E
{
ζ2
i

}
≤ σ2, E

{
ζ4
i

}
−
(
E{ζ2

i }
)2
≤ 2σ4.

Let, finally, Sk =
k∑

i=1
ζiBi, 1 ≤ k ≤ N . Then

1 ≤ k ≤ N ⇒ E
{
S4

k

}
� 3σ4Θ4I. (11)

Proof. Setting S0 = 0, Ei = E{S4
i }, σi =

(
E{ζ2

i }
)1/2

, ωi =
(
E{ζ4

i }
)1/4

and taking into account
that ζi and Si−1 are independent with zero mean, we have

Ei = E
{
[Si−1 + ζiBi]

4
}

= E

{
S4

i−1 + σ2
i

[
Si−1BiSi−1Bi + BiSi−1BiSi−1︸ ︷︷ ︸

�Si−1B2
i

Si−1+BiS2
i−1

Bi

due to XY T +Y XT �XXT +Y Y T

+S2
i−1B

2
i + B2

i S2
i−1 + Si−1B

2
i Si−1 + BiS

2
i−1Bi

]

+ω4
i B4

i

}

� E
{
S4

i−1 + 2σ2
i Si−1B

2
i Si−1 + 2σ2

i BiS
2
i−1Bi + S2

i−1(σ
2
i B2

i ) + (σ2
i B2

i )S2
i−1 + σ4

i B4
i + (ω4

i − σ4
i )B2

i

}

= Ei−1 + 2
i−1∑
j=1

σ2
j σ2

i BjB
2
i Bj + 2

i−1∑
j=1

σ2
i σ2

j BiB
2
j Bi +

i−1∑

j=1

σ2
i σ2

j B2
j B2

i +

i−1∑

j=1

σ2
i σ2

j B2
i B2

j + σ4
i B4

i

︸ ︷︷ ︸

=

(
i∑

j=1

σ2
j
B2

j

)2

−

(
i−1∑
j=1

σ2
j
B2

j

)2

+[ω4
i − σ4

i ]B4
i
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whence

Ek � 2
k∑

i=1

i−1∑
j=1

σ2
i σ2

j BjB
2
i Bj + 2

k∑
i=1

i−1∑
j=1

σ2
i σ2

j BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

ω4
i B4

i

= 2
∑

1≤i,j≤k

i6=j

σ2
i σ2

j BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

[
ω4

i − σ4
i

]
B4

i

� 2
∑

1≤i,j≤k

i6=j

σ4BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

2σ4B4
i � 2σ4

k∑
i,j=1

BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

= 2σ4
k∑

i=1

Bi

[
k∑

j=1

B2
j

]
Bi +

(
k∑

j=1

σ2
j B2

j

)2

� 2σ4Θ2
k∑

i=1

B2
i +

( k∑

j=1

σ2
j B2

j

︸ ︷︷ ︸
=A,0�A�σ2Θ2I

)2

� (2σ4Θ4 + σ4Θ4)I,

as claimed.

20. Now we are ready to prove (10.a). For x ∈ RN , let S(x) =
N∑

i=1
xiBi, and let Q = {x ∈

RN : ‖S(x)‖ ≤ Θ}, so that Q is a closed convex set in RN symmetric w.r.t. the origin. We
claim that Q contains the centered at the origin unit Euclidean ball. Indeed, all we should verify
is that if ‖x‖2 ≤ 1, then |yT (

∑
i

xiBi)y| ≤ Θ for all y ∈ Rm with yT y ≤ 1. We have

|yT (
∑

i

xiBi)y| ≤
∑

i

|xi|‖Biy‖2 ≤
(
∑

i

x2
i

)1/2(∑

i

yT B2
i y

)1/2

≤ Θ,

as claimed.
Applying Lemma 1 to ζi = ξi (which allows to take σ = 1), we get

E
{
‖S(ξ)‖4

}
≤ E

{
Tr(S4(ξ))

}
≤ 3mΘ4,

whence by Tschebyshev inequality

γ > 0⇒ Prob {‖S(ξ)‖ > 2γΘ} <
3m

16γ4
. (12)

Now let γ = m1/4 and A = γQ. The set A is closed and convex and contains the centered at
the origin ball of the radius γ. It follows that if s > 1 and x 6∈ sA = sγQ (or, which is the same,
‖S(x)‖ > γsΘ), then dist‖·‖(x, A) ≥ (s− 1)γ = (s− 1)m1/4. Applying Talagrand Inequality to
the distribution of the random vector ζ = ξ/2 (Theorem 2.1), we get

Prob
{
‖S(ξ)‖ > 2sm1/4Θ

}
= Prob {ξ/2 6∈ sA} ≤ 1

Prob{ξ∈2A}
exp{− (s−1)2m1/2

4 }
≤ 5

4 exp{− (s−1)2m1/2

4 },
(13)

where the concluding inequality is given by (12). The resulting inequality is valid for all s > 1,
and (10.a) follows.

30. Now let us prove (10.b). We start with the following weak analogy to Lemma 1:

Lemma 2 Let Bi, i = 1, ..., N , be deterministic symmetric matrices satisfying (9), and ζi,
i = 1, ..., N , be independent scalar random variables with zero mean and zero third moment
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such that σ2
i ≡ E{ζ2

i } ≤ σ2, ω4
i ≡ E{ζ4

i } ≤ min
[
σ4

i + 2σ4, ω4
]
, χ6

i ≡ E{ζ6
i } ≤ χ6, and let

Sk =
k∑

i=1
ζiBi. Then

E
{
Tr(S6

k)
}
≤ [45σ6 + 15ω4σ2 + χ6]Θ6m. (14)

Proof. Let Ei = E
{
S4

i

}
, φi = E

{
Tr(S6

i )
}
. Given a multi-index ι = (ι1, ..., ιn) with entries

0, 1 and two symmetric matrices P, Q, let [P, Q]ι stand for the product of n matrices, with `-th
factor being P or Q depending on whether ι` = 1 or ι` = 0 (e.g., [P, Q](0,1,1) = QP 2). Let I, J
be the sets of 6-dimensional multi-indices ι with entries 0,1 such that exactly 4, respectively, 2
of the entries are equal to 1 (so that both I and J contain 15 multi-indices each). Taking into
account that Si−1 has zero mean and is independent of ζiBi, and that ζi has zero first and third
moments, we have

E
{
S6

i

}
= E

{
S6

i−1

}
+ σ2

i

∑

ι∈I

E {[Si−1, Bi]
ι}+ ω4

i

∑

ι∈J

E {[Si−1, Bi]
ι}+ χ6

i B
6
i ,

whence

φi ≤ φi−1 + σ2
i

∑

ι∈I

E {Tr([Si−1, Bi]
ι)}+ ω4

i

∑

ι∈J

E {Tr([Si−1, Bi]
ι)}+ χ6

i Tr(B6
i ). (15)

Now let us list all 15 products [Si−1, Bi]
ι, ι ∈ I; we split these products into groups, all members

of the same group being of equal trace in view of the identities Tr(A) = Tr(AT ) and Tr(AB) =
Tr(BA). Here are the groups (to simplify notation, we skip indices of Si−1 and Bi)

BS4B, S2B2S2, (S4B2, B2S4), (S3B2S, SB2S3) (a)
SBS2BS, (S2BS2B, BS2BS2) (b)
(S3BSB, BSBS3), (SBS3B, BS3BS), (S2BSBS, SBSBS2) (c)

Let the traces of products in the respective groups be Ta = Ta,i(ζ1, ..., ζi−1), Tb = Tb,i(ζ1, ..., ζi−1),
Tc = Tc,i(ζ1, ..., ζi−1). We have

BS2
︸ ︷︷ ︸

X

BS2
︸ ︷︷ ︸
Y T

+ S2BS2B︸ ︷︷ ︸
Y XT

� BS4B︸ ︷︷ ︸
XXT

+ S2B2S2
︸ ︷︷ ︸

Y Y T

,

whence Tb ≤ Ta, and similarly

S2B︸ ︷︷ ︸
X

SBS︸ ︷︷ ︸
Y T

+ SBSBS2
︸ ︷︷ ︸

Y XT

� S2B2S2
︸ ︷︷ ︸

XXT

+ SBS2BS︸ ︷︷ ︸
Y Y T

,

whence 2Tc ≤ Ta + Tb ≤ 2Ta. The conclusion is that the sum
∑
ι∈I

in (15) does not exceed the

quantity

Ii = 15E
{
Tr(BiS

4
i−1Bi)

}
= 15Tr(BiE{S4

i−1}Bi) = 15Tr(BiEi−1Bi).

Invoking Lemma 1, we get
Ii ≤ 45σ4Θ4Tr(B2

i ).

Completely similar reasoning as applied to the sum
∑
ι∈J

in (15) implies that this sum does not

exceed the quantity

Ji = 15E
{
Tr(Si−1B

4
i Si−1)

}
= 15E

{
Tr(B2

i S2
i−1B

2
i )
}

= 15Tr

(
B2

i

[
i−1∑
j=1

σ2
j B

2
j

]
B2

i

)

≤ 15Θ2σ2Tr(B4
i )

8



Thus, (15) implies that

φi ≤ φi−1 + 45σ6Θ4Tr(B2
i ) + 15ω4

i Θ
2σ2Tr(B4

i ) + χ6
i Tr(B6

i );

since
∑
i

B2
i � Θ2I, we have Tr(B4

i ) ≤ Θ2Tr(B2
i ) and Tr(B6

i ) ≤ Θ4Tr(B2
i ). We arrive at the

relation
φi ≤ φi−1 + Θ4

[
45σ6 + 15ω4

i σ
2 + χ6

i

]
Tr(B2

i ).

Taking into account that
∑
i

B2
i � Θ2I, whence of course

∑
i

Tr(B2
i ) ≤ Θ2m, we conclude that

E
{
Tr(S6

N )
}
≤ [45σ6 + 15ω4σ2 + χ6]Θ6m,

as claimed.
40. Now we can derive (10.b) in the same fashion as (10.a). Let S(·) and Q be defined as in

20. Applying Lemma 2 to ζi = ξi (which allows to take σ = ω = χ = 1), we get

E
{
‖S(ξ)‖6

}
≤ E

{
Tr(S6(ξ))

}
≤ 61mΘ6,

whence by Tschebyshev inequality

γ > 0⇒ Prob {‖S(ξ)‖ > 2γΘ} <
61m

64γ6
. (16)

Now let γ = m1/6 and A = γQ. The set A is closed and convex and contains the centered at
the origin ball of the radius γ = m1/6. It follows that if s > 1 and x 6∈ sA = sγQ (or, which
is the same, ‖S(x)‖ > γsΘ), then dist‖·‖(x, A) ≥ (s − 1)γ = (s − 1)m1/6. Applying Talagrand
Inequality to the distribution of the random vector ζ = ξ/2 (Theorem 2.1), we get

s > 1⇒ Prob
{
‖S(ξ)‖ > 2sm1/6Θ

}
= Prob {ξ/2 6∈ sA} ≤ 1

Prob{ξ∈2A}
exp{− (s−1)2m1/3

4 }
≤ 22 exp{− (s−1)2m1/3

4 },

where the concluding inequality is given by (16). The resulting inequality is valid for all s > 1,
and (10.b) follows.

Corollary 1 Let Ξ1,...,Ξn be independent Gaussian symmetric m × m random matrices with
zero means and Θ > 0 be such that

n∑

i=t

E
{
Ξ2

i

}
� Θ2I. (17)

Then relations (10) hold true.

Proof. By evident reasons every Gaussian symmetric random matrix Ξi can be represented

as
M∑
i=1

ηitB
it with independent ηit ∼ N (0, 1) and deterministic symmetric matrices Bit; observe

that E{Ξ2
i } =

∑
i
(Bit)2. Representing in this way every one of the matrices Ξ1, ...,Ξn and taking

into account that the resulting Gaussian random variables {ηit} are mutually independent, we
conclude that

Sn ≡
n∑

i=1

Ξi =
N∑

i=1

ξiBi

9



with independent ξi ∼ N (0, 1) and deterministic symmetric matrices Bi satisfying the relation∑
i

B2
i � Θ2I. Now let {ζij} 1≤i≤N

j=1,2,...
be a collection of independent random variables taking values

±1 with probabilities 1/2, and let

Sn,ν =
N∑

i=1

ν∑

j=1

ζij
1√
ν

Bi.

By Theorem 2.2, we have

Ω ≥ 7m1/4 ⇒ Prob {‖Sn,ν‖ > ΩΘ} ≤ 5
4 exp{−Ω2

64 }, (a)

Ω ≥ 7m1/6 ⇒ Prob {‖Sn,ν‖ > ΩΘ} ≤ 22 exp{−Ω2

64 }. (b)

As ν →∞, the distribution of Sn,ν , by Central Limit Theorem, converges weakly to the distri-
bution of Sn, and (10) follows.

2.3 Non-symmetric case

Question (Q) makes sense for non-symmetric (and even non-square) random matrices. In this
case validity of Conjecture 1.1 would imply the following statement:

(!) Let Ci be deterministic m× n matrices such that

N∑

i=1

CiC
T
i � Θ2Im,

N∑

i=1

CT
i Ci � Θ2In (18)

and ξi be independent random scalars with zero mean and of order of 1. Then

Ω ≥ O(1)
√

ln(m + n)⇒ Prob

{
ξ = (ξ1, ..., ξN ) : ‖

N∑

i=1

ξiCi‖ ≥ ΩΘ

}
≤ O(1) exp{−O(1)Ω2}.

(19)

Indeed, to in order to extract (!) from the assertion proposed by Conjecture 1.1, it suffices to
apply the assertion to our ξi’s and the deterministic symmetric (m + n)× (m + n) matrices

Bi =

[
CT

i

Ci

]
. (20)

Utilizing in exactly the same fashion Theorem 2.2 and Corollary 1, we arrive at the following

Proposition 2 Let deterministic m × n matrices Ci satisfy (18), and let ξi be independent
random scalars with zero first and third moment and such that either |ξi| ≤ 1 for all i ≤ N , or
ξi ∼ N (0, 1) for all i ≤ N .

Ω ≥ 7(m + n)1/4 ⇒ Prob{‖
N∑

i=1
ξiCi‖ ≥ ΩΘ} ≤ 5

4 exp{−Ω2

32 }, (a)

Ω ≥ 7(m + n)1/6 ⇒ Prob{‖
N∑

i=1
ξiCi‖ ≥ ΩΘ} ≤ 22 exp{−Ω2

32 }. (b)
(21)

We are about to add to Proposition 2 a simple additional statement, which allows to strengthen
the result in the case when one of the sizes m, n is much smaller than another:

10



Proposition 3 Let Ci, ξi be as in Proposition 2. Then

Ω ≥ 4
√

min[m, n]⇒ Prob{‖
N∑

i=1

ξiCi‖ ≥ ΩΘ} ≤ 4

3
exp{−Ω2

16
} (22)

Proof. It suffices to consider the case when |ξi| ≤ 1; the Gaussian version of the statement can
be derived from the one with |ξi| ≤ 1 in exactly the same fashion as in the proof of Corollary 1.

Let Bi be given by (20). Same as in item 20 of the proof of Theorem 2.2, setting Q = {x ∈
RN : ‖

N∑
i=1

xiBi‖ ≤ Θ}, we conclude from (18) that the closed convex set Q contains the unit

Euclidean ball centered at the origin, and that for every γ > 0 one has

s > 1⇒ Prob

{
‖

N∑

i=1

ξiBi‖ > 2sγΘ

}
≤ 1

Prob {ξ ∈ 2γQ} exp{−(s− 1)2γ2

4
}, (23)

Assume w.l.o.g. that min[m, n] = n. We have
N∑

i=1
CT

i Ci � ΘIn, whence, taking traces,

N∑
i=1
‖Ci‖22 ≤ nΘ2. It follows that

E

{
‖
∑

i

ξiCi‖22
}

=
∑

i

E
{
ξ2
i

}
‖Ci‖22 ≤

∑

i

‖Ci‖22 ≤ nΘ2,

whence by Tschebyshev inequality and due to ‖C‖ ≤ ‖C‖2

∀t > 0 : Prob

{
‖
∑

i

ξiCi‖ ≥ tn1/2Θ

}
≤ Prob

{
‖
∑

i

ξiCi‖2 ≥ tn1/2Θ

}
≤ t−2.

Setting γ = n1/2, we conclude from the latter inequality that Prob

{
‖∑

i
ξiCi‖ ≥ 2γΘ

}
≤ 1/4,

whence, in view of ‖∑
i

ξiBi‖ = ‖∑
i

ξiCi‖,

Prob

{
‖
∑

i

ξiBi‖ > 2γΘ

}
= Prob {ξ 6∈ 2γQ} ≤ 1/4.

Thus, (23) with γ = n1/2 implies that

s > 1⇒ Prob

{
‖

N∑

i=1

ξiBi‖ > 2sn1/2Θ

}
≤ 4

3
exp{−(s− 1)2n

4
},

and (22) follows (recall that ‖∑
i

ξiCi‖ ≡ ‖
∑
i

ξiBi‖).

3 Application: Randomly perturbed Linear Matrix Inequality

Consider a randomly perturbed Linear Matrix Inequality (LMI)

A0[x]− ρ
N∑

i=1

ξiAi[x] � 0, (24)

11



where A0[x], ..., AN [x] are symmetric matrices affinely depending on decision vector x, ξi, i =
1, ..., N , are random real perturbations which we assume to be independent with zero means “of
order of 1” and with “light tails” (precise formulations of these two assumptions will be given
later). We are interested to describe those x for which the randomly perturbed LMI (24) holds
true with probability ≥ 1− ε, where ε << 1. Clearly, for such an x one should have A0[x] � 0.
We will simplify a little bit our task and focus on points x with A0[x] � 0. For such an x, setting

Bi[x] = A
−1/2
0 [x]Ai[x]A

−1/2
0 [x], the question becomes to describe those x for which

Prob

{
N∑

i=1

ξiBi[x] � I

}
≥ 1− ε. (25)

Precise description seems to be completely intractable; what we are about to present are verifi-
able sufficient conditions for (25) to hold true.

3.1 Condition based on Proposition 1

Proposition 4 Let m ≥ 2, let perturbations ξi be independent with zero means and such that
E
{
exp{ξ2

i }
} ≤ exp{1}. Then the condition

A0[x] � 0 & ρ2
N∑

i=1

‖A−1/2
0 [x]Ai[x]A

−1/2
0 [x]‖2 ≤ 1

450 exp{1}(ln 3
ε )(lnm)

(26)

is sufficient for (24) to be valid with probability ≥ 1− ε.

This is a straightforward corollary of Proposition 1 (we use the actual values of absolute constants
in (7) presented in [6]).

A severe shortcoming of (26) is that this condition, although verifiable, in general defines a
nonconvex set in the space of decision variables x, which makes it problematic to optimize in x
under the conditions. There are, however, two simple cases when the conditions are free of this
shortcoming. The first is when Ai[x] are independent of x (“perturbations in the constant term
of LMI”); here the “problematic” part of the conditions – the inequality

N∑

i=1

‖A−1/2
0 [x]Ai[x]A

−1/2
0 [x]‖2 ≤ τ (∗)

on x, τ – can be represented by the system of convex inequalities

−A0[x] � µiAi � A0[x], µi > 0, i = 1, ..., N,
N∑

i=1

µ−2
i ≤ τ.

in variables x, µi, τ . The second “good” case is the one when A0[x] ≡ A is constant. Here (∗)
can be represented by system of convex constraints

−λiA � Ai[x] � λiA, i = 1, ..., N,
∑

i

λ2
i ≤ τ

in variables x, λi, τ .

12



3.2 Conditions based on Theorem 2.2 and Corollary 1

With these statements in the role of Proposition 1, we arrive at the following statement:

Proposition 5 Let perturbations ξi be independent with zero means and zero third moments
and either such that |ξi| ≤ 1, i = 1, ..., N , or such that ξi ∼ N (0, 1), i = 1, ..., N . Let, further,
ε ∈ (0, 1) be such that one of the following two conditions is satisfied:

(a) ln
(

5
4ε

)
≥ 49m1/2

32

(b) ln
(

22
ε

)
≥ 49m1/3

32

(27)

Then the condition

A0[x] � 0 & ρ2‖
N∑

i=1

(A
−1/2
0 [x]Ai[x]A

−1/2
0 [x])2‖ ≤





1
32 ln( 5

4ε)
, case of (27.a)

1
32 ln( 22

ε )
, case of (27.b)

(28)

is sufficient for (24) to be valid with probability ≥ 1− ε.

Note that condition (28), in contrast to (26), defines a convex domain in the space of design
variables. Indeed, this condition is of the form

A0[x] � 0 & ρ2
N∑

i=1

Ai[x]A−1
0 [x]Ai[x] � c(ε)A0[x],

which can be represented by system of LMI’s

A0[x] � 0 &

[
Yi Ai[x]

Ai[x] A0[x]

]
� 0, i = 1, ..., N & ρ2

N∑

i=1

Yi � c(ε)A0[x] (29)

in variables x, Yi. Note also that in Control applications (which are of primary importance for
randomly perturbed LMI) m does not exceed few tens, and in this range of values of m the
only advantage of (26) as compared with (28), that is, ln(m) in the right hand side of (26) vs.
m1/2 and m1/3 in the right hand side of (27), becomes unimportant (in fact, (26), because of
large constant factors, in a reasonable range of values of m leads to much more conservative
conclusions than (27)).

4 Application: semidefinite relaxation of quadratic minimiza-

tion under orthogonality constraints

4.1 Problem of interest

Consider the following optimization problem:

max
x∈Mm,n




〈x,Ax〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)
‖x‖ ≤ 1 (d)





(P )

where
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• Mm,n is the space of m× n matrices equipped with the Frobenius inner product 〈x, y〉 =
Tr(xyT ),

• the mappings A, B, B` are symmetric linear mappings from Mm,n into itself,

• B is positive semidefinite of rank 1,

• B`, ` = 1, ..., L, are positive semidefinite,

• C is a linear mapping from Mm,n into RM .

Note that (P ) covers a number of problems of quadratic optimization under orthogonality con-
straints, e.g.

1. Inhomogeneous modification

max
x∈Mm,n




〈x,Ax〉+ 2〈b, x〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)
‖x‖ ≤ 1 (d)





(P+)

of (P ). Indeed, partitioning a matrix y ∈Mn+1,m+1 as

[
y00 y01

y10 y11

]
with scalar y00, (P+)

is equivalent to the problem

max
y




〈y,A+y〉 ≡ 〈y11,Ay11〉+ 2y00〈b, x11〉 :

〈y11,By11〉 ≤ 1 (a)
〈y11,B`y11〉 ≤ 1, ` = 1, ..., L (b)
Cy11 = 0, y01 = 0, y10 = 0 (c)
‖y‖ ≤ 1 (d)





of the form of (P );

2. Orthogonal relaxation of the quadratic assignment problem (see [10, 11, 12] and references
therein)

max
X

{
Tr(BXAXT )− 2Tr(CX) : X ∈Mm,m, XXT = Im

}
(QA)

with symmetric m×m matrices A, B. Indeed, the transformation B ← B + bIm converts
(QA) into an equivalent problem, thus we can assume that B � 0. Similarly, the trans-
formation A← A + aIm converts (QA) into equivalent problem, thus we can assume that
A � 0. In the case when B � 0, A � 0, representing B = D2 and A = E2 with symmet-
ric D, E, we see that the objective in (QA) is f(X) = Tr([DXE][DXE]T ) + 2Tr(CX),
which is a convex quadratic form of X. Consequently, the maximum of f over the set
{X ∈ Mm,m : XXT = Im} is exactly the same as the maximum of f over the set
{X ∈ Mm,m : ‖X‖ ≤ 1}, since the former set is exactly the set of extreme points of
the latter one. Thus, (QA) is equivalent to the problem of the form

max
X

{
Tr(B̄XĀXT )− 2Tr(CX) : ‖X‖ ≤ 1

}
,

which is of the form of (P+);
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3. Procrustes problem which can be posed as (see Introduction)

max
X[1],...,X[K]





∑

1≤`<`′≤K

Tr(A[`]X[`]XT [`′]AT [`′]) : X[`]XT [`] = In, ` = 1, ..., K



 (Pr)

Indeed, the objective in (Pr) is linear in every one of X[`]; thus, we do not affect the
problem by relaxing the orthogonality constraints X[`]XT [`] = In to ‖X[`]‖ ≤ 1. Indeed,
such a relaxation could only increase the optimal value. This, however, does not happen,
since given a feasible solution to the problem

max
X[1],...,X[K]





∑

1≤`<`′≤K

Tr(A[`]X[`]XT [`′]AT [`′]) : ‖X[`]‖ ≤ 1, ` = 1, ..., K



 (Pr+)

we can easily convert it into a feasible solution to (Pr) with the same or larger value of
the objective.

Indeed, keeping X[2], ...,X[K] intact, we can straightforwardly replace X[1] by an or-

thogonal matrix without spoiling the objective value1). After X[1] is made orthogonal,

we can repeat the outlined procedure with X[2] in the role of X[1], and so on. After

K steps we end up with a feasible solution to both (Pr+) and (Pr) which is at least as

good as the solution we have started with.

It remains to note that problem (Pr+) is of the form of (P ) – we can arrange all matri-

ces X[`], ` = 1, ..., K, in a large block-diagonal matrix x =




X[1]
. . .

X[K]


, thus

converting (Pr+) into the equivalent problem

max
x



F (x) ≡

∑

`<`′

Tr(A[`]X[`]XT [`′]AT [`′]) : Cx = 0, ‖x‖ ≤ 1





where the homogeneous equations Cx = 0 express the fact that x is of the outlined block-
diagonal form; the resulting problem is in the form of (P );

4. The problem

max
X[1],...,X[K]




∑

`<`′

‖A[`]X[`]−A[`′]X[`′]‖22 : X[`]XT [`] = In, ` = 1, ..., k





“opposite” to the Procrustes problem. Indeed, since the objective is convex in every one
of X[`], we, same as above, lose nothing when relaxing the constraints X[`]XT [`] = In to
‖X[`]‖ ≤ 1. The resulting problem can be converted to the form of (P ) in exactly the same
manner as in the previous example. The same argument applies to a general-type problem
of quadratic maximization under orthogonality constraints, provided that the objective is
convex in every one of the corresponding variable matrices.

1)since the objective is linear in X[1], the remaining variable matrices being fixed, and thus attains its maximum
in X[1] varying in the set {X : ‖X‖ ≤ 1} at an extreme point of the set, which is an orthogonal matrix; this
matrix is easily computable, given X[2], ..., X[K].

15



Note that in some of the outlined examples we end up with a particular case of problem
(P ) where the homogeneous linear constraints (c) in (P ) imply that x is a block-diagonal

matrix




x1

. . .

xK


 with mk × nk diagonal blocks xk, k = 1, .., K. We shall refer to

∆ = {(mk, nk)}Kk=1 as to the structure of (P ), with the case of no nontrivial block-diagonal
structure in x corresponding to the trivial structure ∆ = (m, n) with K = 1.

Semidefinite relaxation of (P ). Problem (P ), in general, is NP-hard (this is the case al-
ready for the generic inhomogeneous (C 6= 0) orthogonal relaxation of the quadratic assignment
problem, see [10]). At the same time, (P ) admits a straightforward semidefinite relaxation as
follows. We can identify A in (P ) with a symmetric mn ×mn matrix A = [Aij,k`] with rows
and columns indexed by pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n satisfying the relation

[Ax]ij =
∑

k,`

Aij,k`xk`

(from now on, if opposite is not stated, in a sum
∑
p,q

, p runs from 1 to m, and q runs from 1 to

n). Similarly, B, B` can be identified with symmetric positive semidefinite mn ×mn matrices
B, B`, with B of rank 1. Finally, C can be identified with a M ×mn matrix C = [Cµ,ij ]:

(Cx)µ =
∑

i,j

Cµ,ijxij .

For x ∈Mm,n, let Vec(x) be the mn-dimensional vector obtained from the matrix x by arranging
its columns into a single column, and let X(x) ∈ Smn

+ be the matrix Vec(x)VecT (x), that is,
the mn × mn matrix [xijxk`]. Observe that X(x) � 0, and that

∑
i,j

cijxij = 0 if and only if

0 =

(
∑
i,j

cijxij

)2

≡ ∑
ij,k`

cijxijck`xk` = Tr(X(c)X(x)). Further,

〈x,Ax〉 =
∑

ij,k`

Aij,k`xijxk` = Tr(AX(x)),

and similarly
〈x,B〉 = Tr(BX(x)), 〈x,B`〉 = Tr(B`X(x)).

Finally, ‖x‖ ≤ 1 if and only if xxT � Im. The entries in the matrix xxT are linear combinations
of the entries in X(x), so that

xxT � Im ⇔ S(X(x)) � In,

where S is an appropriate linear mapping from Smn to Sm. Similarly, ‖x‖ ≤ 1 if and only if
xT x � In, which again is a linear restriction on X(x):

xT x � In ⇔ T (X(x)) � In,

where T is an appropriate linear mapping from Smn to Sn. With the above observations, (P )
can be rewritten as the problem

min
x∈Mm,n





Tr(AX(x)) :

Tr(BX(x)) ≤ 1 (a)
Tr(B`X(x)) ≤ 1, ` = 1, ..., L (b)
Tr(CµX(x)) = 0, µ = 1, ..., M (c)
S(X(x)) � Im, T (X(x)) � In (d)





,
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where Cµ ∈ Smn
+ is given by Cµ

ij,k` = Cµ,ijCµ,k`. Since X(x) � 0 for all x, the problem

min
X∈Smn





Tr(AX) :

Tr(BX) ≤ 1 (a)
Tr(B`X) ≤ 1, ` = 1, ..., L (b)
Tr(CµX) = 0, µ = 1, ..., M (c)
S(X) � Im, T (X) � In (d)
X � 0 (e)





(SDP)

is a relaxation of (P ), so that Opt(P ) ≤ Opt(SDP). Observe that problem (SDP) is a semidefi-
nite program and as such is computationally tractable.

Remark 4.1 When (P ) possesses a nontrivial structure, the design dimension of relaxation
(SDP) can be reduced. Indeed, in this case, as it is immediately seen, (SDP.c) imply that Xij,k`

should be zero unless both the cells (i, j), (k, `) belong to diagonal blocks in x. Consequently,
in fact the decision matrix X in (SDP) can be thought of as a symmetric matrix of the row size
K∑

k=1
mknk rather than of the size mn.

4.2 Quality of the relaxation

Our goal is to prove the following

Proposition 6 (i) There exists x̄ ∈Mm,n such that

(∗) 〈x̄,Bx̄〉 = Opt(SDP) (a) 〈x̄,Bx̄〉 ≤ 1
(b) 〈x̄,B`x̄〉 ≤ Ω2, ` = 1, ..., L (c) Cx̄ = 0
(d) ‖x̄‖ ≤ Ω

(30)

where

Ω = max

[
max

1≤k≤K
µk +

√
32 ln(132K),

√
32 ln(12(L + 1))

]
,

µk = min
[
7(mk + nk)

1
6 , 4
√

min[mk, nk]
] (31)

(ii) In particular, one has

Opt(P ) ≤ Opt(SDP) ≤ Ω2Opt(P ). (32)

Proof. 00. (ii) is an immediate consequence of (i). Indeed, with x̄ satisfying (30), the matrix
x̃ = Ω−1x clearly is a feasible solution to (P ), and the value of the objective at this solution is
Ω−2Opt(SDP) by (30.∗), which gives the right inequality in (32); the left inequality is readily
given by the origin of (SDP).

It remains to prove (i). Let Y be an optimal solution to (SDP); then Y � 0, so that the
matrix S = Y 1/2 is well defined. Let us set

SAS = UT ΛU,

where Λ is a diagonal mn × mn matrix, and U is an orthogonal mn × mn matrix. Let ξ be
a random mn-dimensional vector with independent entries ξij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, taking
values ±1 with probabilities 1/2, and let random m× n matrix ζ be given by

Vec(ζ) = SUT ξ, (33)
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so that ζ = ζ(ξ) is a deterministic function of ξ.
10. Observe that

E {X(ζ)} = Y. (34)

Indeed,

E {X(ζ)} = E
{
Vec(ζ)VecT (ζ)

}
= E

{
SUT ξξT US

}
= SUTE

{
Vec(ξ)VecT (ξ)

}
US

= SUUT S = Y.

20. We have
Cζ ≡ 0 (35)

Indeed,

E

{(∑
Cµ,ijζij

)2
}

= E
{
Tr(CµVec(ζ)VecT (ζ))

}
= Tr(CµY ) = 0

(we have used (34) and the fact that Y is feasible for (SDP)).
Since the relations Cx = 0 imply that x is block-diagonal with mk × nk diagonal blocks,

k = 1, ..., K, we conclude that all realizations of ζ are block-diagonal with mk × nk diagonal
blocks ζk, k = 1, ..., K. Recalling (33) and the nature of ξ, we see that all combinations of the
columns of the matrix SUT with coefficients ±1 are of the form Vec(z) with block-diagonal, of
the block-diagonal structure ∆, m×n matrices z; this is possible if and only if every one of the
columns in SUT is of the form Vec(z) with block-diagonal, of the block-diagonal structure ∆,
matrices z. Recalling (33), we arrive at

ζk = ζk(ξ) =
∑

i,j

zk,ijξij , k = 1, ..., K, (36)

with deterministic mk × nk matrices zk,ij .
30. We have also

(a) 〈ζ,Aζ〉 ≡ Opt(SDP)
(b) E {〈ζ,Bζ〉} ≤ 1
(b′) E {〈ζ,B`ζ〉} ≤ 1, ` = 1, ..., L

(37)

Indeed,

〈ζ,Aζ〉 = Tr(AVec(ζ)VecT (ζ)) = Tr(ASUT ξξT US)
= Tr(U(SAS)UT ξξT ) = Tr(U(UT ΛU)UT ξξT )
= Tr(ΛξξT ) = Tr(Λ) = Tr(UT ΛU) = Tr(SAS) = Tr(AY ) = Opt(SDP),

as required in (37.a). Further,

E {〈ζ,Bζ〉} = E
{
Tr(BVec(ζ)VecT (ζ))

}
= E

{
Tr(BSUT ξξT US)

}

= Tr(BSUT E{ξξT }︸ ︷︷ ︸
=I

US) = Tr(BS2) = Tr(BY ) ≤ 1

where the concluding ≤ comes from the fact that Y is feasible for (SDP). We have arrived at
(37.b); verification of (37.b′) is completely similar.

40. Finally, we have

E
{
ζT ζ

}
� In, E

{
ζζT

}
� Im. (38)
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Indeed, by the origin of S and T , we have ζζT = S(X(ζ)), ζT ζ = T (X(ζ)), and (38) follows
from (34).
Recalling that ζ = Diag{ζ1, ..., ζK}, we have

ζζT = Diag{ζ1ζ
T
1 , ..., ζKζT

K}, ζT ζ = Diag{ζT
1 ζ1, ..., ζ

T
KζK},

and (38) implies that

E
{
ζkζ

T
k

}
� Imk

, E
{
ζT
k ζk

}
� Ink

, k = 1, ..., K. (39)

Invoking (36), we have ζk =
∑
i,j

zk,ijξij with deterministic mk × nk matrices zk,ij , so that (39)

implies ∑

i,j

zk,ijz
T
k,ij � Imk

,
∑

i,j

zT
k,ijzk,ij � Ink

, k = 1, ..., K. (40)

Applying Propositions 2, 3, we extract from (40) that

t > µk ⇒ Prob {ξ : ‖ζk(ξ)‖ ≥ t} ≤ 22 exp

{
− t2

32

}
, k = 1, ..., K. (41)

60. We are basically done; the only additional element we need to complete the proof of (i)
is the following simple fact:

Lemma 3 One has

(a) Prob {ξ : 〈ζ(ξ),Bζ(ξ)〉 ≤ 1}︸ ︷︷ ︸
Ea

≥ 1
3

(b) t ≥ 8⇒ Prob
{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 > t2

} ≤ 4
3 exp{− t2

32}, ` = 1, ..., L.

(42)

Proof. Recall that

〈ζ(ξ),Bζ(ξ)〉 = Tr(BVec(ζ(ξ))VecT (ζ(ξ))) = Tr(BSUT ξξT US) = Tr((USBSUT )ξξT ). (43)

Since B is positive semidefinite dyadic matrix, so is the matrix USBSUT , that is, USBSUT =
ddT for a mn-dimensional deterministic vector d with entries dij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. It
follows that

〈ζ(ξ),Bζ(ξ)〉 = (dT ξ)2 =



∑

i,j

dijξij




2

(44)

Applying (37.b), we derive from (44) that
∑
i,j

d2
ij = E {〈ζ(ξ),Bζ(ξ)〉} ≤ 1. Invoking Lemma A.1

in [1], we conclude that Prob

{
|∑

i,j
dijξij | ≤ 1

}
≥ 1

3 , and (42.a) follows from (44). Similarly to

(43), we have
〈ζ(ξ),B`ζ(ξ)〉 = ξT USB`SUT

︸ ︷︷ ︸
D`

ξ.

The matrix D` is symmetric positive semidefinite along with B`; setting F` = D
1/2
` , we arrive

at the identity
〈ζ(ξ),B`ζ(ξ)〉 = ‖F`ξ‖22. (45)
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Invoking (37.b′), we derive from the latter inequality that

‖F`‖22 = E {〈ζ(ξ),B`ζ(ξ)〉} ≤ 1. (46)

We are about to use the following simple fact:

Lemma 4 Let bp ∈ Rπ, p = 1, ..., P , be deterministic vectors such that
∑
p
‖bp‖22 ≤ 1, and δp,

p = 1, ..., P , be independent random scalars taking values ±1 with probabilities 1/2. Then

t ≥ 8⇒ Prob



‖

P∑

p=1

δpbp‖2 > t



 ≤

4

3
exp{− t2

32
}. (47)

Proof. Let Q = {γ ∈ RP : ‖∑
p

γpbp‖2 ≤ 1}, and let µ be the distribution of the random vector

γ = (δ1/2, ..., δP /2). Observe that E

{
‖∑

p
γpbp‖22

}
= 1

4

∑
p
‖bp‖22 ≤ 1

4 , whence µ{γ 6∈ Q} = µ{γ :

‖∑
p

γpbp‖2 > 1} ≤ 1
4 , so that µ(Q) ≥ 3

4 . Further, Q clearly is a closed convex set. We claim

that this set contains the unit Euclidean ball in RP . Indeed, if u ∈ RP and ‖u‖2 ≤ 1, then

‖
∑

p

upbp‖2 ≤
∑

p

|up|‖bp‖2 ≤
√∑

p

u2
p

√∑

p

‖bp‖22 ≤ 1,

so that u ∈ Q. Now, if s > 1 and u ∈ RP is such that ‖∑
p

upbp‖2 > 2s, then the vector u/2

does not belong to sQ, so that dist‖·‖2
(u, Q) > s − 1 (since Q contains the unit Euclidean ball

in RP ). Applying the Talagrand Inequality to the distribution µ, we get

s > 1⇒ Prob

{
δ : ‖∑

p
δpbp‖2 > 2s

}
≤ exp{− (s−1)2

4 }
∫

exp{dist2

‖·‖2
(γ,Q)

4 }µ(dγ) ≤ exp{−
(s−1)2

4 }

µ(Q)

≤ 4 exp{−
(s−1)2

4 }

3 ,

and (47) follows.
Specifying in Lemma 4 P as mn, bp as the columns of F` and δp as the random scalars ξij ,

we derive from (46) that

t ≥ 8⇒ Prob {ξ : ‖F`ξ‖2 > t} ≤ 4

3
exp{− t2

32
},

which combines with (45) to imply (42.b). Lemma 3 is proved.
70. We are ready to complete the proof of (i). Let Ω be given by (31). By (42), with this Ω

for every ` ≤ L we have Prob
{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 > Ω2

} ≤ 1
8(L+1) , whence

Prob
{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 ≤ Ω2, 1 ≤ ` ≤ L

}

︸ ︷︷ ︸
Eb

≥ 7

8
. (48)

By (41), with our Ω for every k ≤ K we have also Prob {ξ : ‖ζk(ξ)‖ > Ω} ≤ 1
6K , whence

Prob

{
ξ : ‖ζ(ξ)‖ ≡ max

k≤K
‖ζk(ξ)‖ ≤ Ω

}

︸ ︷︷ ︸
Ed

≥ 5

6
. (49)

Combining (42.a), (48) and (49), we see that the events Ea, Eb and Ed have a point ξ∗ in
common. Setting x̄ = ζ(ξ∗), we see that x̄ satisfies all the requirements in (30) ((∗) – by (37.a),
(a), (b), (d) – due to ξ∗ ∈ Ea ∩ Eb ∩ Ed, and (c) by (35)).
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4.2.1 Comments

A. With norm constraint (d) in (P ) eliminated, (P ) becomes the purely quadratic program

max
x∈Mm,n




〈x,Ax〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)





; (P ′)

its semidefinite relaxation (SDP′) is obtained from (SDP) by eliminating constraints (SDP.d).
From the proof of Proposition 6 it follows that

Opt(P ′) ≤ Opt(SDP′) ≤ Ω2Opt(P ′), Ω =
√

32 ln(12(L + 1));

the resulting statement is a slightly improved version of “Approximate S-Lemma” from [1] (in
the original statement, L in the formula for Ω is replaced with the total rank of mappings B`,
` = 1, ..., L).

B. The proof of Proposition 6 goes along the lines of the proof of Approximate S-Lemma
[1]; the crucial new component (bound (41) based on Theorem 2.2) allows to treat the norm
constraint (P.d).

C. Any further progress towards the proof of Conjecture 1.1 would result in improving the re-
sult of Proposition 6. For example, if Conjecture were true, we would be able to replace the terms
7(mk+nk)

1
6 in (31) with a much nicer, from the theoretical viewpoint, terms O(1)

√
ln(mk + nk).

D. As it is usually the case with semidefinite relaxations of difficult optimization problems,
(SDP) not only provides us with an efficiently computable upper bound on the optimal value of
(P ), but offers as well a randomized algorithm for building suboptimal feasible solutions to (P ).
Such an algorithm is suggested by the proof of Proposition 6; specifically, we generate a sample
of, say, M = 1000 realizations ζ1, ..., ζM of the random matrix ζ(ξ) (see (33)), choose the largest
possible scale factors λp such that the scaled matrices ζ̂p = λpζ

p are feasible for (P ), thus getting
a sample of feasible solutions to (P ), and then choose among these feasible solutions the one
with the best – the largest – value of the objective. Note that the required “feasible scalings”
indeed are possible, since the only potentially dangerous in this respect constraint in (P ) – the
system of homogeneous linear equations (P.c) – is satisfied by every realization of ζ(ξ).

E. Under favourable circumstances, the outlined randomized algorithm can be further im-
proved by a kind of “purification”. Specifically, assume that

• (P ) has no quadratic constraints (P.a-b) (that is, B = 0, B` = 0, ` = 1, ..., L);

• The linear homogeneous constraints (P.c) say that a feasible solution x to (P ) possesses
certain block-diagonal structure ∆ = {(mk, nk)}Kk=1 and impose no further restrictions on
x;

• The objective f(x) = f(x1, ..., xK) we are maximizing in (P ) is convex w.r.t. every one
of the diagonal blocks xk in a feasible (and thus block-diagonal) candidate solution x, the
remaining components being fixed.

Note that outlined assumptions are satisfied in all problems of quadratic optimization under
orthogonality constraints mentioned in the beginning of section 4. Now, given a feasible solution
x with components xk, k = 1, ..., K, purification converts x to a feasible solution x̂ with the same
or better value of the objective in such a way that x̂ is an “extreme point” feasible solution to
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(P ). The latter means that every component x̂k of x̂ satisfies the orthogonality relation, namely,
x̂kx̂

T
k = Imk

when mk ≤ nk and x̂T
k x̂k = Ink

when mk ≥ nk.
The conversion x 7→ x̂ takes K steps. At the first step, we represent x1 as a convex combina-

tion of a moderate number Q of matrices xq
1, q = 1, ..., Q, satisfying the orthogonality constraint

(this is possible and can be done efficiently, see below); note that every one of the Q candidate
solutions xq = (xq

1, x2, ..., xK) is feasible for (P ). We compute the value of f at these solutions
and find the one, let it be xq∗ , with the largest value of f . Since f(·, x2, ..., xK) is convex and
x1 is a convex combination of xq

1, q = 1, ..., Q, we have f(xq∗) ≥ f(x). Thus, we have found a
feasible solution x(1) = xq∗ to (P ) with the same or better value of the objective than the one at
x and with the first block satisfying the orthogonality constraint. Now we repeat this procedure
with x(1) in the role of x and x2 in the role of x1, thus getting a feasible solution x(2) which is
at least as good as x(1) in terms of the objective and has two blocks satisfying the orthogonality
constraints. Proceeding in this fashion, we in K steps end up with an extreme point feasible
solution x̂ = x(K) which is at least as good as x.

For the sake of completeness, we present here the standard algorithm for representing a given
µ × ν matrix z, ‖z‖ ≤ 1, as a convex combination of matrices satisfying the orthogonality
constraint. W.l.o.g., let us assume that µ ≥ ν, so that the orthogonality constraint requires
form a µ × ν matrix w to satisfy the relation wT w = Iν . We first find the singular value
decomposition z = UDiag{σ}V T , where V is orthogonal ν × ν matrix, σ ≥ 0 is the ν-
dimensional vector of singular values of z and the µ × ν matrix U satisfies the relation
UT U = Iν . Since ‖z‖ ≤ 1, we have 0 ≤ σi ≤ 1. Now observe that whenever γ ∈ Rν has
entries ±1, the matrix UDiag{γ}V T satisfies the orthogonality constraint. Thus, all we need
is to represent σ as a convex combination

∑
q

λqγ
q of a moderate number of vectors γq with

entries ±1, thus inducing the desired representation z =
∑
q

λqUDiag{γq}V T . A required

representation of σ is immediate. W.l.o.g. we may assume that σ1 ≤ σ2 ≤ ... ≤ σν . Let us
define ν + 1 ν-dimensional vectors δi as

δ1 = (1, ..., 1)T , δ2 = (0, 1, ..., 1)T , δ3 = (0, 0, 1, ..., 1)T , ..., δν+1 = (0, ..., 0)T ;

observe that δi is the half-sum of two vectors δi
± with coordinates ±1. The required repre-

sentation of σ is merely

σ =
ν+1∑

i=1

(σi − σi−1)δ
i =

ν+1∑

i=1

σi − σi−1

2
[δi

+ + δi
−]

(we have set σ0 = 0, σν+1 = 1). This representation involves Q = 2ν + 1 vectors with

coordinates ±1 (note that δ1
+ = δ1

−).

F. Finally, when f is affine in every one of xk (as it is the case in the Procrustes problem),
the purification can be simplified and improved – here we can at every step easily maximize f in
the block to be updated. To simplify notation, consider the first step. Given x2, ..., xK , we can
represent the affine function φ(y) = f(y, x2, ..., xK) of m1 × n1 matrix y as φ(y) = Tr(yaT ) + c
with a, c readily given by x2, ..., xK . Assuming w.l.o.g. that m1 ≥ n1, let us compute the
singular value decomposition a = UDiag{σ}V T of a, so that σ ≥ 0. It is immediately seen that
the maximum of φ(y) over y’s satisfying the constraint ‖y‖ ≤ 1 is equal to

∑
i

σi and is attained

at the matrix y∗ = UV T satisfying the orthogonality constraint; y∗ is clearly the best possible
extreme point updating of x1.

22



4.3 Numerical illustration: Procrustes problem

To illustrate the outlined considerations, we are about to present numerical results for the
Procrustes problem

Opt(Pr) = min
x[1],...,x[K]





∑

1≤k<k′≤K

‖a[k]x[k]− a[k′]x[k′]‖22 : x[k]xT [k] = In, k = 1, ..., K



 (Pr)

where a[·] are given N × n matrices. The problem is equivalent to the quadratic problem with
orthogonality constraints

max
x[1],...,x[K]



2

∑

1≤k<k′≤K

Tr(a[k]x[k]xT [k′]aT [k′]) : x[k]xT [k] = In, k = 1, ..., K



 ; (50)

as we have already explained, relaxing the orthogonality constraints in the latter problem to
‖x[k]‖ ≤ 1, we preserve the optimal value, so that (Pr) is equivalent to the problem

Opt(Pr+) = max
x[1],...,x[K]



2

∑

1≤k<k′≤K

Tr(a[k]x[k]xT [k′]aT [k′]) : ‖x[k]‖ ≤ 1, k = 1, ..., K



 (Pr+)

of the form of (P ); the optimal values in (Pr) and (Pr+) are linked by the relation

Opt(Pr) = (K − 1)
K∑

k=1

Tr(a[k]aT [k])

︸ ︷︷ ︸
C

−Opt(Pr+). (51)

In our experiments, we generated random instances of (Pr), solved the semidefinite relaxations
(SDP) of the resulting instances of (Pr+), thus obtaining upper bounds on the optimal values
of the latter instances (which, in turn, induce via (51) lower bounds on the optimal values in
(Pr)), and used the randomized algorithm outlined in item D, section 4.2.1, to get suboptimal
solutions to (Pr). The details are as follows.

Generating instances. Given “sizes” K, N, n of (Pr), we generated the data a[1], ..., a[K] of
(Pr) as follows: entries of a[1] were picked at random from the standard Gaussian distribution
N (0, 1), while the remaining matrices were generated as a[k] = a[1]Uk + εQk, 2 ≤ k ≤ K, with
randomly chosen orthogonal matrix Uk and random matrix Qk generated in the same fashion
as a[1]. The “closeness parameter” ε was chosen at random according to ε = exp{ξ} with ξ
uniformly distributed in [−3, 3]. The sizes K, n of (Pr) were limited by the necessity to end
up with semidefinite relaxation not too difficult for the SDP solver mincx (LMI Toolbox for
MATLAB) we used, which means at most 1000 – 1200 free entries in X. This restriction allows
to handle the sizes (K, n) with Kn ≤ 50 (see below). The column size N of a[·] was always set
to 20.

The relaxation of (Pr+) as given by the above construction is the semidefinite problem

Opt(SDP) = max
X





F (X) ≡ 2Tr(AX) :

X ≡ [Xkij,k′i′j′
]

k,k′≤K
i,i′,j,j′≤n

� 0

Sk(X) ≡
[

n∑
p=1

Xkpi,kpj

]

i,j≤n

� In, k ≤ K

Tk(X) ≡
[

n∑
p=1

Xkip,kjp

]

i,j≤n

� In, k ≤ K





(52)
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(see (SDP) and Remark 4.1), where A is the symmetric Kn2 ×Kn2 matrix with the entries

Akij,k′i′j′ =





1
2

N∑
`=1

a[k]`ia[k′]`i′ , j = j′ and k 6= k′

0, j 6= j′ or k = k′
. (53)

In fact (52) can be significantly simplified. Specifically, let us treat Kn×Kn symmetric matrices

Y as K ×K block matrices with n× n blocks Y k,k′
= [Y k,k′

ij ]ni,j=1, 1 ≤ k, k′ ≤ K, and consider
the semidefinite program

max
Y

{
G(Y ) = Tr(BY ) : Y = {Y k,k′} ∈ SKn, Y � 0, Y k,k � In, k = 1, ..., K

}
(54)

where B ∈ SKn is the block matrix with n×n blocks Bk,k′
=

{
aT [k]a[k′], k 6= k′

0, k = k′ , 1 ≤ k, k′ ≤

K. Note that the design dimension of (54) is less than the one of (52) by factor ≈ n2.

Lemma 5 Problems (52), (54) are equivalent to each other. Specifically, if a matrix X =
[Xkij,k′i′j′ ] is a feasible solution to (52), then the matrix Y = Y[X] ≡ {Y k,k′}Kk,k′=1 ∈ SKn given
by

Y k,k′

ii′ =
n∑

p=1

Xkip,k′i′p, 1 ≤ i, i′ ≤ n, 1 ≤ k, k′ ≤ K (55)

is a feasible solution to (54), and F (X) = G(Y ). Moreover, every feasible solution Y to (54) is
of the form Y[X] for an appropriate feasible solution X of (52).

Proof. Let X be a feasible solution to (52), Y = Y[X]. Then Y � 0. Indeed, since X � 0, we

have Xkij,k′i′j′ =
L∑

`=1
v`
kijv

`
k′i′j′ for appropriately chosen L and v`

kij . It follows that

Y ≡ Y[X] =
L∑

`=1

{



n∑

j=1

v`
kijv

`
k′i′j




i,i′

}Kk,k′=1

︸ ︷︷ ︸
Y `

;

it remains to note that the matrices Y ` are sums of dyadic matrices and thus are symmetric
positive semidefinite. Further, we have Tk(X) = Y k,k (see (52)), so that Y is feasible for (54).
The relation F (X) = G(Y ) is readily given by (55) and (53).

Now let Y = {Y k,k′}Kk,k′=1 be feasible for (54), and let us set

Xkij,k′i′j′ =
1

n
δj
j′Y

k,k′

ii′ (56)

(δp
q is the Kronecker symbol), so that Y = Y[X] by (55). It remains to prove that X is feasible

for (52). Indeed, X is the Kronecker product of positive semidefinite matrix Y and n−1In and
thus is positive semidefinite. Further, by (52) we clearly have Tk(X) = Y k,k � In, and

(Sk(X))jj′ =
n∑

p=1

Xkpj,kpj′ =
n∑

p=1

δj
j′

1

n
Y k,k

pp ⇒ Sk(X) =
Tr(Y k,k)

n
In � In,

where the concluding � is given by Y k,k � In (recall that Y is feasible for (54)).
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Remark 4.2 The origin of (54) is as follows. The objective in (Pr+) is a linear function of
the matrix products x[k]xT [k′], k, k′ = 1, ..., K, which are nothing but the blocks Y k,k′

in the

positive semidefinite block matrix Y = Y [x] =




x[1]
...

x[K]







x[1]
...

x[K]




T

∈ SKn, while the norm

bounds in (Pr+) translate into the constraints ‖Y k,k‖ ≤ 1. Thus, (54) is obtained from (Pr+) by
passing to Y -variable and subsequent eliminating the nonconvex constraint “Y should be Y [x]
for some x”.

Note that the outlined “recipe” for simplifying the semidefinite relaxation works in the case
of general problem (P ), provided that the constraints (P.c) say exactly that the structure of
(P ) is {(mk = µ, nk = ν)}Kk=1 and that the objective and the left hand sides in the constraints
(P.a − b) of (P ) are linear functions of the matrix products x[k]xT [k′], k, k′ = 1, ..., K. Note
also that under the latter assumptions the reasoning completely similar to the one in Lemma 5
demonstrates that the outlined simplification of (52) is in fact equivalent to (52).

Recovering suboptimal solutions to (Pr+), (Pr) was implemented according to the ran-
domized algorithm with purification outlined in section 4.2.1, items D, F. Specifically, after
(high-accuracy approximation to) optimal solution Y∗ of (54) was found, we “lifted” it, ac-
cording to (56), to an optimal solution X∗ of (52). Then we used X∗ to generate a sample of
M = 1000 feasible solutions x` = {x`

k}Kk=1 to (Pr+) as explained in item 4.2.1.D and purified
these solutions as explained in item 4.2.1.F, thus obtaining feasible solutions x̂` to (Pr+) which
satisfy the orthogonality constraints and thus are feasible for (50) and (Pr). The resulting sub-
optimal solution x̂ to (Pr) was the best (with the smallest value of the objective) of the feasible
solutions x̂`, ` = 1, ..., M . The value of the objective of (Pr) at x̂ is an upper bound Optup(Pr)
on Opt(Pr), while the value of the objective of (Pr+) at x̂ is a lower bound Optlw(Pr+) on the
optimal value of (Pr+). Thus, we end up with brackets

[L(Pr+), U(Pr+)] ≡ [Optlw(Pr+), Opt(SDP)],
[L(Pr), U(Pr)] ≡ [C −Opt(SDP), Optup(Pr)]

on the optimal values of (Pr+), (Pr), respectively, along with a feasible suboptimal solution x̂
to (Pr+), (Pr); the values of the objectives of (Pr+), (Pr) at x̂ are appropriate endpoints of the
corresponding brackets.

Sizes of instances. The design dimension of (54) is Kn(Kn+1)
2 ; in order for it to be at most

about 1200 (the limitation imposed by the SDP solver we used), Kn should be at most 50. In
our experiments, we used Pareto-maximal pairs (K, n) with Kn ≤ 50, specifically, the 10 pairs
(K = b50n c, n) given by n = 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, and for every pair solved 20 instances of
the corresponding sizes (which amounts to the total of 200 instances).

The results of our numerical experiments were surprisingly good, much better than one
could expect looking at the bound (32). Indeed, the latter bound guarantees that Opt(SDP) is
at most by factor Ω2 greater than Opt(Pr+), with Ω2 slowly growing with K, n and thus being
a “moderate” constant, provided that K, n are not too large2). As about (Pr), Proposition 6

2)For the values of K and m = n we used in our experiments, the bound (32) results in Ω2 varying from ≈ 243
(K = 3, n = 15) to ≈ 301 (K = 25, n = 2); more accurate (and more messy) numerics in the proof of Proposition
6 reduces the range of Ω2 for our K, n to [≈ 84,≈ 102].
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yields no bounds on the ratio of the true optimal value in (Pr) and its efficiently computable
lower bound C −Opt(SDP). The outlined theoretical guarantees, if any, are not too optimistic,
which is in sharp contrast with the actual numerical results we got. In 200 experiments we have

run, the largest relative error U(Pr+)−L(Pr+)

max[1,U(Pr+)]
in solving (Pr+) was as small as 9.0%, while the

largest relative error U(Pr)−L(Pr)
max[1,U(Pr)] in solving (Pr) was as small as 2.4%. These data correspond

to the best of the purified solutions x̂`. As far as problem (Pr+) is concerned, already the
unpurified solutions x` were not so bad: the relative error of the best, in terms of the objective,
of these solutions x̃ was at worst 62.2%. Thus, in our experiments we did not observe ratios
Opt(SDP)/Opt(Pr+) exceeding 1.09 (cf. with the theoretical upper bound ≈ 100 on this ratio).
The histograms of the relative errors are presented on Fig. 1. Fig. 2 presents an illustrative 3D
plot.
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