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Abstract

In this paper we study a special class of convex optimization problems called conically ordered
convex programs (COCP), where the feasible region is given as the level set of a vector-valued non-
linear mapping, expressed as a nonnegative combination of convex functions. The nonnegativity
of the vectors is defined using a pre-described conic ordering. The new model extends the ordinary
convex programming models where the feasible sets are the level sets of convex functions, and it
also extends the famous linear conic optimization models. We introduce a condition on the barrier
function for the order-defining cone, termed as the cone-consistent property. The relationship
between the cone-consistent barriers and the self-concordance barriers is investigated. We prove
that if the order-defining cone admits a self-concordant and cone-consistent barrier function, and
moreover, if the constraint functions are all convex quadratic then the overall composite barrier
function is self-concordant. The problem is thus solvable in polynomial time, following Nesterov
and Nemirovskii, by means of the path-following method. If the constraint functions are not
quadratic, but harmonically convex, then we propose a variant of Iri-Imai type potential reduction
method. In addition to the self-concordance and the cone-consistence conditions, we assume that
the barrier function for the order-defining cone has the property that the image of the cone under
its Hessian matrix is contained in its dual cone. All these conditions are satisfied by the familiar
self-scaled cones. Under these conditions we show that the Iri-Imai type potential reduction algo-
rithm converges in polynomial time. Duality issues related to this class of optimization problems
are discussed as well.
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1 The problem formulation

Let K ⊆ <l be a solid closed convex cone. Let hj ∈ K, j = 1, ..., k, and h0 ∈ <l. Consider the

following optimization problem, which we shall call conically ordered convex program (COCP) in this

paper,
(PK) minimize cT x

subject to Ax = b

h0 −
k∑

j=1

fj(x)hj ∈ K,

where A ∈ <m×n, c ∈ <n and b ∈ <m. If we use the conic ordering defined by K, i.e., for y, z ∈ <l,

y ¹K z if and only if z − y ∈ K, then (PK) can be written as

minimize cT x

subject to Ax = b
k∑

j=1

fj(x)hj ¹K h0.

Note that all the results in this paper straightforwardly extend to the setting where more than one

conic constraint are present, namely,

minimize cT x

subject to Ax = b
k∑

j=1

f i
j(x)hi

j ¹Ki hi
0, i = 1, ..., p.

To keep the analysis simple, however, we shall restrict ourselves to only one conic constraint in the

subsequent discussion. It is evident that (PK) is indeed a convex program as stated below.

Lemma 1.1 If fi’s are all convex functions, i = 1, ..., k, then (PK) is a convex program.

Since K is solid, i.e. K + (−K) = <l, and so any vector in <l can be written as difference of two

vectors in K. Therefore, the ordinary linear conic constraint h0 −
∑k

j=1 xjhj ∈ K, where hj ∈ <l

for all j, can be written as h0 −
∑k

j=1(xjh
+
j − xjh

−
j ) = h0 −

∑k
j=1 xjh

+
j −

∑k
j=1(−xj)h−j ∈ K, where

hj = h+
j − h−j and h+

j , h−j ∈ K for all j; the latter expression is in the form of COCP. Obviously, if

K = <l
+ and hj ’s are unit vectors, then (PK) is the usual convex program where the constraints are

given by inequalities: fj(x) ≤ 0, j = 1, ..., k.
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Another interesting special case of (PK) is the following

(P<l
+
) minimize cT x

subject to Ax = b
k∑

j=1

fj(x)hj ≤ h0

where fj(x) = eιTj x+ιj0 with ιj ∈ <n and ιj0 ∈ <, and hj ∈ <l
+, j = 0, 1, ..., k. This problem is known

as geometric program.

Note that in its original form, a general geometric program is given as

(GP ) minimize
m∑

j=1

cjf0j(t)

subject to
m∑

j=1

aijfij(t) ≤ bi, i = 1, ..., p

fij(t) = bi, i = p + 1, ..., p + q,

t1 > 0, ..., tn > 0

where cj > 0 and aij > 0 and fij(t) = t
ι
(ij)
1

1 · · · tι(ij)n
n , i = 0, 1, ..., p + q, j = 1, ..., m. Such fij(t)’s are

called monomials.

Using the variable transformation

x1 = log t1, x2 = log t2, ..., xn = log tn

the monomial fij(t) becomes e(ι(ij))T x where (ι(ij))T = [ι(ij)1 , · · · , ι(ij)n ], i = 0, 1, ..., p + q, j = 1, ..., m.

This way, (GP ) is transformed into a COCP problem (P<l
+
).

Next let us consider another special case of COCP

(PPSD) minimize cT x

subject to Ax = b

H0 −
k∑

j=1

fj(x)Hj º 0,

where H1 º 0, ..., Hk º 0 are l × l positive semidefinite matrices, and f1(x), ..., fk(x) are convex

functions.

Consider the following barrier function

F (x) = − log det(H0 −
k∑

j=1

fj(x)Hj) (1)
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for the cone of l × l positive semidefinite matrices S l
+.

A natural question to ask is: under what conditions is the barrier function F (x) defined in (1)

self-concordant? For details on the theory of self-concordant barriers, one is referred to the excel-

lent texts [5, 4, 7]. The notion of self-concordant barrier function was introduced by Nesterov and

Nemirovskii in their seminal work [5]. For convenience, we shall include the definition below.

First, a barrier (convex) function F (x) for the cone K is defined to have the property that F (x) < ∞
for all x ∈ int K, and F (xk) →∞ as xk → x̄ where x̄ is on the boundary of K. Moreover, it is called

self-concordant (Section 2.3.1 of [5]) if it further satisfies the property that

|∇3F (x)[u, u, u]| ≤ C1(∇2F (x)[u, u])3/2 (2)

and

|∇F (x)[u]| ≤ C2(∇2F (x)[u, u])1/2 (3)

for any x ∈ int K and any direction u ∈ <n. The positive constants C1 and C2 can be scaled

so as to have only one degree of freedom. Usually C1 is set to be 2 and C2 is referred to as the

complexity parameter of the cone K. As noted by Renegar [7] (see also [12]), just like convexity, the

self-concordant property is in fact a line property, meaning that if a function is self-concordant along

every line (thus one-dimensional) restricted to its domain then the function is self-concordant in the

whole domain, and vice versa.

For this purpose, let us consider a given x in the interior of the feasible domain of (PPSD), and u ∈ <n

be any given direction. Consider the one-dimensional function

X(t) := H0 −
k∑

j=1

fj(x + tu)Hj

in the domain that X(t) Â 0. Obviously,

X ′(t) = −
k∑

j=1

∇fj(x + tu)[u]Hj = −
k∑

j=1

∇fj(x + tu)T uHj ,

X ′′(t) = −
k∑

j=1

∇2fj(x + tu)[u, u]Hj = −
k∑

j=1

uT∇2fj(x + tu)uHj ¹ 0,

X ′′′(t) = −
k∑

j=1

∇3fj(x + tu)[u, u, u]Hj ,

and

[X(t)−1]′ = −X(t)−1X ′(t)X(t)−1.
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Let

f(t) = − log detX(t).

Applying the chain-rule to the composite function f(t) we get

f ′(t) = −tr
(
X(t)−1X ′(t)

)
(4)

f ′′(t) = tr
(
X(t)−1X ′(t)X(t)−1X ′(t)

)
− tr

(
X(t)−1X ′′(t)

)
(5)

f ′′′(t) = 3tr
(
X(t)−1X ′′(t)X(t)−1X ′(t)

)
− 2tr

(
X(t)−1X ′(t)

)3 − tr
(
X(t)−1X ′′′(t)

)
. (6)

Theorem 1.2 If fj(x)’s, j = 1, ..., k, are convex and quadratic functions, then F (x) as defined in

(1) is a self-concordant barrier.

Proof. As discussed before, we need only to verify the self-concordant condition along a given line.

Let

M1 := X(t)−1/2X ′(t)X(t)−1/2 and M2 := −X(t)−1/2X ′′(t)X(t)−1/2 º 0. (7)

It follows from (4), (5) and (6) respectively that

f ′(t) = trM1, (8)

f ′′(t) = trM2
1 + trM2 = ‖M1‖2

F + ‖M1/2
2 ‖2

F , (9)

and

f ′′′(t) = −3tr M1M2 − 2trM3
1 − tr

(
X(t)−1X ′′′(t)

)
. (10)

By the Cauchy-Schwarz inequality, we have

|f ′(t)| = |trM1| ≤
√

l(trM2
1 )1/2 ≤

√
l(f ′′(t))1/2

which is (3) with C2 =
√

l.

Since fj ’s are all quadratic, we have X ′′′(t) ≡ 0 and so (10) reduces to

f ′′′(t) = −3tr M1M2 − 2trM3
1 . (11)

Clearly, |trM3
1 |1/3 ≤ (trM2

1 )1/2 ≤ (f ′′(t))1/2. Hence,

|trM3
1 | ≤ (f ′′(t))3/2. (12)
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Moreover,

|trM1M2| ≤ ‖M1‖F ‖M2‖F

≤ ‖M1‖F ‖M1/2
2 ‖2

F

≤ 1√
3

(
‖M1‖2

F + ‖M1/2
2 ‖2

F

)3/2

=
1√
3
(f ′′(t))3/2, (13)

where the last step is due to (9). Therefore, from (11), (12) and (13) we obtain

|f ′′′(t)| ≤ (2 +
√

3)(f ′′(t))3/2,

which is (2) with C1 = 2 +
√

3. Q.E.D.

In case all fj ’s are affine linear, we have M2 = 0, and |f ′′′(t)| ≤ 2(f ′′(t))3/2, which corresponds to

the well-known fact that the logarithmic determinant barrier is self-concordant for Linear Matrix

Inequalities.

We note that if all fj ’s are convex quadratic functions then the feasible set of (PPSD) can also be

described by an enlarged system of linear matrix inequalities using Schur’s complement lemma. In

particular, suppose that fj(x) =
∑n

i=1(q
T
ijx− qi)2 + q0j , j = 1, ..., k. Then, H0 −

∑k
j=1 fj(x)Hj º 0 if

and only if



H0 −
k∑

j=1

q0jHj (qT
11x− q1)H

1/2
1 · · · (qT

21x− q2)H
1/2
2 · · · (qT

nkx− qn)H1/2
k

(qT
11x− q1)H

1/2
1 I 0 0 0 0

... 0 I 0 0 0

...
...

...
...

...
...

(qT
nkx− qn)H1/2

k 0 0 0 0 I




º 0.

However, the complexity parameter of the resulting LMI system becomes
√

(kn + 1)l, instead of
√

l.

2 The cone-consistent barriers

The aim of this section is to derive the essential and general property of the barrier function that

enabled Theorem 1.2 in the previous section.

6



Let us call a barrier function F (x) to be consistent with the cone K (denoted as C3-consistent in the

sequel) if it satisfies the following condition:
(
∇2F (x)[u, u]

)1/2 ≤ −C3∇F (x)[u] (14)

for all x ∈ int K and u ∈ K, where C3 > 0 is a parameter.

It is obvious that if K = <n
+ and F (x) = −∑n

i=1 log xi then

(
∇2F (x)[u, u]

)1/2
=

√√√√
n∑

i=1

u2
i

x2
i

≤
n∑

i=1

ui

xi
= −∇F (x)[u]

for x > 0 and u ≥ 0. So (14) is satisfied with C3 = 1.

It is easy to verify that (14) is also satisfied by the logarithmic determinant barrier function for the

positive semidefinite matrix cone. Similarly, it can be shown that the additional inequality (14) is

satisfied by all self-scaled barrier functions for the self-scaled cones (see Nesterov and Todd [6]) with

C3 = 1; in a different but equivalent framework, the self-scaled barrier function is the log determinant

barrier for the symmetric cones (see Faybusovich [1] or Sturm [8, 9]).

One may therefore think that (14) is a property of the self-scaled cones only. However, this guess is

incorrect. Let us consider the following cone in <3 as an epigraph of the l4-norm in <2:

K4 :=








x1

x2

x3




∣∣∣∣∣∣∣∣
x1 ≥ 0, x4

1 − (x4
2 + x4

3) ≥ 0





.

The above cone is not self-scaled. Also, the barrier function B4(x) = − log
(
x4

1 − (x4
2 + x4

3)
)

is not

self-concordant, but it satisfies (14) with C3 = 1. To see this, consider x = [x1, x2, x3]T ∈ int K4. We

denote b4(x) = x4
1 − (x4

2 + x4
3) > 0 and compute that

∇B4(x) = − 1
b4(x)




4x3
1

−4x3
2

−4x3
3




and

∇2B4(x) = ∇B4(x)∇B4(x)T − 12
b4(x)




x2
1 0 0
0 −x2

2 0
0 0 −x2

3


 .

Take any y = [y1, y2, y3]T ∈ K4. We have

yT∇2B4(x)y = (−〈∇B4(x), y〉)2 − 12
b4(x)

(
x2

1y
2
1 − x2

2y
2
2 − x2

3y
2
3

)
.
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Since x2
1 >

√
x4

2 + x4
3 and y2

1 ≥
√

y4
2 + y4

3, we have

x2
1y

2
2 ≥

√
(x4

2 + x4
3)(y

4
2 + y4

3)

≥
√

x4
2y

4
2 + x4

2y
4
3 + x4

3y
4
2 + x4

3y
4
3

≥
√

x4
2y

4
2 + 2x2

2y
2
2x

2
3y

2
3 + x4

3y
4
3

= x2
2y

2
2 + x2

3y
2
3.

Therefore,

yT∇2B4(x)y ≤ (−〈∇B4(x), y〉)2 .

Inequality (14) thus holds for the barrier function B4(x) with C3 = 1.

One may also suspect that the cone consistence condition (14) is implied by the self-concordance

property. However, again this is not the case. In Zhang [12] it is shown that if b(x) is a convex

quadratic function in <n, then the barrier function Bh(x̄) = − log(q− pb(x/p)) is a 1-logarithmically

homogeneous self-concordant barrier for the convex cone

Kh = cl





x̄ =




p

q

x


 ∈ <++ ×<×<n

∣∣∣∣∣∣∣∣
q − pb(x/p) ≥ 0





.

Consider y = [1, 1 + b(0), 0T ]T ∈ int Kh, and x̄ ∈ int Kh. One computes that

∇Bh(x̄) = − 1
q − pb(x/p)



−b(x/p) +∇b(x/p)T (x/p)

1
−∇b(x/p)




and

∇2Bh(x̄) =
1

(q − pb(x/p))2



−b(x/p) +∇b(x/p)T (x/p)

1
−∇b(x/p)


 ·



−b(x/p) +∇b(x/p)T (x/p)

1
−∇b(x/p)




T

+
1

p(q − pb(x/p))




(x/p)T∇2b(x/p)(x/p) 0 −(x/p)T∇2b(x/p)
0 0 0

−∇2b(x/p)(x/p) 0 ∇2b(x/p)


 .

Therefore,

−〈∇Bh(x̄), y〉 =
1 + b(0)− b(x/p) +∇b(x/p)T (x/p)

q − pb(x/p)
> 0 (15)
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and

∇2Bh(x̄)[y, y] = (−〈∇Bh(x̄), y〉)2 +
(x/p)T∇2b(x/p)(x/p)

p(q − pb(x/p))
. (16)

Thus, from (15) and (16) we have

∇2Bh(x̄)[y, y]
(−〈∇Bh(x̄), y〉)2 = 1 +

q − pb(x/p)
p

× (x/p)T∇2b(x/p)(x/p)
(1 + b(0)− b(x/p) +∇b(x/p)T (x/p))2

.

The above quantity can not be uniformly bounded from above for all x̄ ∈ int Kh if b(x) is strictly

convex, because q can take arbitrarily large value while p and x are fixed. This implies that for the

barrier function Bh(x̄), the cone-consistence condition (14) is not satisfied, although the function is

self-concordant and 1-logarithmically homogeneous.

These two examples show that the new condition (14) is a related but different property as compared

with the self-concordance property, the self-scaled property, or the logarithmic homogeneous property

of the barrier functions.

Consider (PK). Let F (·) be a consistent self-concordant barrier function for the cone K satisfying

(2), (3) and (14) altogether.

Let

p(x) := h0 −
k∑

j=1

fj(x)hj ∈ int K

and

f(x) := F (p(x)). (17)

Let ξ ∈ <n be any given direction. For a chosen coordinate system we have

∇f(x)[ξ] = 〈∇F (p(x)),−
k∑

j=1

(∇fj(x)T ξ)hj〉. (18)

Consequently, by the chain-rule,

∇2f(x)[ξ, ξ] =

∇2F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]− 〈∇F (p(x)),
k∑

j=1

(ξT∇2fj(x)ξ)hj〉 (19)

and

∇3f(x)[ξ, ξ, ξ] = ∇3F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]

+3∇2F (p(x))[
k∑

j=1

(ξT∇2fj(x)ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]
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−
〈

k∑

j=1

∇3fj(x)[ξ, ξ, ξ]hj ,∇F (p(x))

〉
. (20)

Since fj ’s are convex functions, ξT∇2fj(x)ξ ≥ 0 for all j = 1, ..., k, and so

k∑

j=1

(ξT∇2fj(x)ξ)hj ∈ K.

Moreover, because −∇F (p(x)) ∈ int K∗ we obtain

∇2f(x)[ξ, ξ] ≥ ∇2F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]

≥ 1
C2

2

〈∇F (p(x)),−
k∑

j=1

(∇fj(x)T ξ)hj〉2

=
1

C2
2

|∇f(x)[ξ]|2 (21)

which is the second inequality required by the self-concordance (3).

Therefore we can use condition (14) to obtain from (19) that

∇2f(x)[ξ, ξ] ≥ ∇2F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]

+
1
C3

√√√√√∇2F (p(x))[
k∑

j=1

(ξT∇2fj(x)ξ)hj ,
k∑

j=1

(ξT∇2fj(x)ξ)hj ]. (22)

Denote

d1 :=
(
∇2F (p(x))

)1/2
k∑

j=1

(∇fj(x)T ξ)hj

and

d2 :=
(
∇2F (p(x))

)1/2
k∑

j=1

(ξT∇2fj(x)ξ)hj .

We rewrite (22) as

∇2f(x)[ξ, ξ] ≥ ‖d1‖2 +
1
C3
‖d2‖ ≥

[
3

(‖d1‖ · ‖d2‖
C3

)2
] 1

3

. (23)

Theorem 2.1 Suppose that F (·) is a self-concordant barrier function for K, and moreover it is

consistent with K. Suppose that fj(x)’s are convex quadratic functions, j = 1, ..., k. Then f(x) as

defined in (17) is a self-concordant barrier function for (PK).
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Proof. If fj ’s are all quadratic functions then it follows from (20) that

|∇3f(x)[ξ, ξ, ξ]| ≤ C1(∇2f(x)[ξ, ξ])3/2 + 3dT
1 d2

≤ C1(∇2f(x)[ξ, ξ])3/2 + 3‖d1‖‖d2‖
≤ C1(∇2f(x)[ξ, ξ])3/2 + C3

√
3(∇2f(x)[ξ, ξ])3/2

= (C1 + C3

√
3)(∇2f(x)[ξ, ξ])3/2, (24)

where the third inequality is due to (23). Inequalities (24) and (21) show the self-concordance of the

function f(x). Q.E.D.

3 A potential reduction approach

Theorem 2.1 suggests that if the conic barrier F is self-concordant and consistent with the cone, and

fj ’s are all convex quadratic, then the composite barrier function f is self-concordant. Therefore we

can apply the general theory of self-concordant barriers developed by Nesterov and Nemirovskii [5].

However, there are interesting cases that are not included in this model. Consider for instance the

following geometric semidefinite program:

(PPSD) minimize f0(t)
subject to li ≤ fi(t) ≤ ui, i = 1, ..., k + m

tj > 0, j = 1, ..., n

H0 −
k∑

j=1

fj(t)Hj º 0,

where H1 º 0, ..., Hk º 0 are l×l positive semidefinite matrices, and fi(t) = tιi11 · · · tιin is a monomial,

i = 1, ..., k + m. After the variable transformation xj = log tj , j = 1, ..., n, the above problem can be

turned into
(PPSD) minimize ιT0 x

subject to log li ≤ ιTi x ≤ log ui, i = 1, ..., k + m

H0 −
k∑

j=1

eιTj xHj º 0.

Clearly, (PPSD) is a conically ordered convex program. Unfortunately, in this case, the function

eιTj x is not quadratic, and so Theorem 2.1 does not apply: the barrier function f(x) is not self-

concordant in general. However, eιTj x’s are still well structured. In the above particular case,∇2eιTj x =

eιTj xιjι
T
j . Therefore, it holds that ∇2eιTj x ¹ λ∇2eιTj y for all x and y in its feasible region, where

λ = max{u1/l1, ..., uk/lk}.
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This example motivates us to study algorithms that can solve the COCP problems without an

overall easy computable self-concordant barriers. As a matter of fact, most known interior point

methods for nonlinear convex programs with provable polynomial-time computational complexities

are constructed within the framework of the central-path following using a self-concordant barrier

function, except for a perhaps less known member of the IPM family called the Iri-Imai method [3],

which is a variant of the potential reduction method. Zhang [11], and Sturm and Zhang [10] studied

the Iri-Imai method (or the potential reduction method) applied to the so-called harmonically convex

programs, and show that such algorithms also run in polynomial time. The main proof techniques

in [11], and also proofs in this section, are inspired by a paper of Iri [2].

In this section, we shall study an Iri-Imai type potential reduction method for the conically ordered

convex program (PK). First we mention the notion of harmonically convex functions; see [11].

Definition 3.1 A twice differentiable function f(·) is called λ-harmonically convex on the convex

domain Ω if there is a constant λ such that 0 ¹ ∇2f(x) ¹ λ∇2f(y) holds for all x, y ∈ Ω.

It is easy to see that if λ > 0 then 1
λ∇2f(y) ¹ ∇2f(x) ¹ λ∇2f(y) for all x, y ∈ Ω. Obviously,

the affine linear functions (0-harmonically convex), the convex quadratic functions (1-harmonically

convex), and the strongly convex functions, are all examples of harmonically convex functions. It is

shown in [11] that the (direct) sum of these functions characterizes the whole class of harmonically

convex functions. If a convex program is to minimize a harmonically convex objective function,

subject to harmonically convex inequality constraints, then [11] and [10] show that such problem

can be solved by Iri-Imai type potential reduction algorithms in polynomial time. Note that even if

f(x) is harmonically convex and negative on a domain Ω, it does not follow that − log(−f(x)) is self-

concordant. Consider for example f(x1, x2) = −x1+x2
2+sin(x2), which is the sum of two harmonically

convex functions, −x1 and x2
2+sin(x2), hence harmonically convex. However, − log(x1−x2

2−sin(x2))

is not self-concordant.

Consider (PK). Let F (·) be a barrier function for K. Moreover, let us impose the following conditions.

Condition 3.1 F (·) is ν-logarithmically homogeneous for K, namely

F (ty) = F (y)− ν log t

for all y ∈ int K and t > 0.

It is well known (see e.g. [5]) that if F is ν-logarithmically homogeneous for K, then the following

12



identities hold where y ∈ int K and t > 0:

∇F (ty) =
1
t
∇F (y); (25)

∇2F (ty) =
1
t2
∇2F (y); (26)

∇2F (y)y = −∇F (y); (27)

(∇F (y))T y = −ν. (28)

Condition 3.2 F (·) is a self-concordant barrier function for K. In particular, the following two

inequalities hold

|∇3F (y)[u, u, u]| ≤ 2(∇2F (y)[u, u])3/2

and

|∇F (y)[u]| ≤ √
ν(∇2F (y)[u, u])1/2,

for all y ∈ int K and u ∈ span K.

Notice that the second inequality in Condition 3.2 follows from (27), (28), and also the Cauchy-

Schwarz inequality; it is in fact implied by Condition 3.1.

Like (17), denote

f(x) := F (p(x)),

with p(x) = h0 −
∑k

j=1 fj(x)hj . Clearly, f(·) is a barrier function for the feasible set for (PK).

Lemma 3.2 Suppose that F (·) is a ν-logarithmically homogeneous barrier function for K (Condi-

tion 3.1). Denote F to be the feasible set for (PK). Then

|f(x)[ξ]| ≤ √
ν

(
∇2f(x)[ξ, ξ]

)1/2

for all x ∈ rel int F and ξ ∈ <n.

Proof. As x ∈ rel int F we have p(x) = h0 −
∑k

j=1 fj(x)hj ∈ int K.

Relations (18) and (19) give that

∇f(x)[ξ] = 〈∇F (p(x)),−
k∑

j=1

(∇fj(x)T ξ)hj〉

13



and

∇2f(x)[ξ, ξ] = ∇2F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]− 〈∇F (p(x)),
k∑

j=1

(ξT∇2fj(x)ξ)hj〉.

Since −∇F (p(x)) ∈ K∗ and
∑k

j=1(ξ
T∇2fj(x)ξ)hj ∈ K due to the convexity of fj ’s, we obtain from

the above equation that

∇2f(x)[ξ, ξ] ≥ ∇2F (p(x))[
k∑

j=1

(∇fj(x)T ξ)hj ,
k∑

j=1

(∇fj(x)T ξ)hj ]

≥ 1
ν
|〈∇F (p(x)),−

k∑

j=1

(∇fj(x)T ξ)hj〉|2

=
1
ν
|f(x)[ξ]|2,

where the second step is due to Condition 3.1.

Q.E.D.

Suppose that (PK) has a finite optimal value denoted by v∗. Let v ≤ v∗. For a give parameter γ > 0,

let us introduce

G(x; v) := (cT x− v)γ exp(f(x)). (29)

Note that G(x; v) is an extension of the so-called multiplicative barrier function of Iri and Imai;

see [3]. The following theorem extends Iri and Imai’s result.

Theorem 3.3 Suppose that F (·) is a ν-logarithmically homogeneous barrier function for K (Condi-

tion 3.1). If γ ≥ ν + 1 then G(x; v) is a convex function on int F ; if γ > ν + 1 then G(x; v) is a

strictly convex function on int F .

Proof. Differentiation yields

1
G(x; v)

∇G(x; v) =
γ

cT x− v
c +∇f(x) (30)

1
G(x; v)

∇2G(x; v) =
1

G(x; v)2
∇G(x; v)∇G(x; v)T − γ

(cT x− v)2
ccT +∇2f(x). (31)

Take any 0 6= η ∈ <n. Denote a := cT η/(cT x − v), b := ηT∇f(x) and e := ηT∇2f(x)η > 0. By

Lemma 3.2 we have e ≥ b2/ν. Using (30) and (31) it follows that

1
G(x; v)

ηT∇2G(x; v)η = (γa + b)2 − γa2 + e

14



= (γ2 − γ)a2 + 2γab + b2 + e

≥ (γ2 − γ)a2 + 2γab + (1 + 1/ν)b2.

The last expression is a quadratic form with respect to a and b, which is nonnegative as its discriminant

is γ2−(γ2−γ)(1+1/ν) = γ(ν+1−γ)/ν ≤ 0. The quantity ηT∇2G(x; v)η is strict positive if γ > ν+1,

because in this case the discriminant of the quadratic form is negative while e > 0. The theorem is

thus proven. Q.E.D.

For simplicity of the analysis, from now on we shall set γ to be ν +
√

ν.

Condition 3.3 F (·) is κ-consistent (κ > 0) with the cone K, i.e.,
(
∇2F (y)[u, u]

)1/2 ≤ −κ∇F (y)[u]

for all y ∈ int K and u ∈ K.

Condition 3.4 All fj(·)’s, j = 1, ..., k, are harmonically convex on F . In particular, there is λ > 0

such that

∇2fj(x) ¹ λ∇2fj(x)

for all x, y ∈ F and j = 1, ..., k.

Condition 3.5 F (·) satisfies ∇2F (y)[u, v] ≥ 0 for all y ∈ int K and u, v ∈ K. In other words,

∇2F (y)K ⊆ K∗ for all y ∈ int K.

A few comments are in order here, concerning the last condition. If K is a self-scaled cone and

F (·) is the corresponding self-scaled barrier function, then as a part of the definition it holds that

∇2F (y)K = K∗ for all y ∈ int K. In that respect, Condition 3.5 is naturally satisfied by all self-

scaled cones with the corresponding self-scaled barrier functions. Thus, one may conjecture that

Condition 3.5 is satisfied if and only if K is a self-scaled cone. However, this is not the case. The key

is that we only require ∇2F (y)K ⊆ K∗ here, rather than ∇2F (y)K = K∗ for all y ∈ int K. In fact, K
can be any pointed closed convex cone. To see this, let C be a second order cone that properly (strictly)

contain K. Therefore, C∗ is (strictly) properly contained in K∗. Let Fc be the corresponding self-scaled

barrier function for C. Thus, for any y ∈ int K ⊂ int C we have ∇2Fc(y)K ⊂ ∇2Fc(y)C = C∗ ⊂ K∗.
For a given barrier function F (·) for K, consider Fµ(·) := F (·)+µFc(·), where µ > 0 is a given constant.

Clearly, Fµ(·) is also a barrier function for K. If µ is chosen sufficiently large then ∇2Fµ(y)K ⊆ K∗
for any y ∈ int K.
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Lemma 3.4 Suppose that F (·) satisfies Condition 3.5, and vi, i = 1, ..., m, are m arbitrary vectors

in K. Let y ∈ int K and ∇2F (y) Â 0 and ‖x‖∇2F (y) :=
√

xT∇2F (y)x. Then,

max





∥∥∥∥∥
m∑

i=1

tivi

∥∥∥∥∥
∇2F (y)

∣∣∣∣∣∣
0 ≤ ti ≤ t̂i, i = 1, ..., m



 =

∥∥∥∥∥
m∑

i=1

t̂ivi

∥∥∥∥∥
∇2F (y)

.

Proof. Under Condition 3.5, we have vT
i ∇2F (y)vj ≥ 0 for any i and j. The lemma is obvious since

∥∥∥∥∥
m∑

i=1

tivi

∥∥∥∥∥
2

∇2F (y)

=
m∑

i,j=1

titjv
T
i ∇2F (y)vj .

Q.E.D.

Theorem 3.5 Suppose that F (·) satisfies Conditions 3.1, 3.3, and 3.5, and fj(·)’s, j = 1, ..., k,

satisfy Condition 3.4. Let x ∈ rel int F be any feasible but non-optimal point. Let γ = ν +
√

ν. Let

the Newton direction at x be

dN (x) := −
(
∇2G(x; v∗)

)−1∇G(x; v∗).

Then

−∇G(x; v∗)T dN (x)/G(x; v∗) = ∇G(x; v∗)T
(
∇2G(x; v∗)

)−1∇G(x; v∗)/G(x; v∗) ≥ δ,

where δ := 1/
√

2 + 2κ2 + 2λκ > 0.

Proof. Let

δ(x) := ∇G(x; v∗)T
(
∇2G(x; v∗)

)−1∇G(x; v∗)/G(x; v∗).

Since ∇2G(x; v∗) Â 0, by the Cauchy-Schwarz inequality we know that for any η 6= 0 it holds
√

δ(x) ≥ ∇G(x; v∗)T η/G(x; v∗)√
ηT∇2G(x; v∗)η/G(x; v∗)

. (32)

Let us take η = x−x∗ 6= 0. Then, noting cT (x−x∗)/(cT x− v∗) = 1 and using (30) and (31) we have

∇G(x; v∗)T (x− x∗)/G(x; v∗) = γ +∇f(x)T (x− x∗). (33)

By the mean-value theorem, there is x̃j between x and x∗, j = 1, ..., k, such that

p(x)− p(x∗) = −
k∑

j=1

∇fj(x)T (x− x∗)hj +
1
2

k∑

j=1

(x− x∗)T∇2fj(x̃j)(x− x∗)hj .
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By letting

ũ =
1
2

k∑

j=1

(x− x∗)T∇2fj(x̃j)(x− x∗)hj ∈ K (34)

we have

∇f(x)T (x− x∗) = ∇F (p(x))[−
k∑

j=1

∇fj(x)T (x− x∗)hj ]

= ∇F (p(x))[p(x)− p(x∗)− ũ]

= −ν −∇F (p(x))[p(x∗) + ũ], (35)

where in the last step we used the property (28).

Using the estimation (35) in (33) and the fact that p(x), p(x∗), ũ ∈ K we have

∇G(x; v∗)T (x− x∗)/G(x; v∗) =
√

ν −∇F (p(x))[p(x∗) + ũ]

≥ √
ν + (1/κ)

√
∇2F (p(x))[p(x∗) + ũ, p(x∗) + ũ]. (36)

Similarly, since −∇F (p(x))[p(x∗)] ≥ 0, we have

∇G(x; v∗)T (x− x∗)/G(x; v∗) ≥ √
ν −∇F (p(x))[ũ] ≥ √

ν + (1/κ)
√
∇2F (p(x))[ũ, ũ]. (37)

On the other hand,

(x− x∗)T∇2G(x; v∗)(x− x∗)/G(x; v∗)−
(
∇G(x; v∗)T (x− x∗)/G(x; v∗)

)2

= −γ + (x− x∗)T∇2f(x)(x− x∗)

= −γ +∇2F (p(x))[
k∑

j=1

∇fj(x)T (x− x∗)hj ,
k∑

j=1

∇fj(x)T (x− x∗)hj ]

−∇F (p(x))[
k∑

j=1

(x− x∗)T∇2fj(x)T (x− x∗)hj ]

≤ −γ +∇2F (p(x))[p(x)− p(x∗)− ũ, p(x)− p(x∗)− ũ]

+
√

ν

√√√√√∇2F (p(x))[
k∑

j=1

(x− x∗)T∇2fj(x)T (x− x∗)hj ,
k∑

j=1

(x− x∗)T∇2fj(x)T (x− x∗)hj ]

≤ −γ + 2
(
∇2F (p(x))[p(x), p(x)] +∇2F (p(x))[p(x∗) + ũ, p(x∗) + ũ]

)
+ 2λ

√
ν
√
∇2F (p(x))[ũ, ũ]

≤ −γ + 2ν + 2κ2
(
∇G(x; v∗)T (x− x∗)/G(x; v∗)

)2
+ 2λκ

√
ν

(
∇G(x; v∗)T (x− x∗)/G(x; v∗)

)

≤ (1 + 2κ2 + 2λκ)
(
∇G(x; v∗)T (x− x∗)/G(x; v∗)

)2
, (38)
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where the first step is due to (31) (pre and post multiplying both sides by (x − x∗)T and x − x∗

respectively), and at the fourth step we used (x−x∗)T∇2fj(x)T (x−x∗) ≤ λ(x−x∗)T∇2fj(x̃j)T (x−x∗),

j = 1, ..., k, due to Condition 3.4, and then applied Lemma 3.4, and finally at the fifth and the sixth

steps we used (36) and (37).

The theorem follows by combining (32) and (38) to obtain δ(x) ≥ δ. Q.E.D.

Now let us study the effect of applying the Newton method (with line-minimization) to reduce the

value of G(x; v) where v ≤ v∗. Denote

d := −
(
∇2G(x; v)

)−1∇G(x; v).

Multiplying dT on both sides of (30), and pre-multiplying dT and post-multiplying d on both sides

of (31), and denoting a := cT d/(cT x − v) and, if there is no confusion, still denoting δ(x) :=

∇G(x; v)T
(∇2G(x; v)

)−1∇G(x; v)/G(x; v), we obtain

−δ(x) = γa + dT∇f(x) (39)

δ(x)− δ(x)2 = −γa2 + dT∇2f(x)d. (40)

Eliminating a from (39) and (40) we get

γδ(x)(1− δ(x)) + (δ(x) + dT∇f(x))2 = γdT∇2f(x)d. (41)

Relations (18) and (19) yield

∇f(x)T d = ∇F (p(x))[−
k∑

j=1

dT∇fj(x)hj ] (42)

dT∇2f(x)d = ∇2F (p(x))[
k∑

j=1

dT∇fj(x)hj ,
k∑

j=1

dT∇fj(x)hj ]

−∇F (p(x))[
k∑

j=1

dT∇2fj(x)dhj ]. (43)

Since F (·) is ν-logarithmically homogeneous and fj ’s are convex, we obtain from (41) and (43) that

γδ(x)(1− δ(x)) + (δ(x) + dT∇f(x))2 ≥ γ∇2F (p(x))[
k∑

j=1

dT∇fj(x)hj ,
k∑

j=1

dT∇fj(x)hj ]

≥ γ

ν


∇F (p(x))[−

k∑

j=1

dT∇fj(x)hj ]




2

=
γ

ν

(
dT∇f(x)

)2
. (44)
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Noting that γ = ν +
√

ν, because dT∇f(x) is a real number, checking the discriminant of the above

quadratic inequality in terms of dT∇f(x) we conclude that

δ(x) ≤ ν +
√

ν

ν − 1
. (45)

The quadratic inequality (44) can be rearranged as

α1(x) ≤ dT∇f(x) ≤ α2(x), (46)

with

α1(x) :=
√

νδ(x)−
√√

ν (γ − (ν − 1)δ(x)) δ(x)

α2(x) :=
√

νδ(x) +
√√

ν (γ − (ν − 1)δ(x)) δ(x).

Simplifying, we get

α2(x) ≤ ν + ν
√

ν

ν − 1
+

ν +
√

ν

2

√ √
ν

ν − 1
=: α2 and |α1(x)| ≤ α2(x) ≤ α2.

Now we use the κ-consistency, Condition 3.3, to obtain from (41) and (43) that

1
κ

√√√√√∇2F (p(x))[
k∑

j=1

dT∇2fj(x)dhj ,
k∑

j=1

dT∇2fj(x)dhj ]

≤ −∇F (p(x))[
k∑

j=1

dT∇2fj(x)dhj ]

≤ dT∇2f(x)d

=
γδ(x)(1− δ(x)) + (δ(x) + dT∇f(x))2

γ

≤ γδ(x) + 2δ(x)2 + 2(dT∇f(x))2

γ

≤
γ2

ν−1 + 2 γ2

(ν−1)2
+ 2α2

2

γ
=: α3, (47)

where the second step is due to (43), the third step is due to (41), and the last step is due to (45)

and (46).

This yields

∇2F (p(x))[
k∑

j=1

dT∇2fj(x)dhj ,
k∑

j=1

dT∇2fj(x)dhj ] ≤ κ2α2
3. (48)
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Along the same line, from (43) and (47) we get

∇2F (p(x))[
k∑

j=1

dT∇fj(x)hj ,
k∑

j=1

dT∇fj(x)hj ] ≤ dT∇2f(x)d ≤ α3. (49)

Consider an iterative point x + td along the Newton direction d with step size t > 0. Using the

mean-value theorem, there are x̃j ∈ [x, x + td], j = 1, ..., k, such that

p(x + td)− p(x) = −
k∑

j=1

(fj(x + td)− fj(x))hj

= −t
k∑

j=1

dT∇fj(x)hj − t2

2

k∑

j=1

dT∇2fj(x̃j)dhj . (50)

Let ũ :=
∑k

j=1 dT∇2fj(x̃j)dhj .

Remember that the norm induced by the Hessian of F at y is denoted by ‖u‖∇2F (y) =
√

uT∇2F (y)u.

The lemma below is well known and it is a crucial property of the self-concordant barrier functions;

see [4] and [7].

Lemma 3.6 Suppose that F (·) is self-concordant, i.e., it satisfies Condition 3.2. Suppose that p(x) ∈
int K. If ‖y − p(x)‖∇2F (p(x)) < 1 then y ∈ int K. Moreover,

‖u‖∇2F (y) ≤
‖u‖∇2F (p(x))

1− ‖y − p(x)‖∇2F (p(x))
,

for all u.

In this notation, (48) can be written as
∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x)dhj

∥∥∥∥∥∥∇2F (p(x))

≤ κα3, (51)

and (49) as ∥∥∥∥∥∥

k∑

j=1

dT∇fj(x)hj

∥∥∥∥∥∥∇2F (p(x))

≤ √
α3. (52)

Lemma 3.7 Suppose that F (·) satisfies Conditions 3.1, 3.2, 3.3, and 3.5, and fj(·)’s, j = 1, ..., k,

satisfy Condition 3.4. Let x ∈ rel int F be any feasible but non-optimal point. Let γ = ν +
√

ν. Let

the Newton direction at x be d = − (∇2G(x; v)
)−1∇G(x; v) with v ≤ v∗. Let

α4 :=
2√

α3(1 +
√

1 + 2λκ)
.
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Then, for any step-size 0 < t < α4, the iterative point p(x + td) ∈ F .

Proof. It follows from (50) that

p(x + td)− p(x) = −t
k∑

j=1

dT∇fj(x)hj − t2

2
ũ.

By Lemma 3.4 and Condition 3.4, also noting (51) we have

‖ũ‖∇2F (p(x)) ≤ λ

∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x)dhj

∥∥∥∥∥∥∇2F (p(x))

≤ λκα3.

Using the above estimation and (52) we know that if 0 < t < α4 then

‖p(x + td)− p(x)‖∇2F (p(x)) ≤ t

∥∥∥∥∥∥

k∑

j=1

dT∇fj(x)hj

∥∥∥∥∥∥∇2F (p(x))

+
t2

2
‖ũ‖∇2F (p(x))

≤ t
√

α3 +
t2

2
λκα3 < 1,

because α4 is the largest root of the quadratic equation

t
√

α3 +
t2

2
λκα3 − 1 = 0.

By Lemma 3.6, the result follows. Q.E.D.

Remark that, in a similar way one can show that if 0 < t < α5 with

α5 :=
1√

α3(1 +
√

1 + λκ)
,

then

t

∥∥∥∥∥∥

k∑

j=1

dT∇fj(x)hj

∥∥∥∥∥∥∇2F (p(x))

+
t2

2
‖ũ‖∇2F (p(x)) ≤ t

√
α3 +

t2

2
λκα3 < 1/2. (53)

Theorem 3.8 Suppose that F (·) satisfies Conditions 3.1, 3.2, 3.3, and 3.5, and fj(·)’s, j = 1, ..., k,

satisfy Condition 3.4. Let x ∈ rel int F be any feasible but non-optimal point. Let γ = ν +
√

ν. Let

the Newton direction at x be d = − (∇2G(x; v)
)−1∇G(x; v). Suppose that −∇G(x; v)T d/G(x; v) ≥ δ.

Then there exists β > 0 such that

min
0≤t≤α5

(log G(x + td; v)− log G(x; v)) ≤ −β.
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Proof. Denote x(t) := x + td, and let a := cT d
cT x−v

. Lemma 3.7 and the remark thereafter assure

that if 0 < t < α5(< α4) then x(t) ∈ F , and ‖p(x(t))− p(x)‖∇2F (p(x)) < 1/2.

Now, consider a fixed 0 < t < α5. By the mean-value theorem, there is 0 ≤ t̃ ≤ t < α5 such that the

following estimation holds

log G(x + td; v)− log G(x; v) = γ log(1 + at) + f(x(t))− f(x)

= (γa +∇f(x)T d)t +
t2

2

(
−γ

a2

(1 + at̃)2
+ dT∇2f(x(t̃))d

)

≤ −δ(x)t +
t2

2
×∇2F (p(x(t̃)))[

k∑

j=1

dT∇fj(x(t̃))hj ,
k∑

j=1

dT∇fj(x(t̃))hj ]

+
t2

2
×√ν

√√√√√∇2F (p(x(t̃)))[
k∑

j=1

dT∇2fj(x(t̃))dhj ,
k∑

j=1

dT∇2fj(x(t̃))dhj ]

≤ −δt +
t2

2
×




∥∥∥∑k
j=1 dT∇fj(x(t̃))hj

∥∥∥
2

∇2F (p(x))(
1− ∥∥p(x(t̃))− p(x)

∥∥
F (p(x))

)2 +
√

ν ×

∥∥∥∑k
j=1 dT∇2fj(x(t̃))dhj

∥∥∥∇2F (p(x))

1− ∥∥p(x(t̃))− p(x)
∥∥∇2F (p(x))


 .

(54)

Notice that
∥∥∥∥∥∥

k∑

j=1

dT∇fj(x(t̃))hj

∥∥∥∥∥∥

2

∇2F (p(x))

≤




∥∥∥∥∥∥

k∑

j=1

dT∇fj(x)hj

∥∥∥∥∥∥∇2F (p(x))

+
λ

2

∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x)dhj

∥∥∥∥∥∥∇2F (p(x))




2

≤ 2




∥∥∥∥∥∥

k∑

j=1

dT∇fj(x)hj

∥∥∥∥∥∥

2

∇2F (p(x))

+
λ2

4

∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x)dhj

∥∥∥∥∥∥

2

∇2F (p(x))




≤ 2α3 + λ2κ2α2
3/2,

where the last step follows from (51) and (52), and
∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x(t̃))dhj

∥∥∥∥∥∥∇2F (p(x))

≤ λ

∥∥∥∥∥∥

k∑

j=1

dT∇2fj(x)dhj

∥∥∥∥∥∥∇2F (p(x))

≤ λκα3.

The coefficient of the second order term in (54) can be further estimated as
∥∥∥∑k

j=1 dT∇fj(x(t̃))hj

∥∥∥
2

∇2F (p(x))(
1− ∥∥p(x(t̃))− p(x)

∥∥∇2F (p(x))

)2 +
√

ν ×

∥∥∥∑k
j=1 dT∇2fj(x(t̃))dhj

∥∥∥∇2F (p(x))

1− ∥∥p(x(t̃))− p(x)
∥∥∇2F (p(x))
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≤ 8α3 + 2λ2κ2α2
3 + 2λκα3

√
ν =: α6.

Using these estimations we rewrite (54) as follows

log G(x + td; v)− log G(x; v) ≤ −δt +
α6

2
t2.

Therefore, if we take the step-length as t̄ := min{ δ
α6

, α5}, then log G(x + t̄d; v) − log G(x; v) ≤ −β,

where β := δt̄− α6
2 t̄2. Q.E.D.

If K is a symmetric cone, say K = S l
+ and F (p) = − log det p, then we can improve the bound in

(54). In that case, we have

−∇F (p)[h] = tr p−1h

∇2F (p)[h, h] = tr (p−1hp−1h).

Therefore, if ‖p̃− p‖∇2F (p) =
√∇2F (p)[p̃− p, p̃− p] = ‖p− 1

2 (p̃− p)p−
1
2 ‖F = ‖p− 1

2 p̃p−
1
2 − I‖F < 1/2

then 1
2p ¹ p̃ ¹ 3

2p, and since h ∈ K we have

0 < −∇F (p̃)[h] = tr p̃−1h ≤ 2tr p−1h = −2∇F (p)[h].

Instead of the estimations in (54), we now have

log G(x + td; v)− log G(x; v) = γ log(1 + at) + f(x(t))− f(x)

= (γa +∇f(x)T d)t +
t2

2

(
−γ

a2

(1 + at̃)2
+ dT∇2f(x(t̃))d

)

≤ −δ(x)t +
t2

2
×∇2F (p(x(t̃)))[

k∑

j=1

dT∇fj(x(t̃))hj ,
k∑

j=1

dT∇fj(x(t̃))hj ]

− t2

2
×∇F (p(x(t̃)))[

k∑

j=1

dT∇2fj(x(t̃))dhj ]

≤ −δt +
t2

2
×




∥∥∥∑k
j=1 dT∇fj(x(t̃))hj

∥∥∥
2

∇2F (p(x))(
1− ∥∥p(x(t̃))− p(x)

∥∥
F (p(x))

)2 − 2λ∇F (p(x))[
k∑

j=1

dT∇2fj(x)dhj ]




≤ −δt +
t2

2
×

(
8α3 + 2λ2κ2α2

3 + 2λα3

)
.

By letting α7 := 8α3 +2λ2κ2α2
3 +2λα3, and t̄′ := min{ δ

α7
, α5} we have the estimation that log G(x+

t̄′d; v)− log G(x; v) ≤ −β′ with β′ := δt̄′ − α7
2 (t̄′)2.
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One easily verifies that all the constants, α2 to α7, δ, β and β′, are rationally related to the problem

parameters ν, κ and λ. This gives rise to a polynomial-time complexity proof for the following

extended version of the Iri-Imai method (or, potential reduction method).

An Iri-Imai Type Potential Reduction Method for COCP

Input data: An initial x0 ∈ rel int F and an initial lower bound of the optimal value v0 ≤ v∗.

Output: A feasible solution x ∈ rel int F such that cT x− v∗ ≤ ε where ε > 0 is the desired precision.

Step 0. Let x := x0 and v := v0. Go to Step 1.

Step 1. Check whether cT x − v ≤ ε or not. If yes, stop with x as the output; if no, continue with

Step 2.

Step 2. Compute the Newton direction at x

d := −
(
∇2G(x; v)

)−1∇G(x; v).

If−∇G(x; v)T d/G(x; v) < δ then increase the value v until−∇G(x; v)T d/G(x; v) = δ; otherwise

continue with Step 3.

Step 3. Apply the line-minimization for log G(x; v) along the direction d, starting from x. Let

t̄ = argmint≥0 log G(x + td; v).

Let x := x + t̄d, and go to Step 1.

The next theorem is a consequence of Theorem 3.8 and the remarks thereafter.

Theorem 3.9 Suppose that F (·) satisfies Conditions 3.1, 3.2, 3.3, and 3.5, and fj(·)’s, j = 1, ..., k,

satisfy Condition 3.4. Let γ = ν +
√

ν. Then the above described Iri-Imai type potential reduction

algorithm terminates in a number of steps, which is bounded by a polynomial in terms of ν, κ, λ and

log 1
ε , provided that (i) an optimal solution for (PK) exists; (ii) f(x) ≥ −L for all x ∈ F , where |L|

is bounded by a polynomial in ν, κ and λ; (iii) the initial potential function value log G(x0; v0) is

bounded by a polynomial in ν, κ, λ, and log 1
ε .
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Proof. Let the iterates produced by the algorithm be {x0, x1, · · · , xj , · · ·}, and the sequence of the

lower bounds be {v0, v1, · · · , vj , · · ·}. By Theorem 3.8 we have

log G(xj ; vj) ≤ log G(xj−1; vj−1)− β ≤ log G(x0; v0)− jβ

where 1/β is bounded from above by a polynomial in ν, κ and λ. Thus,

log(cT xj − vj) ≤ log G(x0; v0)− jβ − f(xj)
γ

≤ log G(x0; v0)− jβ + L

γ
. (55)

Therefore, if

j ≥ log G(x0; v0) + L + γ log(1/ε)
β

then it follows from (55) that

cT xj − vj ≤ ε.

Q.E.D.

We observe that Theorem 3.9 provides explicit computational complexity bounds for some new classes

of convex programming problems. To give one such example, let us call a convex function f(x) to

be quadratically dominated if it can be split into two parts: f(x) = q(x) + h(x) where q(x) is convex

quadratic and h(x) is any other function whose Hessian is dominated by ∇2q(x) = Q º 0, i.e.,

there is 0 ≤ θ < 1 such that −θQ ¹ ∇2h(x) ¹ θQ. Our example at the beginning of Section 3,

f(x) = x2 + sin x, is such a convex quadratically dominated function. Now consider the following

COCP: K is a symmetric cone (κ = 1); fj ’s are convex quadratically dominated functions (all with

a uniform and constant bound θ). Since convex quadratically dominated functions are harmonically

convex with λ = (1 + θ)/(1− θ), we have λ = O(1), as θ is assumed to be fixed here. It follows that

α2 = ν+ν
√

ν
ν−1 + ν+

√
ν

2

√ √
ν

ν−1 −→ O(
√

ν)

α3 =
γ2

ν−1
+2 γ2

(ν−1)2
+2α2

2

γ −→ O(1)

α4 = 2√
α3(1+

√
1+2λκ)

−→ O(1)

α5 = 1√
α3(1+

√
1+λκ)

−→ O(1)

α7 = 8α3 + 2λ2κ2α2
3 + 2λα3 −→ O(1)

δ = 1/
√

2 + 2κ2 + 2λκ −→ O(1)
t̄′ = min{ δ

α7
, α5} −→ O(1)

β′ = δt̄′ − α7
2 (t̄′)2 −→ O(1).

Therefore, the Iri-Imai type potential reduction algorithm would solve this problem in O(ν log 1
ε )

number of iterations to reach an ε-optimal solution if ε > 0 is small enough, as asserted by Theo-

rem 3.9. Similarly, the geometric semidefinite program (PPSD) that we introduced at the beginning of

this section can be solved in O((m+ k + l) log 1
ε ) number of iterations if max1≤i≤k ui/li is a constant.
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Even if K is not a symmetric cone (assuming κ is fixed however) and fj ’s are either quadratically

dominated convex functions or they are generated from monomials, since α6 = 8α3 + 2λ2κ2α2
3 +

2λκα3
√

ν = O(
√

ν) we can still apply Theorem 3.8 and Theorem 3.9 to conclude that these problems

can be solved in no more than O(ν1.5 log 1
ε ) number of iterations to reach an ε-optimal solution.

4 Duality and lower bounds

What remains to be discussed is how to obtain a lower bound v ≤ v∗ in order to apply the Iri-Imai

type potential reduction method as introduced in the previous section. This naturally leads to the

duality issues. Consider the following COCP problem:

(PK) minimize cT x

subject to Ax = b

h0 −
k∑

j=1

fj(x)hj ∈ K,

where A ∈ <m×n, c ∈ <n and b ∈ <m, h1, h2, ..., hk ∈ K, and fj(·)’s are convex functions.

For this purpose, let us note that the conjugate of a convex function f(x), which is also a convex

function, is defined as

f∗(s) = sup{(−s)T x− f(x) | x ∈ dom f},

where ‘dom f ’ stands for the domain of the function f .

Define a closed convex cone as follows

C := cl








p

q

x




∣∣∣∣∣∣∣∣
p > 0, q − pf(x/p) ≥ 0





.

Then, the dual of C can be computed as

C∗ = cl








u

v

s




∣∣∣∣∣∣∣∣
v > 0, u− vf∗(s/v) ≥ 0





.

One is referred to [12] for discussions on this and other related issues.

Let

Kj := cl








pj

qj

xj




∣∣∣∣∣∣∣∣
pj > 0, qj − pjfj(xj/pj) ≥ 0





, j = 1, ..., k.
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Then,

K∗j = cl








uj

vj

sj




∣∣∣∣∣∣∣∣
vj > 0, uj − vjf

∗
j (sj/vj) ≥ 0





, j = 1, ..., k.

In light of these new cones, we may rewrite our original COCP as

(PK) minimize cT x

subject to Ax = b


1
qj

x


 ∈ Kj , j = 1, ..., k

h0 −
k∑

j=1

qjhj ∈ K.

The above description is in the form of linear conic optimization. Hence its dual problem can be

found by standard procedures. Let us derive the dual using the Lagrangian multipliers. In particular,

let y be the multipliers for the first set of equality constraints, and




uj

vj

sj


 ∈ K∗j be the multipliers

for the second set of (conic) constraints. Let z ∈ K∗ be the multiplier for the last conic constraint.

Then the Lagrangian function is

L(x, q; y, u, v, s, z) = cT x− yT (Ax− b)−
k∑

j=1

(uj + vjqj + sT
j x)− zT (h0 −

k∑

j=1

qjhj),

from which the dual problem can be derived as

(DK) maximize bT y − hT
0 z −

k∑

j=1

uj

subject to AT y +
k∑

j=1

sj = c




uj

hT
j z

sj


 ∈ K∗j , j = 1, ..., k

z ∈ K∗.
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This problem can be further explicitly expressed as

(DK) maximize bT y − hT
0 z −

k∑

j=1

(hT
j z)f∗j (sj/hT

j z)

subject to AT y +
k∑

j=1

sj = c

z ∈ K∗.

Therefore, a lower bound v ≤ v∗ for (PK) could be obtained from a finite feasible solution for the

above problem (DK).

If fj(x) = 1
2xT Qjx with Qj Â 0 for all j, then f∗j (s) = 1

2sT Q−1
j s, and the dual problem becomes

maximize bT y − hT
0 z − 1

2

k∑

j=1

sT
j Q−1

j sj/hT
j z

subject to AT y +
k∑

j=1

sj = c

z ∈ K∗.

In the case of ‘conically ordered geometric programming’, where fj(x) = eιTj x for all j. It is easy to

compute that

f∗j (sj) =





+∞, if sj 6= −‖sj‖
‖ιj‖ ιj

‖sj‖
‖ιj‖ log ‖sj‖

‖ιj‖ −
‖sj‖
‖ιj‖ , if sj = −‖sj‖

‖ιj‖ ιj .

Therefore, its dual is

maximize bT y − hT
0 z −

k∑

j=1

wj

(
log wj − log hT

j z
)

+
k∑

j=1

wj

subject to AT y − [ι1, ..., ιk]w = c

z ∈ K∗, w ≥ 0.
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