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Abstract

We present a primal-dual interior-point algorithm for second-order conic optimization
problems based on a specific class of kernel functions. This class has been investigated earlier
for the case of linear optimization problems. In this paper we derive the complexity bounds
O(
√
N (logN) log N

ε ) for large- and O(
√
N log N

ε ) for small- update methods, respectively.
Here N denotes the number of second order cones in the problem formulation.
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1 Introduction

Second-order conic optimization (SOCO) problems are convex optimization problems because
their objective is a linear function and their feasible set is the intersection of an affine space
with the Cartesian product of a finite number of second-order (also called Lorentz or ice−cream)
cones. Any second order cone in Rn has the form

K =

{
(x1, x2, . . . , xn) ∈ Rn : x2

1 ≥
n∑

i=2

x2
i , x1 ≥ 0

}
, (1)

where n is some natural number. Thus a second-order conic optimization problem has a form

(P ) min
{
cTx : Ax = b, x ∈ K

}
,

∗The first author kindly acknowledges the support of Dutch Organization for Scientific Researches (NWO grant
613.000.110).
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where K ⊆ Rn is the Cartesian product of several second-order cones, i.e.,

K = K1 ×K2...×KN , (2)

with Kj ∈ Rnj for each j, and n =
∑N

j=1 nj . We partition the vector x accordingly:

x = (x1, x2, . . . , xN )

with xj ∈ Kj . Furthermore, A ∈ Rm×n, c ∈ Rn and b ∈ Rm.
The dual problem of (P ) is given by

(D) max
{
bT y : AT y + s = c, s ∈ K

}
,

Without loss of generality we assume that A has full rank: rankA = m. As a consequence, if
the pair (y, s) is dual feasible then y is uniquely determined by s. Therefore, we will feel free to
say that s is dual feasible, without mentioning y.
It is well-known that SOCO problems include linear and convex quadratic programs as special
cases. On the other hand, SOCO problems are special cases of semidefinite optimization (SDO)
problems, and hence can be solved by using an algorithm for SDO problems. Interior-point
methods (IPMs) that exploit the special structure of SOCO problems, however, have much
better complexity than when using an IPM for SDO for solving SOCO problems.
In the last few years the SOCO problem has received considerable attention from researchers
because of its wide range of applications (see, e.g., [8, 21]) and because of the existence of
efficient IPM algorithms (see, e.g., [2, 3, 17, 16, 18, 19]). Many researchers have studied SOCO
and achieved plentiful and beautiful results.
Several IPMs designed for LO (see e.g., [14]) have been successfully extended to SOCO. Im-
portant work in this direction was done by Nesterov and Todd [10, 11] who showed that the
primal-dual algorithm maintains its theoretical efficiency when the nonnegativity constrains in
LO are replaced by a convex cone, as long as the cone is homogeneous and self-dual. Adler
and Alizadeh [1] studied a unified primal-dual approach for SDO and SOCO, and proposed a
direction for SOCO analogous to the AHO-direction for SDO. Later, Schmieta and Alizadeh [15]
presented a way to transfer the Jordan algebra associated with the second-order cone into the
so-called Clifford algebra in the cone of matrices and then carried out a unified analysis of the
analysis for many IPMs in symmetric cones. Faybusovich [6], using Jordan algebraic techniques,
analyzed the Nesterov-Todd method for SOCO. Monteiro [9] and Tsuchiya [19] applied Jordan
algebra to the analysis of IPMs for SOCO with specialization to various search directions. Other
researchers have worked on IPMs for special cases of SOCO, such as convex quadratic program-
ming, minimizing a sum of norms, . . . etc. For an overview of these results we refer to [21] and
its related references.
Recently, J. Peng et al. [12] designed primal-dual interior-point algorithms for LO, SDO and
SOCO based on so-called self-regular (SR) proximity functions. Moreover, they derived a
O(
√
N logN) log N

ε complexity bound for SOCO with large-update methods, the currently best
bound for such methods. Their work was extended in [4, 5] to other proximity functions based
on univariate so-called kernel functions.
Motivated by [12] and [4, 5], in this paper we present a primal-dual IPM for SOCO problems
based on kernel functions of the form

ψ(t) :=
tp+1 − 1
p+ 1

+
t−q − 1

q
, t > 0, (3)
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where p ∈ [0, 1] and q > 0 are the parameters; p is called the growth degree and q the barrier
degree of the kernel function.
One may easily verify that ψ(1) = ψ′(1) = 0, limt→0 ψ(t) = limt→∞ ψ(t) = +∞ and that ψ(t) is
strictly convex. It is worth pointing out that only when p = 1 the function ψ(t) is SR. Thus the
functions considered here do not belong to the class of functions studied in [12], except if p = 1.
The same class of kernel functions (3) has been studied for the LO case in [4], and for the SDO
[20] in case p = 0.
As discussed in [4], every kernel function ψ(t) gives rise to an IPM. We will borrow several tools
for the analysis of the algorithm in this paper from [4], and some of them from [12]. These
analytic tools reveal that the iteration bound highly depends on the choice of ψ(t), especially on
the inverse functions of ψ(t) and its derivatives. Our aim will be to investigate the dependence
of the iteration bound on the parameters p and q. We will consider both large- and small-update
methods.
The outline of the paper is as follows. In Section 2, after briefly recalling some relevant properties
of the second-order cone and its associated Euclidean Jordan algebra, we review some basic
concepts for IPMs for solving the SOCO problem, such as central path, NT-search direction,
etc. We also present the primal-dual IPM for SOCO considered in this paper at the end of
Section 2. In Section 3, we study the properties of the kernel function ψ(t) and its related
vector-valued barrier function and real-valued barrier function. The step size and the resulting
decrease of the barrier function are discussed in Section 4. In Section 5, we analyze the algorithm
to derive the complexity bound for large- and small-update methods. Finally, some concluding
remarks follow in Section 6.
Some notations used throughout the paper are as follows. Rn, Rn

+ and Rn
++ denote the set of

all vectors (with n components), the set of nonnegative vectors and the set of positive vectors,
respectively. As usual, ‖ . ‖ denotes the Frobenius norm for matrices, and the 2-norm for vectors.
The Löwner partial ordering ”�” of Rn defined by a second-order cone K is defined by x �K s
if x− s ∈ K. The interior of K is denoted as K+ and we write x �K s if x− s ∈ K+. Finally,
En denotes the n× n identity matrix.

2 Preliminaries

2.1 Algebraic properties of second-order cones

In this section we briefly recall some algebraic properties of the second-order cone K as defined
by (1) and its associated Euclidean Jordan algebra. Our main sources for this section are
[1, 7, 9, 12, 15, 18].
If, for any two vectors x, s ∈ Rn, the bilinear operator ◦ is defined by1

x ◦ s := (xT s; x1s2 + s1x2; . . . ; x1sn + s1xn),

then (Rn, ◦) is a commutative Jordan algebra. Note that the map s 7→ x◦s is linear. The matrix
1We use here and elsewhere Matlab notation: (u; v) is the column vector obtained by concatenating the column

vectors u and v.
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of this linear map is denoted as L(x), and one may easily verify that it is an arrow-shaped matrix:

L(x) :=

 x1 xT
2:n

x2:n x1En−1

 , (4)

where x2:n = (x2; . . . ; xn). We have the following five properties.

1. x ∈ K if and only if L(x) is positive semidefinite;

2. x ◦ s = L(x)s = L(s)x = s ◦ x;

3. x ∈ K if and only if x = y ◦ y for some y ∈ K.

4. e ◦ x = x for all x ∈ K, where e = (1; 0; . . . ; 0);

5. if x ∈ K+ then L(x)−1e = x−1, i.e., x ◦ L(x)−1e = e.

The first property implies that x 7→ L(x) provides a natural embedding of K into the cone of
positive semidefinite matrices, which makes SOCO essentially a specific case of SDO. From the
third property we see that K is just the set of squares in the Jordan algebra. Due to the fourth
property, the vector e is the (unique) unit element of the Jordan algebra.
Let us point out that the cone K is not closed under the product ’◦’ and that this product is
not associative.
The maximal and minimal eigenvalues of L(x) are denoted as λmax(x) and λmin(x), respectively.
These are given by

λmax(x) := x1 + ‖x2:n‖, λmin(x) := x1 − ‖x2:n‖. (5)

It readily follows that

x ∈ K ⇔ λmin(x) ≥ 0, x ∈ K+ ⇔ λmin(x) > 0.

Lemma 2.1 If x ∈ Rn, then |λmax(x)| ≤
√

2 ‖x‖ and |λmin(x)| ≤
√

2 ‖x‖.

Proof: By (5), we have λ2
max(x) + λ2

min(x) = 2‖x‖2, which implies the lemma. 2

The trace and the determinant of x ∈ Rn are defined by

Tr(x) := λmax(x) + λmin(x) = 2x1, det(x) := λmax(x)λmin(x) = x2
1 − ‖x2:n‖2. (6)

From the above definition, for any x, s ∈ K, it is obvious that

Tr(x ◦ s) = 2xT s, Tr(x ◦ x) = 2 ‖x‖2 .

It is also straightforward to verify that2

Tr((x ◦ s) ◦ t) = Tr(x ◦ (s ◦ t)). (7)
2Recall that the Jordan product itself is not associative. But one may easily verify that the first coordinate of

(x ◦ s) ◦ t equals

x1s1t1 +

nX
i=2

(x1siti + s1xiti + t1xisi) =
�
xT s+ xT t+ sT t

�
− 2x1s1t1,

which is invariant under permutations of x, s and t, and hence (7) follows.
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Lemma 2.2 Let x, s ∈ Rn. Then

λmin(x+ s) ≥ λmin(x)−
√

2 ‖s‖.

Proof: By using the well-known triangle inequality we obtain

λmin(x+ s) = x1 + s1 − ‖(x+ s)2:n‖ ≥ x1 + s1 − ‖x2:n‖ − ‖s2:n‖ = λmin(x) + λmin(s).

By Lemma 2.1, we have |λmin(s)| ≤
√

2 ‖s‖. This implies the lemma. 2

Lemma 2.3 (Lemma 6.2.3 in [12]) Let x, s ∈ Rn. Then

λmax(x)λmin(s) + λmin(x)λmax(s) ≤ Tr(x ◦ s) ≤ λmax(x)λmax(s) + λmin(x)λmin(s),

det (x ◦ s) ≤ det (x)det (s) .

The last inequality holds with equality if and only if the vectors x2:n and s2:n are linearly depen-
dent.

Corollary 2.4 Let x ∈ Rn and s ∈ K. Then

λmin(x)Tr(s) ≤ Tr(x ◦ s) ≤ λmax(x)Tr(s).

Proof: Since s ∈ K, we have λmin(s) ≥ 0, and hence also λmax(s) ≥ 0. Now Lemma 2.3
implies that

λmin(x) (λmax(s) + λmin(s)) ≤ Tr(x ◦ s) ≤ λmax(x) (λmax(s) + λmin(s)) .

Since λmax(s) + λmin(s) = Tr(s), this implies the lemma. 2

We conclude this section by introducing the so-called spectral decomposition of a vector x ∈ Rn.
This is given by

x := λmax(x) z1 + λmin(x) z2, (8)

where

z1 :=
1
2

(
1;

x2:n

‖x2:n‖

)
, z2 :=

1
2

(
1;

−x2:n

‖x2:n‖

)
.

Here by convention x2:n/‖x2:n‖ = 0 if x2:n = 0. Note that the vectors z1 and z2 belong to K (but
not to K+). The importance of this decomposition is that it enables us to extend the definition
of any function ψ : R++ → R+ to a function that maps the interior of K into K. In particular
this holds for our kernel function ψ(t), as given by (3).

Definition 2.5 Let ψ : R → R and x ∈ Rn. With z1 and z2 as defined in (8), we define

ψ(x) := ψ(λmax(x)) z1 + ψ(λmin(x)) z2.
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In other words,

ψ(x) =


(
ψ(λmax(x)) + ψ(λmin(x))

2
;
ψ(λmax(x))− ψ(λmin(x))

2
x2:n

‖x2:n‖

)
if x2:n 6= 0

(ψ(λmax(x)); 0; . . . ; 0) if x2:n = 0.

Obviously, ψ(x) is a well-defined vector-valued function. In the sequel we use ψ(·) both to denote
a vector function (if the argument is a vector) and a univariate function (if the argument is a
scalar). The above definition respects the Jordan product in the sense described by the following
lemma.

Lemma 2.6 (Lemma 6.2.5 in [12]) Let ψ1 and ψ2 be two functions ψ(t) = ψ1(t)ψ2(t) for
t ∈ R. Then one has

ψ(x) = ψ1(x) ◦ ψ2(x), x ∈ K.

The above lemma has important consequences. For example, for ψ(t) = t−1 then ψ(x) = x−1,
where x−1 is the inverse of x in the Jordan algebra (if it exists); if ψ(t) = t2 then ψ(x) = x ◦ x,
etc.

Lemma 2.7 Let ψ : R++ → R+ and x ∈ K+. Then ψ(x) ∈ K.

Proof: Since x ∈ K+, its eigenvalues are positive. Hence ψ(λmax(x)) and ψ(λmin(x)) are well-
defined and nonnegative. Since z1 and z2 belong to K, also ψ(λmax(x)) z1 +ψ(λmin(x)) z2 ∈ K.

2

If ψ(t) is twice differentiable, like our kernel function, then the derivatives ψ′(t) and ψ′′(t) exist
for t > 0, and we also have vector-valued functions ψ′(x) and ψ′′(x), namely:

ψ′(x) = ψ′(λmax(x)) z1 + ψ′(λmin(x)) z2,

ψ′′(x) = ψ′′(λmax(x)) z1 + ψ′′(λmin(x)) z2.

If x2:n 6= 0 then z1 and z2 satisfy ‖z1‖ = ‖z2‖ = 1/
√

2 and zT
1 z2 = 0. From this one easily

deduces that
‖ψ(x)‖ =

1√
2

√
ψ(λmax(x))2 + ψ(λmin(x))2. (9)

Note that (9) also holds if x2:n = 0, because then λmax(x) = λmin(x) = x1, whence ‖ψ(x)‖ = |x1|
and ψ(λmax(x))2 + ψ(λmin(x))2 = 2x2

1.
From now we assume that ψ(t) is the kernel function (3). We associate to ψ(t) a real-valued
barrier function Ψ(x) on K+ as follows.

Ψ(x) := Tr(ψ(x)) = 2(ψ(x))1 = ψ(λmax(x)) + ψ(λmin(x)), x ∈ K+. (10)

Obviously, since ψ(t) ≥ 0 for all t > 0, and λmax(x) ≥ λmin(x) > 0, we have Ψ(x) ≥ 0 for
all x ∈ K+. Moreover, since ψ(t) = 0 if and only if t = 1, we have Ψ(x) = 0 if and only if
λmax(x) = λmin(x) = 1, which occurs if and only if x = e. One may also verify that ψ(e) = 0
and that e is the only vector with this property.
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Similarly, one easily verifies that ψ′(x) = 0 holds if and only if ψ(λmax(x))+ψ(λmin(x)) = 0 and
ψ(λmax(x)) − ψ(λmin(x)) = 0. This is equivalent to ψ(λmax(x)) = ψ(λmin(x)) = 0, which holds
if and only if λmax(x) = λmin(x) = 1, i.e., if and only if x = e. Summarizing, we have

Ψ(x) = 0 ⇔ ψ(x) = 0 ⇔ ψ′(x) = 0 ⇔ x = e. (11)

We recall the following lemma without proof.

Lemma 2.8 (cf. Proposition 6.2.9 in [12]) Since ψ(t) is strictly convex for t > 0, Ψ(x) is
strictly convex for x ∈ K+.

In the analysis of our algorithm, that will be presented below, we need to consider deriva-
tives with respect to a real parameter t of the functions ψ′(x(t)) and Ψ(x(t)), where x(t) =
(x1(t); x2(t); . . . ; xn(t)). The usual concepts of continuity, differentiability and integrability
can be naturally extended to vectors of functions, by interpreting them entry-wise. Denoting

x′(t) = (x′1(t); x
′
2(t); . . . ; x

′
n(t)),

we then have
d

dt
(x(t) ◦ s(t)) = x′(t) ◦ s(t) + x(t) ◦ s′(t), (12)

d

dt
Tr(ψ(x(t))) = 2

dψ(x(t))
dt

= 2ψ′(x(t))Tx′(t) = Tr(ψ′(x(t)) ◦ x′(t)). (13)

2.2 Re-scaling the cone

When defining the search direction in our algorithm, we need a re-scaling of the space in which
the cone lives. Given x0, s0 ∈ K+, we use an automorphism W (x0, s0) of the cone K such that

W (x0, s0)x0 = W (x0, s0)−1s0.

The existence and uniqueness of such an automorphism is well-known. To make the paper self-
containing, a simple derivation of this result is given in the Appendix. In the sequel we denote
W (x0, s0) simply as W . Let us point out that the matrix W is symmetric and positive definite.
For any x, s ∈ Rn we define

x̃ := Wx, s̃ := W−1s.

We call this Nesterov-Todd (NT)-scaling of Rn, after the inventors. In the following lemma we
recall several properties of the NT-scaling scheme.

Lemma 2.9 (cf. Proposition 6.3.3 in [12]) For any x, s ∈ Rn one has

(i) Tr(x̃ ◦ s̃) = Tr(x ◦ s);

(ii) det (x̃) = λdet (x) , det (s̃) = λ−1det (s), where λ =
√

det(s0)
det(x0)

;

(iii) x �K 0, (x �K 0) ⇔ x̃ �K 0, (x̃ �K 0).

Proof: The proof of (i) is straightforward:

Tr(x̃ ◦ s̃) = Tr
(
Wx ◦W−1s

)
= 2 (Wx)T (W−1s

)
= 2xTW TW−1s = 2xT s = Tr(x ◦ s).
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For the proof of (ii) we need the matrix

Q = diag (1, −1, . . . , −1) ∈ Rn×n. (14)

Obviously, Q2 = En where En denotes the identity matrix of size n× n. Moreover, det (x) =
xTQx, for any x. By Lemma A.2 and Lemma A.4 we have WQW = λW . Hence we may write

det (x̃) = x̃TQx̃ = (Wx)T Q (Wx) = xTWQWx = λxTQx = λdet (x) .

In a similar way we can prove det (s̃) = λ−1det (s). Finally, since W is an automorphism of
K, we have x ∈ K if and only x̃ ∈ K; since det (x) > 0 if and only det (x̃) > 0, by (ii), also
x ∈ K+ if and only x̃ ∈ K+. 2

2.3 The central path for SOCO

To simplify the presentation in this and the first part of the next section, for the moment we
assume that N = 1 in (2). So K is itself a second-order cone, which we denote as K.
We assume that both (P ) and (D) satisfy the interior-point condition (IPC), i.e., there exists
(x0, y0, s0) such that Ax0 = b, x0 ∈ K+, A

T y0 + s0 = c, s0 ∈ K+. Assuming the IPC, it is
well-known that the optimality conditions for the pair of problems (P ) and (D) are

Ax = b, x ∈ K,
AT y + s = c, s ∈ K, (15)
L(x) s = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (15) by the parameterized
equation L(x) s = µe with µ > 0. Thus we consider the following system

Ax = b, x ∈ K,
AT y + s = c, s ∈ K, (16)
L(x) s = µe.

For each µ > 0 the parameterized system (16) has a unique solution (x(µ), y(µ), s(µ)) and we
call x(µ) the µ-center of (P ) and (y(µ), s(µ)) the µ-center of (D). Note that at the µ-center we
have

x(µ)T s(µ) = 1
2Tr(x ◦ s) = 1

2Tr(L(x) s) =
1
2
Tr(µe) = µ. (17)

The set of µ-center gives a homotopy path, which is called the central path. If µ→ 0 then the
limit of the central path exists and since the limit points satisfy the complementarity condition
L(x) s = 0, it naturally yields optimal solution for both (P ) and (D) (see, e.g., [21]).

2.4 New search direction for SOCO

IPMs follow the central path approximately and find an approximate solution of the underlying
problems (P ) and (D) as µ goes to zero. The search directions is usually derived from a certain
Newton-type system. We first want to point out that a straightforward approach to obtain such
a system fails to define unique search directions.
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For the moment we assume N = 1. By linearizing system (16) we obtain the following linear
system for the search directions.

A∆x = 0,
AT ∆y + ∆s = 0, (18)

L(x)∆s+ L(s)∆x = µe− L(x)s.

This system has a unique solution if and only if the matrix AL(s)−1L(x)AT is nonsingular as
one may easily verify. Unfortunately this might not be the case, even if A has full rank. This
is due to the fact that the matrix Z = L(s)−1L(x), which has positive eigenvalues, may not be
symmetric. As a consequence, the symmetrized matrix Z + ZT may have negative eigenvalues.
For a discussion of this phenomenon and an example we refer to [12, page 143].
The above discussion makes clear that we need some symmetrizing scheme. There exist many
such schemes. See, e.g., [1, 13, 18]. In this paper we follow the approach taken in [12] and we
choose for the NT-scaling scheme, as introduced in Section 2.2. This choice can be justified
by recalling that until now large-update IMPs based on the NT search direction have the best
known theoretical iteration bound.
Thus, letting W denote the (unique) automorphism of K that satisfies Wx = W−1s we define

v :=
Wx
√
µ

(
=
W−1s
√
µ

)
(19)

and

Ā :=
1
√
µ
AW−1, dx :=

W∆x
√
µ
, ds :=

W−1∆s
√
µ

. (20)

Lemma 2.10 One has

µ2 det
(
v2
)

= det (x) det (s) , µTr(v2) = Tr(x ◦ s).

Proof: Defining x̃ = Wx and s̃ = W−1s, Lemma 2.9 yields det (x̃) =
√

det (x)det (s), which
implies µdet (v) =

√
det (x)det (s). Since (det (v))2 = det (v ◦ v), by Lemma 2.3, the first

equality follows. The proof of the second equality goes in the same way. 2

The system (18) can be rewritten as follows:

Ādx = 0,
ĀT ∆y + ds = 0,

L(W−1v)Wds + L(Wv)W−1dx = e− L(W−1v)Wv.

Since this system is equivalent to (18), it may not have a unique solution. To overcome this
difficulty we replace the last equation by

L(v) ds + L(v) dx = e− L(v) v,

which is equivalent to
ds + dx = L(v)−1e− v = v−1 − v.

9



Thus the system defining the scaled search directions becomes

Ādx = 0,
ĀT ∆y + ds = 0, (21)

ds + dx = v−1 − v.

Since the matrix ĀT Ā is positive definite, this system has a unique solution.
We just outlined the approach to obtain the uniquely defined classical search direction for SOCO.
The approach in this paper differs only in one detail: we replace the right hand side in the last
equation by −ψ′(v), where ψ(t) is the kernel function given by (3). Thus we will use the following
system to define our search direction:

Ādx = 0,
ĀT ∆y + ds = 0, (22)

ds + dx = −ψ′(v).

Since (22) has the same matrix of coefficients as (21), also (22) has a unique solution.3 Recall
from (11) that

Ψ(v) = 0 ⇔ ψ(v) = 0 ⇔ ψ′(v) = 0 ⇔ v = e.

Since dx and ds are orthogonal, we will have dx = ds = 0 in (22) if and only if ψ′(v) = 0, i.e., if
and only if v = e. The latter implies x ◦ s = µe, which means that x = x(µ) and s = s(µ). This
is the content of the next lemma.

Lemma 2.11 One has ψ′(v) = 0 if and only if x ◦ s = µe.

Proof: We just established that ψ′(v) = 0 if and only if v = e. According to (19), v = e holds
if and only if x =

√
µW−1e and s =

√
µWe. By Lemma A.4 the matrix W has the form

W =
√
λ

 a1 āT

ā En−1 + āāT

1+a1


where a = (a1; ā) is a vector such that det (a) = 1 and λ > 0. Using that W−1 = 1√

λ
WQa, with

Q as defined in (14), so Qa == (a1;−ā) (see Lemma A.3), it follows that v = e holds if and
only if

x =
√
µ

√
λ

 a1

−ā

 , s =
√
µ
√
λ

 a1

ā

 .
If x and s have this form then

x ◦ s =
√
µ

√
λ

√
µ
√
λ

 a2
1 − āT ā

a1ā+ a1(−ā)

 = µ

 det (a)

0

 = µ e,

3It may be worth mentioning that if we use the kernel function of the classical logarithmic barrier function,
i.e., ψ(t) = 1

2
(t2−1)− log t, then ψ′(t) = t− t−1, whence −ψ′(v) = v−1− v, and hence system (22) then coincides

with the classical system (21).
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and conversely, if x ◦ s = µe then there must exist a λ > 0 and a vector a such that x and s are
of the above form. This proves the lemma. 2

We conclude from Lemma 2.11 that if (x, y, s) 6= (x(µ), y(µ), s(µ)) then ψ′(v) 6= 0 and hence
(∆x, ∆y, ∆s) is nonzero.
We proceed by adapting the above definitions and those in the previous sections to the case where
N > 1, when the cone underlying the given problems (P ) and (D) is the cartesian product of
N cones Kj , as given in (2). First we partition any vector x ∈ Rn according to the dimensions
of the successive cones Kj , so

x =
(
x1; . . . ; xN

)
, xj ∈ Rnj ,

and we define the algebra (Rn, �) as a direct product of Jordan algebras:

x � s :=
(
x1 ◦ s1; x2 ◦ s2; . . . ; xN ◦ sN

)
.

Obviously, if ej ∈ Kj is the unit element in the Jordan algebra for the j-th cone, then the vector

e = (e1; e2; . . . ; eN )

is the unit element in (Rn, �).
The NT-scaling scheme in this general case is now obtained as follows. Let x, s ∈ K+, and for
each j, let W j denote the (unique) automorphism of Kj that satisfies W jxj =

(
W j
)−1

sj and

λj =

√
det (sj)
det (xj)

.

Let us denote
W := diag (W 1, . . . , WN ).

Obviously, W = W T and W is positive definite. The matrix W can be used to re-scale x and s
to the same vector v, as defined in (19). Note that we then may write

v =
(
v1, . . . , vN

)
, vj :=

W jxj

√
µ

(
=
W j−1

sj

√
µ

)
,

Modifying the definitions of ψ(x) and Ψ(x) as follows,

ψ(v) = (ψ(v1); ψ(v2); . . . ; ψ(vN )), Ψ(v) =
N∑

j=1

Ψ(vj), (23)

and defining the matrix Ā as in (20) the scaled search directions are then defined by the system
(22), with

ψ′(v) = (ψ′(v1); ψ′(v2); . . . ; ψ′(vN )).

By transforming back to the x- and s-space, respectively, using (20), we obtain search directions
∆x, ∆y and ∆s in the original spaces, with

∆x =
√
µW−1dx, ∆s =

√
µWds.

11



By taking a step along the search direction, with a step size α defined by some line search rule,
that will be specified later on, we construct a new triple (x, y, s) according to

x+ = x+ α∆x,
y+ = y + α∆y, (24)
s+ = s+ α∆s.

2.5 Primal-dual interior-point algorithm for SOCO

Before presenting our algorithm, we define a barrier function in terms of the original variables
x and s, and the barrier parameter µ, according to

Φ(x, s, µ) := Ψ(v).

The algorithm now is as presented in Figure 1. It is clear from this description that closeness

Primal-Dual Algorithm for SOCO

Input:
A threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈ (0, 1);
a strictly feasible pair (x0, s0) and µ0 > 0 such that
Ψ(x0, s0, µ0) ≤ τ.

begin
x := x0; s := s0; µ := µ0;
while Nµ ≥ ε do
begin
µ := (1− θ)µ;
while Φ(x, s, µ) > τ do
begin
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;

end
end

end

Figure 1: Algorithm

of (x, y, s) to (x(µ), y(µ), s(µ)) is measured by the value of Ψ(v), with τ as a threshold value:
if Ψ(v) ≤ τ then we start a new outer iteration by performing a µ-update, otherwise we enter
an inner iteration by computing the search directions at the current iterates with respect to the
current value of µ and apply (24) to get new iterates. The parameters τ, θ and the step size α
should be chosen in such a way that the algorithm is ’optimized’ in the sense that the number of

12



iterations required by the algorithm is as small as possible. The choice of the so-called barrier
update parameter θ plays an important role both in theory and practice of IPMs. Usually, if θ is
a constant independent of the dimension n of the problem, for instance θ = 1

2 , then we call the
algorithm a large-update (or long-step) method. If θ depends on the dimension of the problem,
such as θ = 1√

n
, then the algorithm is named a small-update (or short-step) method. The choice

of the step size α (0 ≤ α ≤ 1) is another crucial issue in the analysis of the algorithm. It has to
be taken such that the closeness of the iterates to the current µ-center improves by a sufficient
amount. In the theoretical analysis the step size α is usually given a value that depends on the
closeness of the current iterates to the µ-center. Note that at the µ-center the duality gap equals
Nµ, according to (17). The algorithm stops if the duality gap at the µ-center is less than ε.
For the analysis of this algorithm we need to derive some properties of our (scaled) barrier
function Ψ(v). This is the subject of the next section.

3 Properties of the barrier function Ψ(v)

3.1 Properties of the kernel function ψ(t)

First we derive some properties of ψ(t) as given by (3). The first three derivatives of ψ(t) are

ψ′(t) = tp − 1
tq+1

, (25)

ψ′′(t) = ptp−1 +
q + 1
tq+2

> 0, (26)

ψ′′′(t) = p(p− 1)tp−2 − (q + 1)(q + 2)
tq+3

< 0. (27)

As mentioned before ψ(t) is strictly convex and ψ′′(t) is monotonically decreasing for t ∈ (0,∞).
The following lemmas list some properties of ψ(t) that are needed for analysis of the algorithm.
When a proof is known in the literature we simply give a reference and omit the proof.

Lemma 3.1 If t1 > 0, t2 > 0, then one has

ψ(
√
t1t2) ≤

1
2
(ψ(t1) + ψ(t2)).

Proof: By Lemma 2.1.2 in [12], we know that the property in the lemma holds if and only if
tψ′′(t) + ψ′(t) ≥ 0, whenever t > 0. Using (25), one has

tψ′′(t) + ψ′(t) = ptp +
q + 1
tq+1

+ tp − 1
tq+1

= (p+ 1)tp +
q

tq+1
> 0.

This implies the lemma. 2

Lemma 3.2 If t ≥ 1, then

ψ(t) ≤ p+ q + 1
2

(t− 1)2.

Proof: By using the Taylor expansion around t = 1 and using ψ′′′(t) < 0 we obtain the
inequality in the lemma, since ψ(1) = ψ′(1) = 0 and ψ′′(1) = p+ q + 1. 2

13



Lemma 3.3 If q ≥ 1− p and t ≥ 1 then

t ≤ 1 +
√
tψ(t).

Proof: Defining f(t) := tψ(t)− (t− 1)2, one has f(1) = 0 and f ′(t) = ψ(t) + tψ′(t)− 2(t− 1).
Hence f ′(1) = 0 and

f ′′(t) = 2ψ′(t) + tψ′′(t)− 2 = (p+ 2) tp +
q − 1
tq+1

− 2 ≥ ptp +
q − 1
tq+1

≥ p

(
tp − 1

tq+1

)
≥ 0.

Thus we obtain
tψ(t) ≥ (t− 1)2. (28)

Since t− 1 ≥ 0, this implies the lemma. 2

In the sequel % : [0,∞) → [1,∞) will denote the inverse function of ψ(t) for t ≥ 1 and ρ :
[0,∞) → (0, 1] the inverse function of −1

2ψ
′(t) for t ∈ (0, 1]. Thus we have

%(s) = t ⇔ ψ(t) = s, s ≥ 0, t ≥ 1,

ρ(s) = t ⇔ −ψ′(t) = 2s, s ≥ 0, 0 < t ≤ 1.
(29)

Lemma 3.4 For each q > 0 one has

((p+ 1)s+ 1)
1

p+1 ≤ %(s) ≤
(

(p+ 1)s+
p+ q + 1

q

) 1
p+1

, s ≥ 0, (30)

Moreover, if q ≥ 1− p then

%(s) ≤ 1 + s
1
2

(
(p+ 1) s+

p+ q + 1
q

) 1
2(p+1)

, s ≥ 0. (31)

Proof: Let % (s) = t, t ≥ 1. Then s = ψ(t). Hence, using t ≥ 1,

tp+1 − 1
p+ 1

− 1
q
≤ s =

tp+1 − 1
p+ 1

+
t−q − 1

q
≤ tp+1 − 1

p+ 1
.

The left inequality gives

% (s) = t ≤
(

1 + (1 + p)
(
s+

1
q

)) 1
p+1

=
(

(p+ 1)s+
p+ q + 1

q

) 1
p+1

(32)

and the right inequality
% (s) = t ≥ (1 + (1 + p)s)

1
p+1 ,

proving (28).
Now we turn to the case that q ≥ 1 − p. By Lemma 3.3 we have t ≤ 1 +

√
tψ(t) = 1 +

√
ts.

Substituting the upper bound for t given by (32) we obtain (31). The proof of the lemma is now
completed. 2
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Remark 3.5 Note that at s = 0 the upper bound (31) for % (s) is tighter than in (28). This
will be important later on when we deal with the complexity of small-update methods.

Lemma 3.6 (Theorem 4.9 in [4]) For any positive vector z ∈ Rn one has√√√√ n∑
i=1

(ψ′(zi))
2 ≥ ψ′

(
%

(
n∑

i=1

ψ(zi)

))
.

Equality holds if and only if zi 6= 1 for at most 1 coordinate i and zi ≥ 1.

Lemma 3.7 (Theorem 3.2 in [4]) For any positive vector z ∈ Rn and any β ≥ 1 we have

n∑
i=1

ψ(βzi) ≤ nψ

(
β%

(
1
n

n∑
i=1

ψ(zi)

))
.

Equality holds if and only if there exists a scalar z ≥ 1 such that zi = z for all i.

Lemma 3.8 One has
ρ(s) ≥ 1

(2s+ 1)
1

q+1

, s > 0.

Proof: Let ρ(s) = t, for some s ≥ 0. Then s = −1
2ψ

′(t), with t ∈ (0, 1]. Using (25) we may
write

2s =
1
tq+1

− tp ≥ 1
tq+1

− 1,

which implies

ρ(s) = t ≥ 1

(2s+ 1)
1

q+1

,

proving the lemma. 2

3.2 Properties of the barrier function Ψ(v)

The following lemma is a consequence of Lemma 3.1.

Lemma 3.9 (Proposition 6.2.9 in [12]) If x, s, and v ∈ K+ satisfy

det
(
v2
)

= det (x) det (s) , Tr(v2) = Tr(x ◦ s),

then
Ψ(v) ≤ 1

2
(Ψ(x) + Ψ(s)).

Below we use the following norm-based proximity δ(v) for v.

δ(v) =
1√
2

√√√√ N∑
i=1

‖ψ′(vj)‖2. (33)

The following lemma gives a lower bound for δ(v) in terms of Ψ(v).
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Lemma 3.10 If v ∈ K+, then

δ(v) ≥ 1
2

(1 + p)Ψ(v)

(1 + (1 + p)Ψ(v))
1

1+p

.

Proof: Due to (33) and (9) we have

δ(v) =
1
2

√√√√ N∑
i=1

((ψ′(λmax(vj)))2 + (ψ′(λmin(vj))))2)

and, due to (23) and (10),

Ψ(v) =
N∑

j=1

(
ψ(λmax(vj)) + ψ(λmin(vj))

)
.

This makes clear that δ(v) and Ψ(v) depend only on the eigenvalues λmax(vj) and λmin(vj) of
the vectors vj , for j = 1 : N . This observation makes it possible to apply Lemma 3.6, with z
being the vector in R2N consisting of all the eigenvalues. This gives

δ(v) ≥ 1
2
ψ′(% (Ψ(v))).

Since ψ′(t) is monotonically increasing for t ≥ 1, we may replace % (Ψ(v)) by a smaller value.
Thus, by using the left hand side inequality in 30 in Lemma 3.4 we find

δ(v) ≥ 1
2
ψ′(((p+ 1)Ψ(v) + 1)

1
p+1 ).

Finally, using (25) and q > 0, we obtain

δ(v) ≥ 1
2

(
((p+ 1)Ψ(v) + 1)

p
p+1 − 1

((p+ 1)Ψ(v) + 1)
q+1
p+1

)

≥ 1
2

(
((p+ 1)Ψ(v) + 1)

p
p+1 − 1

((p+ 1)Ψ(v) + 1)
1

p+1

)
=

1
2

(p+ 1)Ψ(v)

((p+ 1)Ψ(v) + 1)
1

p+1

.

This proves the lemma. 2

Lemma 3.11 If v ∈ K+ and β ≥ 1, then

Ψ(βv) ≤ 2Nψ
(
β%

(
Ψ(v)
2N

))
.

Proof: Due to (10), and (5), we have

Ψ(βv) =
N∑

j=1

(
ψ(βλmax(vj)) + ψ(βλmin(vj))

)
.

As in the previous lemma, the variables are essentially only the eigenvalues λmax(vj) and λmin(vj)
of the vectors vj , for j = 1 : N . Applying Lemma 3.7, with z being the vector in R2N consisting
of all the eigenvalues, the inequality in the lemma immediately follows. 2
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Corollary 3.12 If Ψ(v) ≤ τ and v+ =
v√

1− θ
, with 0 ≤ θ ≤ 1, then one has

Ψ(v+) ≤ 2Nψ

(
%
(

τ
2N

)
√

1− θ

)
.

Proof: By taking β = 1/
√

1− θ in Lemma 3.11, and using that %(s) is monotonically increas-
ing, this immediately follows. 2

As we will show in the next section, each subsequent inner iteration will give rise to a decrease
of the value of Ψ(v). Hence during the course of the algorithm the largest values of Ψ(v) occur
after the µ-updates. Therefore, Corollary 3.12 provides a uniform upper bound for Ψ(v) during
the execution of the algorithm. As a consequence, by using the upper bounds for %(s) in (28)
and (31) we find that the numbers L1 and L2 introduced below are upper bounds for Ψ(v)
during the course of the algorithm.

L1 := 2Nψ


(
(p+ 1) τ

2N + p+q+1
q

) 1
p+1

√
1− θ

 , q > 0, (34)

L2 := 2Nψ

1 +
√

τ
2N

(
(p+ 1)

(
τ

2N

)
+ p+q+1

q

) 1
2(p+1)

√
1− θ

 , q ≥ 1− p. (35)

4 Analysis of complexity bound for SOCO

4.1 Estimate of decrease of Ψ(v) during an inner iteration

In each iteration we start with a primal-dual pair (x, s) and then get the new iterates x+ =
x + α∆x and s+ = s + α∆s from (24). The step size α is strictly feasible if and only if
x+ α∆x ∈ K+ and s+ α∆s ∈ K+, i.e., if and only if xj + α∆xj ∈ Kj

+ and sj + α∆sj ∈ Kj
+ for

each j.
Let W j denote the automorphism of Kj that satisfies W jxj = W j−1

sj and vj = W jxj/
√
µ.

Then we have

W j(xj + α∆xj) =
√
µ
(
vj + αdj

x

)
W j−1(sj + α∆sj) =

√
µ
(
vj + αdj

s

)
.

Since W j is an automorphism of Kj , we conclude that step size α is strictly feasible if and only
if vj +αdj

x ∈ Kj and vj +αdj
s ∈ Kj , for each j. Using Lemma 2.9, with x̃ =

√
µ
(
vj + αdj

x

)
and

s̃ =
√
µ
(
vj + αdj

s

)
, we obtain

µ2 det
(
vj + αdj

x

)
det

(
vj + αdj

s

)
= det

(
xj + α∆xj

)
det

(
sj + α∆sj

)
µTr

((
vj + αdj

x

)
◦
(
vj + αdj

s

))
= Tr

((
xj + α∆xj

)
◦
(
sj + α∆sj

))
.
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On the other hand, if W j
+ is the automorphism that satisfies W j

+x
+j = W j

+

−1
s+

j and vj
+ =

W j
+x

+j
/
√
µ, then, by Lemma 2.10 we have

µ2 det
(
(vj

+)2
)

= det
(
xj + α∆xj

)
det

(
sj + α∆sj

)
µTr

(
(vj

+)2
)

= Tr(
(
xj + α∆xj

)
◦
(
sj + α∆sj

)
).

We conclude from this that, for each j,

det
(
(vj

+)2
)

= det
(
vj + αdj

x

)
det

(
vj + αdj

s

)
Tr
(
(vj

+)2
)

= Tr
((
vj + αdj

x

)
◦
(
vj + αdj

s

))
.

By Lemma 3.9 this implies that, for each j,

Ψ(vj
+) ≤ 1

2
(
Ψ(vj + αdj

x) + Ψ(vj + αdj
s)
)
.

Taking the sum over all j, 1 ≤ j ≤ N , we get

Ψ(v+) ≤ 1
2

(Ψ(v + αdx) + Ψ(v + αds)) .

Hence, denoting the decrease in Ψ(v) during an inner iteration as

f(α) := Ψ(v+)−Ψ(v).

we have
f(α) ≤ f1(α) :=

1
2

(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

One can easily verify that f(0) = f1(0) = 0.
In the sequel we derive an upper bound for the function f1(α) in stead of f(α), thereby taking
advantage of the fact that f1(α) is convex (f(α) may be not convex!). We start by considering
the first and second derivatives of f1(α). Using (13), (12) and (7), one can easily verify that

f ′1(α) =
1
2
Tr(ψ′(v + αdx) � dx + ψ′(v + αds) � ds) (36)

and
f ′′1 (α) =

1
2
Tr((dx � dx) � ψ′′(v + αdx) + (ds � ds) � ψ′′(v + αds)) (37)

Using (36), the third equality in system (22), and (33), we find

f ′1(0) =
1
2
Tr(ψ′(v) � (dx + ds)) = −1

2
Tr(ψ′(v) � ψ′(v)) = −2δ(v)2. (38)

To facilitate the analysis below, we define

λmax(v) = max
{
λmax(vj) : 1 ≤ j ≤ N

}
, and λmin(v) = min

{
λmin(vj) : 1 ≤ j ≤ N

}
.

Furthermore, we denote δ(v) simply as δ.
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Lemma 4.1 One has
f ′′1 (α) ≤ 2δ2ψ′′(λmin(v)− 2αδ).

Proof: Since dx and ds are orthogonal, and dx + ds = −ψ′(v), we have

‖dx + ds‖2 = ‖dx‖2 + ‖ds‖2 = 2δ2,

whence ‖dx‖ ≤ δ
√

2 and ‖ds‖ ≤ δ
√

2. Hence, by Lemma 2.2, we have

λmax(v + αdx) ≥ λmin(v + αdx) ≥ λmin(v)− 2αδ,

λmax(v + αds) ≥ λmin(v + αds) ≥ λmin(v)− 2αδ.

By (26) and (27), ψ′′(v) is positive and monotonically decreasing, respectively. We thus obtain

0 < ψ′′(λmax(v + αdx)) ≤ ψ′′(λmin(v)− 2αδ),

0 < ψ′′(λmax(v + αds)) ≤ ψ′′(λmin(v)− 2αδ).

Applying Corollary 2.4, and using that Tr(z ◦ z) = 2zT z = 2 ‖z‖2, for any z, we obtain

Tr
(
(dx � dx) � ψ′′(v + αdx)

)
≤ ψ′′(λmin(v)− 2αδ)Tr(dx � dx) = 2ψ′′(λmin(v)− 2αδ) ‖dx‖2 ,

Tr
(
(dx � dx) � ψ′′(v + αds)

)
≤ ψ′′(λmin(v)− 2αδ)Tr(ds � ds) = 2ψ′′(λmin(v)− 2αδ) ‖ds‖2 .

Substitution into (37) yields that

f ′′1 (α) ≤ ψ′′(λmin(v)− 2αδ)
(
‖dx‖2 + ‖ds‖2

)
= 2δ2ψ′′(λmin(v)− 2αδ).

This prove the lemma. 2

Our aim is to find the step size α for which f1(α) is minimal. The last lemma is exactly the same
as Lemma 4.1 in [4] (with v1 := λmin(v)), where we dealt with the case of linear optimization.
As a consequence, as we use below the same arguments as in [4], we present several lemmas
without repeating their proofs, and simply refer the reader to the corresponding result in [4].

4.2 Selection of step size α

In this section we find a suitable default step size for the algorithm. Recall that α should be
chosen such that x+ and s+ are strictly feasible and such that Ψ(v+)−Ψ(v) decreases sufficiently.
Let us also recall that f1(α) is strictly convex, and f1(0) < 0 (due to (38), assuming that δ > 0)
whereas f1(α) approaches infinity if the new iterates approach the boundary of the feasible
region. Hence, the new iterates will certainly be strictly feasible if f1(α) ≤ 0. Ideally we should
find the unique α that minimizes f1(α). Our default step size will be an approximation for this
ideal step size.

Lemma 4.2 (Lemma 4.2 in [4]) f ′1(α) ≤ 0 certainly holds if the step size α satisfies

−ψ′(λmin(v)− 2αδ) + ψ′(λmin(v)) ≤ 2δ.
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Lemma 4.3 (Lemma 4.3 in [4]) The largest possible the step size α satisfying the inequality
in Lemma 4.2 is given by

ᾱ :=
ρ(δ)− ρ(2δ)

2δ
,

with ρ as defined in (29).

Lemma 4.4 (Lemma 4.4 in [4]) With ρ and ᾱ as in Lemma 4.3, one has

ᾱ ≥ 1
ψ′′(ρ(2δ))

.

Since ψ′′(t) is monotonically decreasing, Lemma 4.4 implies, when using also Lemma 3.8,

ᾱ ≥ 1
ψ′′(ρ(2δ))

≥ 1

ψ′′
(
(1 + 4δ)

−1
q+1

) .
Using (26) we obtain

ᾱ ≥ 1

p(1 + 4δ)
1−p
q+1 + (q + 1)(1 + 4δ)

q+2
q+1

≥ 1

(p+ q + 1)(1 + 4δ)
q+2
q+1

.

We define our default step size as α̃ by the last expression:

α̃ :=
1

(p+ q + 1)(1 + 4δ)
q+2
q+1

. (39)

Lemma 4.5 (Lemma 4.5 in [4]) If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −αδ2.

The last lemma implies that

f(ã) ≤ − δ2

(p+ q + 1)(1 + 4δ)
q+2
q+1

. (40)

According to the algorithm, at the start of each inner iteration we have Ψ(v) > τ . So, assuming
τ ≥ 1, and using Lemma 3.10, we conclude that

δ(v) ≥ 1
2

(1 + p)Ψ(v)

(1 + (1 + p)Ψ(v))
1

1+p

≥ 1
2

Ψ(v)

(1 + 2Ψ(v))
1

1+p

≥ 1
2

Ψ(v)

(3Ψ(v))
1

1+p

≥ 1
6
Ψ(v))

p
1+p .

Since the right hand side expression in (40) is monotonically decreasing in δ we obtain

f(α̃) ≤ − Ψ
2p

1+p

36(p+ q + 1)
(
1 + 2

3Ψ
p

p+1

) q+2
q+1

≤ − Ψ
2p

1+p

36(p+ q + 1)
(

5
3Ψ

p
p+1

) q+2
q+1

≤ − Ψ
pq

(q+1)(p+1)

100(p+ q + 1)
,

where we omitted the argument v in Ψ(v).
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5 Iteration bounds

5.1 Complexity of large-update methods

We need to count how many inner iterations are required to return to the situation where
Ψ(v) ≤ τ . We denote the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values
in the same outer iteration as Ψi, i = 1, 2, ..., T , where T denotes the total number of inner
iterations in the outer iteration.
Recall that Ψ0 ≤ L1, with L1 as given by (34). Since ψ(t) ≤ tp+1/ (p+ 1) for t ≥ 1 and
0 ≤ p ≤ 1, we obtain

Ψ0 ≤ 2Nψ


(

τ
N + q+2

q

) 1
p+1

√
1− θ

 ≤
2
(
τ + q+2

q N
)

(p+ 1) (1− θ)
p+1
2

.

According to the expression for f(α̃), we have

Ψi+1 ≤ Ψi − β(Ψi)1−γ , i = 0, 1, ..., T − 1, (41)

where β = 1
100(p+q+1) and γ = p+q+1

(q+1)(p+1) .

Lemma 5.1 (Proposition 2.2 in [12]) If t0, t1, · · · , tT is a sequence of positive numbers and

ti+1 ≤ ti − βt1−γ
i , i = 0, 1, · · · , T − 1,

with β > 0 and 0 < γ ≤ 1, then T ≤ tγ0
βγ .

Hence, due to this lemma we obtain

T ≤ 100(p+ 1)(q + 1)Ψ
p+q+1

(q+1)(p+1)

0 ≤ 100(p+ 1)(q + 1)

 2
(
τ + q+2

q N
)

(p+ 1) (1− θ)
p+1
2


p+q+1

(q+1)(p+1)

. (42)

The number of outer iterations is bounded above by 1
θ log N

ε , as one easily may verify. By
multiplying the number of outer iterations and the upper bound for the number T of inner
iterations, we obtain an upper bound for the total number of iterations, namely,

100(p+ 1)(q + 1)

θ (1− θ)
p+q+1
2(q+1)

2
(
τ + q+2

q N
)

p+ 1


p+q+1

(q+1)(p+1)

log
N

ε
. (43)

Large-update methods have θ = Θ(1), and τ = O(N). Note that our bound behaves bad for
small values of q, i.e. if q approaches 0. Assuming q ≥ 1, the iteration bound becomes

O
(
qN

p+q+1
(q+1)(p+1)

)
log

N

ε
.

It is interesting to consider the special case where τ = q−2
q . Then, when omitting expressions

that are Θ(1) and the factor log N
ε , the bound becomes

(p+ 1)(q + 1) (4N)
p+q+1

(q+1)(p+1) . (44)
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Given q, the value for p that minimizes the above expression turns out to be

p =
q log(4N)
q + 1

− 1,

which in the cases of interest lies outside the interval [0, 1]. Thus, let us take p = 1. Then the
best value of q is given by

q = log
√

4N − 1,

and this value of q reduces (44) to

2 log
√

4N (4N)
1+log

√
4N

2 log
√

4N =
√

4N(log (4N)) (4N)
1

log(4N) = exp(1)
√

4N (log (4N)).

Thus we may conclude that for a suitable choice of the parameters p and q the iteration bound
for large-update methods is

O

(√
4N (log (4N)) log

N

ε

)
.

Note that this bound closely resembles the bound obtained in [4] for the kernel functions ψ3(t)
and ψ7(t) in that paper.

5.2 Complexity of small-update methods

Small-update methods are characterized by θ = Θ(1/
√
N) and τ = O(1). The exponent of

the expression between brackets in the iteration bound (43) is always larger than 1
2 . Hence, if

θ = Θ(1/
√
N), the exponent of N in the bound will be at least 1. For small-update methods we

can do better, however. For this we need the upper bound L2 for Ψ(v), as given by (35). Recall
that this bound is valid only if q ≥ 1− p.
Thus, using also Lemma 3.2, we find

Ψ0 ≤ (p+ q + 1)N

1 +
√

τ
2N

(
(p+1)τ

2N + p+q+1
q

) 1
2(p+1)

√
1− θ

− 1


2

.

Since 1−
√

(1− θ) ≤ θ, this can be simplified to

Ψ0 ≤
p+ q + 1

1− θ
N

(
θ +

√
τ

2N

(
(p+ 1)τ

2N
+
p+ q + 1

q

) 1
2(p+1)

)2

.

which, using p ≥ 0, can be further simplified to

Ψ0 ≤
p+ q + 1
2(1− θ)

(
θ
√

2N +

√
τ

(
(p+ 1)τ

2N
+
p+ q + 1

q

))2

.

By using the first inequality in (42) we find that the total number of iterations per outer iteration
is bounded above by

100(p+ 1)(q + 1)

p+ q + 1
2(1− θ)

(
θ
√

2N +

√
τ

(
(p+ 1)τ

2N
+
p+ q + 1

q

))2


p+q+1
(q+1)(p+1)

.
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Hence, using p+q+1
(q+1)(p+1) ≤ 1, we find that the total number of iterations is bounded above by

50(p+ 1)(q + 1)(p+ q + 1)
θ(1− θ)

(
θ
√

2N +

√
τ

(
(p+ 1)τ

2N
+
p+ q + 1

q

))2

log
N

ε
.

Taking, e.g., p = 0, q = 1, τ = 1 and θ = 1/
√

2N , this yields the iteration bound

200
θ(1− θ)

(
1 +

√
1

2N
+ 2

)2

log
N

ε
≤ 1333
θ(1− θ)

log
N

ε
,

which is O
(√

N log N
ε

)
.

6 Conclusions and remarks

We presented a primal-dual interior-point algorithm for SOCO based on a specific kernel function
and derived the complexity analysis for the corresponding algorithm, both with large- and small-
update methods. Besides, we developed some new analysis tools for SOCO. Our analysis is a
relatively simple and straightforward extension of analogous results for LO.
Some interesting topics for further research remain. First, the search directions used in this paper
are based on the NT-symmetrization scheme. It may be possible to design similar algorithms
using other symmetrization schemes and still obtain polynomial-time iteration bounds. Finally,
numerical tests should be performed to investigate the computational behavior of the algorithms
in comparison with other existing approaches.
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A Some technical lemmas

Lemma A.1 For any vector a ∈ Rn one has

(
En + aaT

) 1
2 = En +

aaT

1 +
√

1 + aTa
.

Proof: Let A = En+aaT . The eigenvalues of A are 1+aTa (multiplicity 1) and 1 (multiplicity
n− 1). Hence, if e2, . . . , en is any orthonormal basis of the orthocomplement of a, then

A =
(
1 + aTa

) aaT

aTa
+

n∑
i=2

ei.

Therefore,

A
1
2 =

√
1 + aTa

aaT

aTa
+

n∑
i=2

ei =
√

1 + aTa
aaT

aTa
+A−

(
1 + aTa

) aaT

aTa
= En+

(√
1 + aTa− 1

) aaT

aTa
.
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Multiplication of the numerator and denominator in the last term with 1 +
√

1 + aTa yields the
lemma. 2

Obviously, we have for every x ∈ K that Qx ∈ K, and Q(K) = K. This means that Q is an
automorphism of K. Without repeating the proof we recall the following lemma.

Lemma A.2 (Proposition 3 in [9]) The automorphism group of the cone K consists of all
positive definite matrices W such that WQW = λQ for some λ > 0.

To any nonzero a = (a1; ā) ∈ K we associate the matrix

Wa =

 a1 āT

ā En−1 + āāT

1+a1

 = −Q+
(e+ a)(e+ a)T

1 + a1
.

Note that We = En and Wae = a. Moreover, the matrix Wa is positive definite. The latter can
be made clear as follows. By Schur’s lemma Wa is positive definite if and only if

En−1 +
āāT

1 + a1
− āāT

a1
� 0.

This is equivalent to
a1(1 + a1)En−1 − āāT � 0,

which certainly holds if a2
1En−1− āāT � 0. This holds if and only if for every x̄ ∈ Rn−1 one has

a2
1 ‖x̄‖

2 ≥ (āT x̄)2. By the Cauchy-Schwartz inequality the latter is true since a1 ≥ ‖ā‖.

Lemma A.3 Let the matrix W � 0 be such that WQW = λQ for some λ > 0. Then there
exists a = (a1; ā) ∈ K with det(a) = 1 such that W =

√
λWa. Moreover, W−1 = 1√

λ
WQa.

Proof: First assume λ = 1. Since Q2 = En, WQW = Q implies QWQ = W−1. Without loss
of generality we may assume that W has the form

W =

 a1 āT

ā C

 ,
where C denotes a symmetric matrix. Thus we obtain

W−1 = QWQ =

 a1 −āT

−ā C

 .
This holds if and only if

a2
1 − āT ā = 1, a1ā− Cā = 0, C2 − āāT = En−1. (45)

By Lemma A.1, the last equation implies

C = En−1 +
āāT

1 +
√

1 + āT ā
= En−1 +

āāT

1 + a1
,
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where the last equality follows from the first equation in (45); here we used that W � 0, which
implies a1 > 0. One may easily verify that this C also satisfies the second equation in (45), i.e.,
Cā = a1ā. Note that det(a) = a2

1 − āT ā = 1. This completes the proof if λ = 1. If λ 6= 1, then
multiplication of Wa by

√
λ yields the desired expression. 2

Lemma A.4 Let x, s ∈ K+. Then there exists a unique automorphism W of K such that
Wx = W−1s. Using the notation of Lemma A.3, this automorphism is given by W =

√
λWa,

where

a =
s+ λQx

√
2λ
√
xT s+

√
det (x)det (s)

, λ =

√
det (s)
det (x)

.

Proof: By Lemma A.3 every automorphism of K has the form W =
√
λWa, with λ > 0 and

a = (a1; ā) ∈ K with det(a) = 1. Since Wx = W−1s holds if and only if W 2x = s, we need to
find λ and a such that W 2x = s. Some straightforward calculations yield

W 2 = λ

 2a2
1 − 1 2a1ā

T

2a1ā En−1 + 2āāT

 .
So, denoting x = (x1; x̄) and s = (s1; s̄), we need to find λ and a such that

λ

 2a2
1 − 1 2a1ā

T

2a1ā En−1 + 2āāT

 x1

x̄

 =

 s1
s̄

 .
This is equivalent to

(2a2
1 − 1)x1 + 2a1 ā

T x̄ =
s1
λ

2 a1x1 ā+ x̄+ 2(āT x̄) ā =
s̄

λ
.

Using a1x1 + āT x̄ = aTx, this can be written as

2 ( aTx) a1 =
s1
λ

+ x1

2 ( aTx) ā =
s̄

λ
− x̄.

Thus we find

a =

 a1

ā

 =
1

2 aTx

 s1
λ + x1

s̄
λ − x̄

 =
s+ λQx

2λ aTx
. (46)

Now observe that what we have shown so far is that if W =
√
λWa and W 2x = s then a satisfies

(46). Hence, since W−1 = 1√
λ
WQa and W−2s = x, we conclude that Qa can be expressed as

follows.

Qa =
x+ 1

λQs

2 1
λ (Qa)T s

=
λx+Qs

2 aTQs
.
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Multiplying both sides with Q, while using that Q2 = En, we obtain

a =
s+ λQx

2 aTQs
. (47)

Comparing this with the expression for a in (46) we conclude that

λ aTx = aTQs. (48)

Taking the inner product of both sides in (47) with x and Qs, respectively, we get

aTx =
xT s+ λxTQx

2 aTQs
, aTQs =

sTQs+ λxT s

2 aTQs
.

Since λ aTx = aTQs, this implies

λ
(
xT s+ λxTQx

)
= sTQs+ λxT s,

which gives
λ2xTQx = sTQs.

Observing that xTQx = det (x) (and sTQs = det (s)), and λ > 0, we obtain

λ =

√
det (s)
det (x)

. (49)

Now using that det(a) = aTQa = 1 we derive from (47) that

(s+ λQx)T Q (s+ λQx)

4 (aTQs)2
= 1.

This implies
λ2xTQx+ sTQs+ 2λxT s = 4

(
aTQs

)2
,

or, equivalently,
λ2det (x) + det (s) + 2λxT s = 4

(
aTQs

)2
.

Note that the expression at the left is positive, because x ∈ K+ and s ∈ K+. Because a ∈ K+

and Qs ∈ K+ also aTQs > 0. Substituting the value of λ we obtain

2det (s) + 2

√
det (s)
det (x)

xT s = 4
(
aTQs

)2
,

whence

2 aTQs =
√

2

√√√√det (s) +

√
det (s)
det (x)

xT s =
√

2 4

√
det (s)
det (x)

√
xT s+

√
det (x)det (s).

Hence, with λ as defined in (49), the vector a is given by

a =
s+ λQx

√
2λ
√
xT s+

√
det (x)det (s)

.

This proves the lemma. 2
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Lemma A.5 Let x, s ∈ K+ and let W be unique automorphism W of K such that Wx = W−1s.
Then

Wx = W−1s =
α

2

 1
(ux̄+u−1s̄)+2α−1(x1s̄+s1x̄)

α+u−1s1+u x1

 ,
where

u =
√
λ, α =

√
2
√
xT s+

√
det (x)det (s).

Proof: By Lemma A.4,

Wx =
√
λWax =

√
λ

 a1 āT

ā En−1 + āāT

1+a1

 x1

x̄

 = u

 aTx

x1ā+ x̄+ α(āT x̄) ā
α+ux1+u−1s1

 ,

W−1s =
1√
λ
WQas =

1√
λ

 a1 −āT

−ā En−1 + āāT

1+a1

 s1

s̄

 = u−1

 aTQs

−s1ā+ s̄+ α(āT s̄) ā
α+ux1+u−1s1

 ,
with

a =
1
αu

(s+ λQx) =
1
α

(
u−1s+ uQx

)
. (50)

and hence

1 + a1 = 1 +
1
α

(
u−1s1 + ux1

)
=
α+ ux1 + u−1s1

α
.

Since Wx = W−1s we get

Wx =
1
2

u
 aTx

x1ā+ x̄+ α(āT x̄) ā
α+ux1+u−1s1

+ u−1

 aTQs

−s1ā+ s̄+ α(āT s̄) ā
α+ux1+u−1s1


=

1
2

 u(aTx) + u−1(aTQs)

(ux1 − u−1s1)ā+ ux̄+ u−1s̄+
α āT (ux̄+u−1s̄) ā

α+ux1+u−1s1

 .
Due to (48) one has

u(aTx) + u−1(aTQs) = u(aTx) + u−1(λaTx) = 2u aTx.

Moreover, using (50),

uaTx = aT (ux) =
1
α

(
u−1s+ uQx

)T (ux) =
1
α

(
sTx+ λxTQx

)
=

1
α

(
sTx+ λdet (x)

)
=

1
α

(
sTx+

√
det (x)det (s)

)
=

1
α

α2

2
=
α

2
.

Using (48) once more we obtain

āT
(
ux̄+ u−1s̄

)
= uāT x̄+ u−1āT s̄ = u

(
aTx− a1x1

)
+ u−1

(
a1s1 − aTQs

)
= u(aTx)− u−1(aTQs) + u (−a1x1) + u−1 (a1s1)
= u(aTx)− u−1(λaTx)− a1

(
ux1 − u−1s1

)
= a1

(
u−1s1 − ux1

)
.
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From (50) we derive that a1 = (u−1s1 + ux1)/α. Thus we find that

āT
(
ux̄+ u−1s̄

)
=
(
u−1s1 − ux1

) u−1s1 + ux1

α
=
u−2s21 − u2x2

1

α
.

Substitution of these results in the above expression for W gives,

Wx =
1
2

 α

(ux1 − u−1s1)ā+ ux̄+ u−1s̄+ u−2s2
1−u2x2

1
α+u−1s1+u x1

ā

 .
The rest of the proof consists of simplifying the lower part of the above vector. We may write

(ux1 − u−1s1)ā+ ux̄+ u−1s̄ +
u−2s21 − u2x2

1

α+ u−1s1 + ux1
ā

=
(
ux1 − u−1s1 +

u−2s21 − u2x2
1

α+ u−1s1 + ux1

)
ā+ ux̄+ u−1s̄

=
α
(
ux1 − u−1s1

)
α+ u−1s1 + ux1

ā+ ux̄+ u−1s̄

=
ux1 − u−1s1

α+ u−1s1 + ux1

(
u−1s̄− ux̄

)
+ ux̄+ u−1s̄

=
(

1 +
ux1 − u−1s1

α+ u−1s1 + ux1

)
u−1s̄+

(
1− ux1 − u−1s1

α+ u−1s1 + ux1

)
ux̄

=
(α+ 2ux1)u−1s̄+

(
α+ 2u−1s1

)
ux̄

α+ u−1s1 + ux1

=
α
(
ux̄+ u−1s̄

)
+ 2x1s̄+ 2s1x̄

α+ u−1s1 + ux1
.

Substitution of the last expression gives

Wx =
1
2

 α
α(ux̄+u−1s̄)+2x1s̄+2s1x̄

α+u−1s1+u x1

 =
α

2

 1
(ux̄+u−1s̄)+2α−1(x1s̄+s1x̄)

α+u−1s1+u x1

 ,
which completes the proof. 2
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