
Semidefinite programming relaxations for graph coloring and maximal

clique problems †

Igor Djukanovic ‡, Franz Rendl §

February 23, 2005

Abstract

The semidefinite programming formulation of the Lovász theta number does not only give one
of the best polynomial simultaneous bounds on the chromatic number χ(G) and the clique number
ω(G) of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This
semidefinite programming formulation can be tightened toward either χ(G) either ω(G) by adding
several types of cutting planes. We explore several such strengthenings, and show that some of
them can be computed with the same effort as the theta number. We also investigate computational
simplifications for graphs with rich automorphism groups.

Keywords: Lovász theta number, chromatic number, clique number, cutting planes.

1 Introduction

The Lovász theta number θ(G), introduced in [16], is sandwiched between the clique number and the
chromatic number of a graph

ω(G) ≤ θ(G) ≤ χ(G).

It can be computed to arbitrary fixed precision in polynomial time by the interior point methods as it
can be formulated as a semidefinite program (SDP) [16]. The positive semidefinite matrix variable in
this SDP can be used to either extract large cliques [9] or to approximately color the given graph [13].
There are graphs with arbitrarily large gaps θ(G) − ω(G) and/or χ(G) − θ(G). Well-known examples
are triangle free (ω(G) = 2) Mycielski graphs with arbitrarily large chromatic numbers.
There has been considerable scientific effort to strengthen the original bound of Lovász toward the clique
number (or equivalently the stability number in the complement) [19, 27, 17]. To better approximate the
chromatic number, Szegedy strengthened the Lovász theta number by adding nonnegativity constraints
[28]. Meurdesoif further tightened this bound by the inclusion of triangle inequalities [21]. None of
these tighter models can be solved routinely, see for instance [21]. We refer to [15] for a recent survey
on relaxations of max-clique and coloring.
It is the purpose of the present paper to explore efficient algorithms to compute θ and its various
strengthenings toward ω and χ. The starting point are two independent models for θ. The standard
model (14) allows to compute θ very efficiently on dense graphs. The second model (15) is tailored
for sparse graphs. It turns out that the strengthenings of θ toward χ can be computed with an effort
comparable to compute θ for the dense model. A similar observation holds for the strengthenings of θ
toward ω. Finally, we will explore symmetries of a given graph to simplify the computations. The key

†Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is grate-
fully acknowledged.

‡Univerza v Mariboru, Ekonomsko-poslovna fakulteta, Razlagova 14, 2000 Maribor, Slovenia, igor.mat@uni-mb.si
§Universität Klagenfurt, Institut für Mathematik, Universitätsstraße 65-67, 9020 Klagenfurt, Austria, franz.rendl@uni-

klu.ac.at

1

observation is that the variables corresponding to vertices in the same orbit can be assumed to have
equal value. The same is true for the orbits of edges and non-edges. Similar ideas have been investigated
by Parrilo, [24]. We provide computational results on vertex transitive graphs, and show that θ and its
variations can be computed efficiently for vertex transitive graphs with up to 4000 vertices and several
millions of edges.

2 Notation

The vector of all ones is denoted by e. The matrix Jn = eeT (or simply J) is the n × n matrix of all
ones. We denote by ei the ith column of the identity matrix I of appropriate dimension, and we define
Ei = eie

T
i while for i 6= j, Eij = eie

T
j + eje

T
i . The pointwise product of vectors x and y is the vector

x ◦ y. The trace inner product
〈X,Y 〉 = tr XY

is a well-known inner product in the space of the real symmetric matrices Sn. It is easy to check that
the adjoint of operator diag , which takes a diagonal of a matrix, is operator Diag, which maps a vector
into a diagonal matrix. A � B (A � B) denotes that A − B is a positive semidefinite (respectively
positive definite) matrix.
A graph with vertex set V = {1, ..., n} and edge set E will be denoted by G = (V,E). We assume G
to be simple (loopless, without multiple edges) and undirected. The complement graph Ḡ = (V, Ē) is
the graph on the same vertex set with edges ij ∈ Ē exactly if ij = ji /∈ E, i.e. Ē = {ij|ij /∈ E}. We
denote the number of edges |E| by m and the number of non-edges |Ē| by m̄. The chromatic number
χ(G) is the smallest number of colors needed to (properly) color a graph. The clique number ω(G) is
the size of the largest clique (set of pairwise adjacent vertices) in the graph.

3 Graph Coloring

A s-coloring of a graph G = (V,E) is traditionally defined as a mapping c : V → {1, ..., s} such that

ij ∈ E ⇒ c(i) 6= c(j).

This s-coloring c defines a s-coloring relation R by iRj ⇐⇒ c(i) = c(j). The coloring relation R breaks
the vertex set V into the color classes c−1(1), ..., c−1(s), so it is an equivalence relation.
In matrix terms, we can express a s-coloring of a graph by a matrix M ∈ {0, 1}n×n such that mij =
1 ⇐⇒ c(i) = c(j). Clearly, for any such matrix M there exists a permutation matrix P such that

P T MP =

Jn1
0

0 Jn2

. . .

Jns

. (1)

In other words, P T MP is the direct sum of s blocks of all ones, with block sizes ni ≥ 1 and
∑

i ni = n. We
call M the matrix representation of the coloring c. Moreover we say that M is a matrix representation
of a proper coloring, if mij = 0 whenever ij is an edge of the underlying graph.

Remark 1 Let c be a coloring and M be its matrix representation. The color classes c−1(i) are given
by Ci = {v : c(v) = i}. Its characteristic vectors χCi

∈ {0, 1}n, defined by

(χCi
)v =

{

1 v ∈ Ci

0 v /∈ Ci

2

can be used to express M as

M =

s
∑

i=1

χCi
χT

Ci
. (2)

Note in particular that the rank of M is s.

We first recall the following well known characterizations of matrices of the form given in (1).

Lemma 2 Let M be a symmetric 0-1 matrix. Then the following statements are equivalent.

a) There exists a permutation matrix P such that P T MP is the direct sum of s blocks of all ones.

b) diag (M) = e, rank(M) = s, M � 0.

c) diag (M) = e, rank(M) = s and M satisfies the triangle inequalities:

mij + mjk − mik ≤ 1 ∀(i, j, k). (3)

Proof. Since J � 0, we obviously have a) ⇒ b). To see that b) ⇒ c), we note that a violated triangle
inequality would have mij = mjk = 1, mik = 0. The corresponding submatrix

1 1 0
1 1 1
0 1 1

is indefinite, contradicting M � 0. Finally we note that the triangle inequalities imply that M represents
a transitive relation, so the rows and columns of M can be permuted to be a direct sum of all ones
matrices. Since the rank of M is s, there must be s such blocks. �

The previous characterizations of matrix representations of colorings involve a rank constraint on M .
The following result shows that we can trade the rank constraint for a semidefiniteness constraint.

Theorem 3 Let M be a symmetric 0-1 matrix. Then M is of the form (1) if and only if

d) diag (M) = e and (tM − J � 0 ⇐⇒ t ≥ s).

Proof: Suppose M is of the form (1). Then any two rows in tM − J corresponding to two vertices of
the same color are equal. Therefore the rows of any nonzero minor of tM − J correspond to (at most)
s vertices of different colors, and thus the corresponding submatrix is tIs − Js, or submatrix of it. But
tIs −Js � 0 ⇐⇒ t ≥ s. So a) above implies d). We observe in particular that sM −J � 0 in this case,
and that tM − J 6� 0 for t < s.
To see the other direction we observe that diagonal elements in sM −J � 0 are non-negative. So s ≥ 1,
and M � 1

sJ � 0. Let rankM = r. Then by lemma 2, M is a direct sum of r blocks of all ones, and
the previous observation shows that r = s. �

As a consequence we can write the coloring number χ(G) of a graph G as the optimal value of the
following SDP in bivalent variables.

Corollary 4 [21, 13]

χ(G) = min{t : Y − J � 0, diag Y = te, Y = Y T , yij = 0 ∀ij ∈ E, yij ∈ {0, t}} (4)

Proof. From the previous theorem we have that

χ(G) = min t such that tM − J � 0, diag (M) = e, mij = 0 ∀ij ∈ E, mij ∈ {0, 1}.

Substituting Y = tM gives the bivalent linear SDP (4). �

3

4 A hierarchy of relaxations toward χ(G)

Since solving (4) is well known to be NP-hard, several relaxations were introduced. The initial relaxation
of Lovasz [16] simply drops the condition that the elements of Y are 0 or t.

θ(G) = min{t : Y − J � 0, diag Y = te, Y = Y T , yij = 0 ∀ij ∈ E} (5)

Szegedy [28] maintains Y ≥ 0 and gets the stronger relaxation θ+(G).

θ+(G) = min{t : Y − J � 0, diag Y = te, Y = Y T , yij = 0 ∀ij ∈ E, yij ≥ 0 ∀ij /∈ E} (6)

Finally Meurdesoif [21] includes the triangle inequalities (3) as well. We denote the resulting bound by
θ+4.

θ+4(G) = min{t : Y − J � 0, diag Y = te, Y = Y T , yij = 0 ∀ij ∈ E,
yij ≥ 0 ∀ij ∈ Ē, yij + yjk − yik ≤ t ∀ij, jk ∈ Ē}

(7)

We clearly have a chain
θ(G) ≤ θ+(G) ≤ θ+4(G) ≤ χ(G) (8)

Remark 5 It is known that the gaps χ(G) − θ(G) [13] and χ(G) − θ+(G) [6] can be arbitrarily large.
We are not aware of any theoretical investigations of the gap χ(G) − θ+4(G).
The representation of M , given in (2) shows that the relaxations above could be further tightened by
constraining Y to be in the cone C of completely positive matrices, with C = {

∑

yiy
T
i : yi ≥ 0}. However

just checking whether a matrix is completely positive is co-NP-complete [22]. Polynomial relaxations
based on copositive programming are investigated in [23, 4], but practical implementations still remain
a challenge.
All relaxations of χ(G), given in (8), can be computed in polynomial time to some prescribed precision.
Several methods have been proposed in the literature to compute θ(G), ranging from interior-point meth-
ods, to methods based on eigenvalue optimization. We refer to the website of Hans Mittelmann1 for a
summary of state-of-the-art software to compute θ(G). Computing the other relaxations θ+ and θ+4 is
significantly more involved. We are not aware of any computational study based on these relaxations,
aside from the preliminary work reported in [21]. We will show in the following that these bounds can
be computed quite efficiently with an effort comparable to compute θ for reasonably dense graphs.

5 The clique number and semidefinite relaxations

In this section we briefly recall how (5) can alternatively be obtained as a semidefinite relaxation of the
Max-Clique problem [16]. Suppose S is a clique in G. Let χS be its characteristic vector. Then clearly
(χS)i(χS)j = 0∀ij ∈ Ē, because the vertices i and j are not in the same clique, if ij ∈ Ē. Using χS we
form the following matrix

X =
χSχT

S

χT
SχS

. (9)

We get |S| = 〈X, J〉. Moreover, X satisfies the following conditions: X � 0, tr (X) = 1, xij = 0 ∀ij ∈
Ē, rank(X) = 1. We leave it to the reader to verify that in fact

ω(G) = max{〈X, J〉 : X � 0, tr (X) = 1, xij = 0 ∀ij ∈ Ē, rank(X) = 1}.

Dropping the rank constraint on X, we obtain the problem (5) in dual form:

θ(G) = {max〈X, J〉 : tr X = 1, xij = 0∀ij ∈ Ē, X � 0.} (10)

1http://plato.la.asu.edu

4

Therefore ω(G) ≤ θ(G). By adding additional nonnegativity for X, (10) can be strengthened to the
Schrijver’s number, see [19, 27].

θ−(G) = max{〈X, J〉 : tr X = 1, xij = 0∀ij ∈ Ē, xij ≥ 0∀ij ∈ E, X � 0}. (11)

Further strengthenings, see [17] lead to

θ−4(G) = max〈X, J〉 such that tr X = 1, X � 0, and

xij = 0 ∀ij ∈ Ē, xij ≥ 0 ∀ij ∈ E, xij ≤ xii, xik + xjk ≤ xij + xkk ∀i, j, k ∈ V. (12)

Now notice that ω(G) ≤ θ−4(G) since matrices of the form (9) are also feasible for (12). Since the
feasible sets of (12), (11) and (10) form a chain, we get θ−4(G) ≤ θ−(G) ≤ θ(G).
Thus we finally have the following inequalities

ω(G) ≤ θ−4(G) ≤ θ−(G) ≤ θ(G) ≤ θ+(G) ≤ θ+4(G) ≤ χ(G).

Remark 6 It should be observed that model (12) is slightly weaker than N +(FRAC(Ḡ)) introduced in
[17]. Burer and Vandenbussche [3] have recently proposed a computational scheme for (approximately)
optimizing over the later. They provide computational results on graphs with up to 200 nodes.

Remark 7 The notation for the Lovász numbers θ(G) comes in various flavours. In the context of
the stability number, (5) is sometimes denoted by θ(Ḡ) or θ̄(G). The Schrijver’s number is sometimes
denoted by θ′(G) or θ2(G), while θ+ was originally denoted as θ1/2, see [28].

6 Sparse and dense graphs

In this section we concentrate on computationally efficient formulations of our SDP relaxations, by
exploiting the density (or sparsity) of the given graph G. We say that G is dense, if m > 1

2

(n
2

)

and
sparse otherwise. Note that this definition differs from the usual notion, where a graph is dense if
m = Ω(n2) and sparse if m = o(n2).
The following linear operator AG : Sn → RE will be useful.

AG(X)ij = 〈X,Eij〉 = xij + xji = 2xij ∀ij ∈ E. (13)

Its adjoint operator AT
G is given by AG

T (y) =
∑

ij∈E(G) yijEij . Using this map we can write any
symmetric matrix Z as

Z =
∑

i

yiEii + AT
G(u) + AT

Ḡ(v), i.e. zij =

yi i = j
uij ij ∈ E
vij ij /∈ E

Note that feasible matrices Y for (5) are of the form Y = tI + AT
Ḡ
(y), where y ∈ RĒ. Thus we get

θ(G) = min t such that tI + AT
Ḡ
(y) − J � 0

= max〈J,X〉 such that tr (X) = 1, AḠ(X) = 0, X � 0.
(14)

This SDP has m̄+1 equations (in the dual). We call it the dense model for θ(G). If we write Z = Y −J ,
then we get the following formulation.

θ(G) = min t such that te − diag (Z) = e, − AG(Z) = 2em, Z � 0
= max eT x + 2eT

mξ such that eT x = 1, Diag (x) + AT
G(ξ) � 0.

(15)

This model has n + m equations (in the primal), and we call it the sparse model. Clearly the sparse
model is computationally more efficient for sparse graphs (m small), while the dense model is better
for dense graphs (m̄ small).

5

n 100 150 200 250 300 350 400

|E| 487 1137 2047 3149 4531 6098 7949
.1

time 2 13 52 164 470 997 2240

|E| 1240 2802 5099 7926
.25

time 11 109 560 2113

|E| 2531 5665 10026
.5

time 59 638 3982

|E| 3734 8451 15049 23541
.75

time 10 91 448 1678

|E| 4460 10079 17942 28127 40436 55099 71863
.9

time 1 9 39 124 354 833 1984

Table 1: Times in seconds for computing θ(G) on random graphs. Graphs with density <0.5 are
computed using (15), the others with (14).

To give some impression on the practical impact, we provide in Table 1 computation times to compute
θ(G) with the two models. The codes have been run on a 2200 MHz laptop with 1G RAM under Linux.
The primal-dual predictor-corrector interior-point method was used. The algorithm was stopped once
the duality gap was less than 10−4. The same machine setting was used in all the computational results
reported in this paper. We consider random graphs of densities p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. The dense
model is used except for p < 0.5. The computationally most demanding instances are those with edge
density ≈ 0.5, i.e. with roughly an equal number of edges and non-edges.

Remark 8 Computational results for θ(G) are usually obtained using the dense model (14), see [1, 10,
21]. We are not aware of any computational study using the sparse model.

6.1 θ+4 in the dense model

Even though the tighter relaxations (6) and (7) for χ(G) have substantially more constraints than (14),
we will see next that on dense graphs these relaxations can be solved with about the same effort as the
basic model (14).
We first observe that any feasible matrix for (6) implies y ≥ 0 in (14). This does not increase the
number of (dual) equations in (14), but only changes some of the equations to inequalities.
The triangle inequalities in (7) for ij, jk /∈ E are either of the form

yij + yjk ≤ t in case ik ∈ E or

yij + yjk − yik ≤ t in case ik /∈ E.

We collect all these inequalities in By ≤ te. Again, these constraints do not increase the number of
equations in the dual of (14). More specifically, we get the following equivalent form of (7):

θ+4(G) = min t
tI + AT

Ḡ
(y) − J � 0

y ≥ 0
te − By ≥ 0

= max〈J,X〉
tr X + eT v = 1
AḠ(X) + u − BTv = 0
X � 0, u, v ≥ 0

(16)

This formulation clearly shows that solving (16) should not take much longer than solving (14), because
the number of dual equations is the same in both models.
In Table 2 we report computation times for θ+4 using the model (16). Even though the primal SDP
has additional constraints in the order of up to O(n3), the number of dual equations is unchanged. The

6

n 100 150 200 250 300 350 400

|E| 1240 2802
.25

time 448 5208

|E| 2531 5665 10026
.5

time 89 1355 8989

|E| 3734 8451 15049 23541
.75

time 15 105 812 3932

|E| 4460 10079 17942 28127 40436 55099 71863
.9

time 2 11 41 184 652 1679 4029

Table 2: Times in seconds for computing θ+4(G) on random graphs.

n 100 150 200 250 300 350 400

|E| 487 1137 2047 3149 4531 6098 7949
.1

time 4 27 138 469 1362 2966 7616

|E| 1240 2802 5099
.25

time 33 247 1299

Table 3: Times in seconds for computing θ+4(G,N).

slightly higher computation times of Table 2 in comparison to Table 1 (dense model) are mostly due
to the fact that (14) needs roughly 12 interior point iterations, while (16) needs about twice as many
iterations. A more carefully selected starting point might reduce this number of iterations.

6.2 θ+4 in the sparse model

Turning to the sparse model (15), the introduction of the sign constraints leads to additional inequalities

zij ≥ −1 ∀ij /∈ E,

and hence increases the number of primal constraints. For sparse graphs, the inclusion of all sign
constraints may be too large for computational purposes.
We therefore follow a more pragmatic approach and consider adding the most violated sign constraints
only. We first compute θ(G) and the optimal Z using the sparse model, which can be done very fast. A
good initial guess on violated sign constraints is now given by the most negative entries of Z. So (like
in [21]) we define

θ+4(G,N) = min{t : Z � 0, te − diag Z = e, zij = −1 ∀ij ∈ E,
zij ≥ −1∀ij ∈ N, zij + zjk − zik ≤ t − 1∀ij, jk ∈ N, ik ∈ E ∪ N}

(17)

where N ⊂ Ē. The computation times for this approach where |N | = |V | are given in the Table 3. We
note that the computation times are not much higher than the times for the sparse model from Table
1. It is also instructive to compare the computation times in Tables 2 and 3 for graphs with density
0.25.

Remark 9 A similar analysis holds for the relaxations of θ toward the clique number. In this case,
the inclusion of the sign constraints leading to θ−(G) does not increase the number of equations in
the sparse model. Therefore the same approach can be used to make computations of θ−4(G) and
θ−4(G,N) efficient. Further details are contained in the forthcoming dissertation [7].

7

7 Exploiting symmetry

Exploiting symmetry often leads to significant simplifications. Parrilo and Sturmfels [25] exploit sym-
metry to reduce the number of variables in minimizing polynomials. Margot [18] uses isomorphisms for
pruning in branch-and-cut algorithms. Recently, Schrijver [26] uses the Terwilliger algebra to simplify
some bound calculations in coding theory.
The permutation α : V → V is an automorphism of the graph G = (V,E), if

ij ∈ E ⇐⇒ (α(i)α(j)) ∈ E

Aut G = {α : α automorphism of G} denotes the set of all automorphisms of G. It is well known that
Aut G is a group with respect to composition.
Notice that Aut G = Aut Ḡ. Though the problem of finding all automorphisms of a given graph is
graph isomorphism complete, a very efficient heuristic named NAUTY can find large subgroups of Aut G
[20]. Also many important families of graphs have rich while easy-to-compute groups of automorphisms
(Hamming, Johnson, Kneser, circular graphs).
Let A ≤ Aut G be a subgroup of automorphisms of the graph G. We denote by

[i] := {α(i) : α ∈ A}

the orbit of a vertex i, and by
[ij] := {(α(i)α(j) : α ∈ A}

the orbit of edge (or non-edge) ij.

Theorem 10 Let [E] = {[ij] : ij ∈ E}, [Ē] = {[ij] : ij ∈ Ē} and [V] = {[i] : i ∈ V } be the sets of all
orbits of edges, non-edges and vertices for a given group A ≤ Aut (G) of automorphisms. Then

θ(G) = min t
tI +

∑

[ab]∈[Ē] ȳ[ab](
∑

ij∈[ab] Eij) � J
(18)

and also
θ(G) = max〈X̄, J〉

tr X̄ = 1
X̄ =

∑

[a]∈[V] x̄[a](
∑

i∈[a] Eii) +
∑

[ab]∈[E] x̄[ab](
∑

ij∈[ab] Eij) � 0
(19)

Remark 11 Models (18) and (19) have only one variable per orbit. So in the case of a rich au-
tomorphism group they need considerably less variables than (14) and (15). Note in particular that
x̄ij = x̄β(i)β(j) implies X̄ = PβX̄P T

β for each β ∈ A.

Proof. We show that for every feasible solution of (14) there is a feasible solution (20) of (18) with
the same value of the cost function. Since any feasible solution of (18) is already feasible for (14) this
establishes equality.
Let Y = tI + AT

Ḡ
(y) � J be a feasible solution of (14). Denote by Pα the permutation of V such that

Pαei = eα(i)∀i ∈ V . Then PαEijP
T
α = Eα(i)α(j).

Let us shorthand the average

0 �
1

|A|

∑

α∈A

PαY P T
α = tI +

1

|A|

∑

α∈A

∑

ij∈Ē

yijPαEijP
T
α = tI +

1

|A|

∑

α∈A

∑

ij∈Ē

yijEα(i)α(j) (20)

by tI +
∑

ij∈Ē ȳijEij . Since A is a group, A = {α ◦ β−1 : α ∈ A} proving ȳij = 1
|A|

∑

α∈A yα−1(i)α−1(j)

= 1
|A|

∑

α∈A yα−1◦β(i)α−1◦β(j) = ȳβ(i)β(j) for any β ∈ A.

Forming analogous averages in (15) establishes (19). �

8

7.1 Strengthenings of Schrijver and Szegedy

Now notice that if in (18) y ≥ 0, the final average ȳ ≥ 0, too (while the cost function equals t). To see
that the Szegedy’s number equals

θ+(G) = min t
Z̄ = tI +

∑

[ab]∈[Ē] ȳ[ab](
∑

ij∈[ab] Eij) � J

y[ab] ≥ 0 ∀[ab] ∈ [Ē]

(21)

one only needs to notice that all feasible solutions of (21) are also feasible for (6).
The same argument shows that the Schrijver’s number equals

θ−(G) = max〈X̄, J〉
tr X̄ = 1
X̄ =

∑

[a]∈[V] x̄[a](
∑

i∈[a] Ei) +
∑

[ab]∈[E] x̄[ab](
∑

ij∈[ab] Eij) � 0

x̄[AB] ≥ 0 ∀[ab] ∈ [E]

(22)

Since the number of the orbits is typically much smaller then n2, this bound can be computed very
efficiently.

7.2 Strengthening by the triangle inequalities

Strengthening (7) involves a large number of up to O(n3) of additional triangle inequalities. After
“averaging” Z (like in (20)) they are transformed into

ȳ[ij] + ȳ[jk] ≤ t in case [ik] ∈ [E] or

ȳ[ij] + ȳ[jk] − ȳ[ik] ≤ t in case [ik] /∈ [E].

Also, if [ik] ∈ {[ij], [jk]} the constraint becomes redundant. Similar ideas apply to the model (12).

7.3 The bounds for vertex-transitive graphs

The graph G = (V,E) is vertex transitive, if ∀i, j ∈ V ∃α ∈ A such that α(i) = j.
If G is vertex transitive, by taking A := Aut G (19) simplifies to

θ(G) = max〈X̄, J〉
X̄ = 1

nI +
∑

[ab]∈[E] x̄[ab]

∑

ij∈[ab] Eij � 0
(23)

Any feasible solution X̄ of (23) with the value of the cost function 〈X̄, J〉 = eT X̄e =: k can be
transformed into a feasible solution of (18)

Ȳ :=
n2

k
X̄ (24)

for the complementary graph Ḡ with the cost t = n2

k
1
n = n

k . Remark 11 now implies that e is an

eigenvector of any feasible solution X̄ of (23). Since X̄e = k
ne, Ȳ � J . The inverse transformation

X̄ :=
1

tn
Ȳ (25)

transforms feasible primal solution of (18) for the graph Ḡ into a feasible dual solution of (19) for graph
G regardless if the graph is vertex transitive or not.
Transformations (24) and (25) carry sign constraints of (6) into the sign constraints of (11), and vice
versa. Moreover the triangle inequalities of θ+4(G) get transformed into the triangle inequalities of
θ−4(Ḡ), and on vertex transitive graphs also vice versa, since the inequalities x̄ [ij] ≤ x̄[ii] = 1

n are in
the positive semidefinite matrix X̄ redundant.
This proves

9

density \ n 100 150 200 250 300 350 400

θ−4(G) 4.0000 5.0000 4.4428 4.8014 5.1217 5.3839 5.7118

.1 θ(G) 4.0000 5.0000 4.4471 4.8047 5.1275 5.3893 5.7166
θ+4(G,N) 4.0000 5.0000 4.4681 4.8256 5.1505 5.4137 5.7403

θ+4 4.0000

θ−4(G) 5.8056 6.8409 7.7852 8.5052

.25 θ(G) 5.8228 6.8636 7.8104 8.5328
θ+4(G,N) 5.8571 6.9055 7.8568

θ+4(G) 5.8685 6.9194

θ−4(G) 10.7476 12.8249
.5 θ(G) 10.8246 12.9034 14.6807

θ+4(G) 10.8976 12.9998 14.7830

θ−4(G) 19.2699
.75 θ(G) 19.4945 24.3363 28.6875 31.8306

θ+4(G) 19.5539 24.4414 28.7988 31.9376

θ−4(G) 32.3485
.9 θ(G) 33.1647 41.9934 50.1470 58.0653 63.0662 69.4530 73.9517

θ+4(G) 33.2152 42.0462 50.2200 58.1541 63.1388 69.5523 74.0238

Table 4: The bounds on ω(G) and χ(G) on random graphs

Theorem 12 Let G be a simple graph on n vertices. Then

θ(G)θ(Ḡ) ≥ n θ+(G)θ−(Ḡ) ≥ n θ+4(G)θ−4(Ḡ) ≥ n

If G is vertex transitive, then all these inequalities are tight. �

See [14] for an alternative proof of θ(G)θ(Ḡ) ≥ n for general graphs and θ(G)θ(Ḡ) = n for the vertex
transitive graphs, while Szegedy proved θ+(G)θ−(Ḡ) ≥ n in [28]. The proof of the theorem implies
that solving the SDP relaxation on a vertex transitive graph G produces the bound on Ḡ as well as
a corresponding matrix variable, i.e. these two problems are equivalent from the standpoint of the
applications, see section 8.4.

8 Computational results

We have discussed the sparse (15) and the dense (14) model to compute ϑ(G). In Table 1 we focused on
the computational efficiency of these methods. Now we take a closer look at the quality of the various
relaxations to approximate both χ(G) and ω(G).

8.1 Comparing ϑ(G) and ϑ(G)+∆ on random and DIMACS graphs

We have seen in Tables 1 and 2 that the effort to compute ϑ(G) and ϑ(G)+4 is comparable for dense

graphs (m > n2

4). In Table 4 we compare these bounds on randomly generated graphs of given densities.
It turns out that the inclusion of the additional sign constraints (6) and the triangle inequalities (7)
does not change the value of the relaxation in a significant way. In fact, in all these instances we have

ϑ(G+)

ϑ(G)
< 1.01.

This is consistent with the very preliminary experience reported by Meurdesoif [21].

10

The situation is not much different if we look at some of the dense instances from the DIMACS collection,
see Tables 5 and 6. To get some impression also for sparse graphs, we consider also including a limited
number of the additional constraints in the columns labeled θ+4(G,N), as described in section 6.2.
Even though the difference between the relaxations is a little bit bigger than for completely random
graphs, notably in case of the Mycielski graphs, the increment of the lower bound toward χ(G) is still
only marginal.

name n m |Ē| θ(G) θ+(G) θ+4(G) θ+4(G, N)

myciel5 47 236 845 2.6387 2.6387 3.0933 2.7583
myciel6 95 755 3710 2.7342 2.7342 3.2538 2.8340

1-insertions 4 67 232 1979 2.2333 2.2333 2.5230 2.2634
4-insertions 3 79 156 2925 2.0480 2.0480 2.1818 2.0701

1-FullIns 4 93 593 3685 3.1244 3.1244 3.4869 3.2657
2-FullIns 3 52 201 1125 4.0282 4.0282 4.2408 4.2408
3-FullIns 3 80 346 2814 5.0158 5.0158 5.1935 5.1198

dsjc125.5 125 3891 3859 11.7844 11.8674 11.8674 11.8555

dsjc125.9 125 6961 789 37.7678 37.8028 37.8031
dsjc250.9 250 27897 3228 55.1527 55.2155 55.2156

Table 5: Computational results for some small DIMACS Graph Coloring Problems.

name n m θ(G) θ4(G, N) χ(G)

myciel7 191 2360 2.8146 2.9206 8

1-insertions 5 202 1227 2.2765 2.3084 6
2-insertions 4 149 541 2.1334 2.1802 5
3-insertions 4 281 1046 2.0868 2.1229 5
4-insertions 4 475 1795 2.0612 2.0893 5

1-FullIns 5 282 3247 3.1811 3.2935 6
2-FullIns 4 212 1621 4.0559 4.3021 6
4-FullIns 3 114 541 6.0100 6.1612 7
5-FullIns 3 154 792 7.0068 7.0811 8

dsjc125.1 125 736 4.1061 4.2084 5
dsjc250.1 250 3218 4.9063 4.9317 ≤ 9

Table 6: Computational results for some medium-sized DIMACS Graph Coloring Problems.

8.2 Comparing θ and θ−4

A similar situation occurs, if one looks at the improvements of ϑ(G) toward the clique number. We
collect some representative results in Table 7. The improvement of the random graphs labeled dsjc is
small while the situation changes significantly, once we look at highly structured generalized Hamming
graphs labeled H. The vertex set of a Hamming graph H(a, b, c) consists of numbers 0, ..., ba−1 written
in base b. The number of different digits is the Hamming distance between two numbers. Two vertices
u, v are connected, if the Hamming distance d(u, v) = c, respectively d(u, v) ≤ c in H−(a, b, c), and
d(u, v) ≥ c in H+(a, b, c). These graphs are important in coding theory.

11

name n m ≤ ω(G) θ−4(G) θ(G)

H−(5, 2, 2) 32 240 4 4.0000 5.3333
H−(6, 2, 2) 64 1312 4 4.0000 5.3333
H−(7, 2, 2) 128 1856 2 3.0000 3.5556
H−(8, 2, 2) 256 4736 2 3.0000 3.5556

dsjc125.5 125 3859 10 11.4019 11.4730
dsjc125.5 125 3891 10 11.7105 11.7844
dsjc125.1 125 736 4 4.0671 4.1062

Table 7: Computational results for the Clique Number on some DIMACS Stable Set Problems

name n m or. cliq. θ−4(G) θ(G) θ+(G) θ+4(G) col. time

H(6,2,2) 64 480 1 4 4.0000 4.0000 5.3333 5.3333 8 0
H(6,2,4) 64 480 1 6 6.0000 6.0000 8.0000 8.0000 8 0
H(9,2,3) 512 21504 8 4 4.0000 4.0000 6.4000 6.4000 11 40
H(10,2,2) 1024 23040 9 2 2.6667 2.6667 3.2000 3.2000 7 390
H(11,2,3) 2048 168960 10 2 3.2000 3.2000 4.9382 4.9382 12 3036

H+(9,2,3) 512 119040 3 130 160.0000 160.0000 192.0000 192.0000 256 23
H+(9,2,4) 512 97536 4 74 80.0000 80.0000 128.0000 128.0000 128 29
H+(11,2,5) 2048 1520640 5 232 265.8461 265,8461 512.0000 512.0000 512 1888
H+(12,2,5) 4096 6760448 5 462 531.6923 531.6923 1024.0000 1024.0000 25950

H(6,3,3) 729 58320 5 9 9.0000 9.0000 11.5714 11.5714 22 105
H(7,3,4) 2187 306180 6 9 9.0000 9.0000 11.5714 11.5714 32 2980

J(10,5,2) 252 12600 4 6 6.0000 6.0000 8.2500 8.2500 12 4
J(12,5,3) 792 83160 4 7 15.0000 15.0000 22.0000 22.0000 39 119
J(12,7,3) 792 69300 4 3 3.6924 3.6923 6.6000 6.6000 12 114
J(14,7,3) 3432 2102100 6 8 8.0000 8.0000 11.8182 11.8182 16568

C97 97 97 47 2 2.0001 2.0005 2.0005 2.0208 3 2

(C5)4 625 170000 4 21 25.0000 25.0000 25.0000 27.9508 62 44

(C7)4 2401 2785160 4 88 121.1521 121.1521 121.1521 127.9508 233 2364

(C9)3 729 255879 3 67 82.8870 82.8870 82.8870 85.5466 119 51

Table 8: Computational results on vertex transitive graphs.

8.3 Numerical results on vertex transitive graphs

We have just seen that on unstructured random graphs, the variations of θ(G) do not lead to significantly
improved bounds. The situation is quite different, once we consider structured graphs. In Table 8, we
give results on some vertex transitive graphs. We consider Hamming graphs, Johnson graphs, and some
complements of powers of cycles. In particular, we provide information about the graph (n, m, number
of orbits). The clique size in column labeled cliq. is obtained by an iterated greedy heuristic while
the number of colors in column labeled col. is obtained by heuristic TABU [12]. This heuristic cannot
handle the two largest graphs (with more than 3000 vertices), so we have no good estimate of χ for
these two graphs. While the number of edges can be very large, only the number of orbits in columns
labeled or. effects the computation times. It is remarkable that the inclusion of the sign constraints
nearly doubles the bound on some of the H+ graphs. The results in this table also suggest that the
additional inclusion of the triangle inequalities does not improve θ+, except for the last instances.

12

8.4 Extracting colorings and cliques

Besides computing a bound on χ(G) or ω(G) the SDP approach also produces matrix variables (Z and
X) which can be utilized for finding suboptimal coloring [13] or extracting large clique, see [2]. The
former idea can be generalized to approximately solving max-k-cut problem, see [8]. The search for
stronger bounds is mainly motivated by the hope that this matrix variables will better approximate
optimal coloring, clique or max-k-cut, respectively. In fact, we have found 8-colorings of H(6,2,2)
and H(6,2,4) by utilizing the strengthened bound θ+4 in a variant of Karger-Motwani-Sudan graph
coloring heuristic while applying Lovász theta number instead produced a 10-coloring both times. Also
ω(J(12, 7, 3)) = 7 was computed by an exact branch and bound algorithm applying ω−4 on the non-
isomorphic subgraphs.

9 Conclusions

Considering all these computational results, we draw the following conclusions.

• The Lovász number can be computed efficiently on very sparse and very dense graphs.

• On random graphs the strengthened bounds do not improve the original Lovász number consid-
erably.

• Exploiting symmetry can simplify computations significantly.

• On some vertex transitive graphs the non-negativity constraints yield a substantial improvement
over the original relaxation.

• The additional inclusion of the triangle constraints often does not improve upon the simpler
relaxation θ+.

Our numerical results have been obtained by computer programs downloadable from www.math.uni-
klu.ac.at/or. Further research is necessary to investigate the computation of these bounds by faster
first order methods like [5, 11, 29].

References

[1] S. BENSON, Y. YE, and X. ZHANG. Solving large-scale sparse semidefinite programs for combi-
natorial optimization. SIAM Journal on Optimization, 10:443–461, 2000.

[2] S. BENSON and Y. YE. Approximating maximum stable set and minimum graph coloring problems
with the positive semidefinite relaxation, working paper, University of Iowa. 1999.

[3] S. BURER, D. VANDENBUSSCHE. Solving lift-and-project relaxations of binary integer pro-
grams, working paper, Optimization Online, 2004.

[4] I. M. BOMZE and E. de KLERK. Solving standard quadratic optimization problems via linear,
semidefinite and copositive programming. pages 1–19, 2001.

[5] S. BURER and R. D. C. MONTEIRO. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95:329–357, 2003.

[6] M. CHARIKAR. On semidefinite programming relaxations for graph coloring and vertex cover. In
Proceedings of the 41th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 616–620,
2002.

13

[7] I. DUKANOVIC. Semidefinite Programming applied to Graph Coloring Problem. PhD thesis,
University of Klagenfurt, Austria, 2005 forthcoming.

[8] E. de KLERK, D. V. PASECHNIK, and J. P. WARNERS. On approximate graph colouring and
max-k-cut algorithms based on the θ-function. Manuscript, pages 1–19, 2000.

[9] M. GRÖTSCHEL, L. LOVÁSZ, and A. SCHRIJVER. Geometric Algorithms and Combinatorial
Optimization. Springer New York, 1988.

[10] G. GRUBER and F. RENDL. Computational experience with stable set relaxations. SIAM J.
Optimization, 13:1014–1028, 2003.

[11] C. HELMBERG and F. RENDL. A spectral bundle method for semidefinite programming. SIAM
Journal on Optimization, 10:673–696, 2000.

[12] A. HERTZ and DE WERRA D. Using tabu search for graph coloring. Computing, 39:345–351,
1987.

[13] D. KARGER, R. MOTWANI, and M. SUDAN. Approximate graph coloring by semidefinite pro-
gramming. Journal of the Association for Computing Machinery, 45:246–265, 1998.

[14] D. E. KNUTH. The sandwich theorem. Electron. J. Combin., 1:1–48, 1994.

[15] M. LAURENT and F. RENDL. Semidefinite programming and integer programming. In K. Aardal
et al., editor, Handbook in OR & MS, pages 393–514. Elsevier B. V., forthcoming.

[16] L. LOVÁSZ. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25:1–7, 1979.

[17] L. LOVÁSZ and A. SCHRIJVER. Cones of matrices and set-functions and 0-1 optimization. SIAM
Journal on Optimization, 1:166–190, 1991.

[18] F. MARGOT. Pruning by isomorphism in branch-and-cut. Lecture Notes in Computer Science,
2081:304–317, 2001.

[19] Jr. R.J. McELIECE, E.R. RODEMICH, and H.C. RUMSEY. The Lovász bound and some gener-
alizations. Journal of Combinatorics and System Sciences, 3:134–152, 1978.

[20] B. D. McKAY. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

[21] P. MEURDESOIF. Strengthening the Lovász θ(Ḡ) bound for graph coloring. Mathematical Pro-
gramming (forthcoming).

[22] K. G. MURTY. Some NP-complete problems in quadratic and nonlinear programming. Mathe-
matical Programming, 39:117–129, 1987.

[23] P. A. PARRILO. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization. PhD thesis, California Institute of Technology, 2000.

[24] P. A. PARRILO. Symmetries in semidefinite programming, and how to exploit them. Program of
the First MPS Conference on Continuous Optimization ICCOPT I, Troy, page 51, 2004.

[25] P. A. PARRILO and B. STURMFELS. Minimizing polynomial functions. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 1–16, 2001.

[26] A. SCHRIJVER. New code upper bounds from the Terwilliger algebra. Technical report, CWI,
2004.

14

[27] A. SCHRIJVER. A comparison of the Delsarte and Lovász bounds. IEEE Transactions on Infor-
mation Theory, IT-25:425–429, 1979.

[28] M. SZEGEDY. A note on the theta number of Lovász and the generalized Delsarte bound. 35th
Annual Symposium on Foundations of Computer Science, pages 36–39, 1994.

[29] K.C. TOH and M. KOJIMA. Solving some large scale semidefinite programs via the conjugate
residual method. SIAM Journal on Optimization, 12:669–691, 2002.

15

